

Khazanah Matematika 3

untuk Kelas XII SMA dan MA Program Ilmu Pengetahuan Sosial

Rosihan Ari Y. Indriyastuti

Hak Cipta Pada Departemen Pendidikan Nasional Dilindungi Undang-undang

Khazanah Matematika 3

untuk Kelas XII SMA dan MA Program Ilmu Pengetahuan Sosial

Penulis : Rosihan Ari Y.

Indriyastuti

Perancang kulit : Agung Wibawanto Perancang tata letak isi : Agung Wibawanto

Penata letak isi : Bonawan Ilustrator : Kusdirgo

Preliminary : vi Halaman isi : 240 hlm. Ukuran buku : 17,6 x 25 cm

510.07

ROS ROSIHAN Ari Y

k Khazanah Matematika 3 : untuk Kelas XII SMA / MA

Program Ilmu Pengetahuan Sosial / penulis, Rosihan Ari Y, Indriyastuti

; ilustrator, Kusdirgo. -- Jakarta : Pusat Perbukuan,

Departemen Pendidikan Nasional, 2009.

vi, 240 hlm, : ilus. ; 25 cm

Bibliografi: hlm. 226-227

Indeks

ISBN 978-979-068-858-2 (No. Jil. Lengkap)

ISBN 978-979-068-862-9

1. Matematika-Studi dan Pengajaran I. Judul

II. Indriyastuti III. Kusdirgo

Hak Cipta Buku ini dibeli oleh Departemen Pendidikan Nasional dari Penerbit Wangsa Jatra Lestari, PT

Diterbitkan oleh Pusat Perbukuan Departemen Pendidikan Nasional Tahun 2009

Diperbanyak oleh

Sambutan

Puji syukur kami panjatkan ke hadirat Allah SWT, berkat rahmat dan karunia-Nya, Pemerintah, dalam hal ini, Departemen Pendidikan Nasional, pada tahun 2009, telah membeli hak cipta buku teks pelajaran ini dari penulis/penerbit untuk disebarluas-kan kepada masyarakat melalui situs internet (*website*) Jaringan Pendidikan Nasional.

Buku teks pelajaran ini telah dinilai oleh Badan Standar Nasional Pendidikan dan telah ditetapkan sebagai buku teks pelajaran yang memenuhi syarat kelayakan untuk digunakan dalam proses pembelajaran melalui Peraturan Menteri Pendidikan Nasional Nomor 81 Tahun 2008 tanggal 11 Desember 2008.

Kami menyampaikan penghargaan yang setinggitingginya kepada para penulis/penerbit yang telah berkenan mengalihkan hak cipta karyanya kepada Departemen Pendidikan Nasional untuk digunakan secara luas oleh para siswa dan guru di seluruh Indonesia.

Buku-buku teks pelajaran yang telah dialihkan hak ciptanya kepada Departemen Pendidikan Nasional ini, dapat diunduh (down load), digandakan, dicetak, dialihmediakan, atau difotokopi oleh masyarakat. Namun, untuk penggandaan yang bersifat komersial harga penjualannya harus memenuhi ketentuan yang ditetapkan oleh Pemerintah. Diharapkan bahwa buku teks pelajaran ini akan lebih mudah diakses sehingga siswa dan guru di seluruh Indonesia maupun sekolah Indonesia yang berada di luar negeri dapat memanfaatkan sumber belajar ini.

Kami berharap, semua pihak dapat mendukung kebijakan ini. Kepada para siswa kami ucapkan selamat belajar dan manfaatkanlah buku ini sebaik-baiknya. Kami menyadari bahwa buku ini masih perlu ditingkatkan mutunya. Oleh karena itu, saran dan kritik sangat kami harapkan.

Prakata

Penulis mengucapkan selamat kepada kalian yang telah naik ke kelas XII Program Ilmu Pengetahuan Sosial (IPS). Tentu kalian sangat bangga. Semoga kalian terpacu untuk lebih semangat lagi dalam belajar. Teruslah rajin belajar, gigih, pantang menyerah, dan jangan lupa berdoa kepada Tuhan agar cita-cita kalian tercapai. Ingat, sebentar lagi kalian akan menghadapi ujian nasional. Apalagi bagi kalian yang akan melanjutkan ke jenjang pendidikan yang lebih tinggi. Kalian akan menghadapi ujian yang diadakan perguruan tinggi tersebut. Kalian harus lebih giat lagi dalam belajar sehingga menjadi orang yang sukses dan membanggakan.

Buku *Khazanah Matematika* ini akan membantu kalian dalam mempelajari matematika. Buku ini disusun dengan urutan penyajian sedemikian rupa sehingga kalian akan merasa senang untuk mendalaminya. Buku ini akan membantu kalian dalam belajar. Dalam pembelajarannya, buku ini menuntut kalian untuk aktif dan bertindak sebagai subjek pembelajaran. Kalian dituntut untuk mengobservasi, mengonstruksi, mengeksplorasi, dan menemukan sendiri konsep-konsep matematika sehingga kalian akan menjadi orang yang dapat berpikir kritis, kreatif, dan inovatif.

Di kelas XII Program IPS ini, kalian akan mempelajari materi-materi berikut:

- Integral
- Program Linear
- Matriks
- Barisan dan Deret

Penulis berharap semoga buku ini dapat membantu kalian dalam mempelajari konsep-konsep matematika. Akhirnya, semoga kalian sukses.

Solo, Februari 2008

Penulis

Daftar Isi

Sambutan iii Prakata iii Daftar Isi iv

Semester 1

Bab I Integral

- A. Pengertian Integral 3
- B. Integral Tak Tentu 4
- C. Integral Tertentu 10
- D. Pengintegralan dengan Substitusi 20
- E. Integral Parsial 25
- Penggunaan Integral Tertentu 30

Rangkuman 44

Tes Kemampuan Bab I 45

Program Linear Bab II

- A. Sistem Pertidaksamaan Linear 53
- B. Nilai Optimum Suatu Fungsi Objektif 63

Rangkuman 72

Tes Kemampuan Bab II 73

Bab III **Matriks**

- A. Pengertian, Notasi, dan Ordo Matriks
- B. Kesamaan Dua Matriks 90
- C. Penjumlahan dan Pengurangan Matriks
- D. Perkalian Suatu Skalar dengan Matriks 100

	D 1 1'	N / '1	105
-	Perkalian	Matrize	1115

- F. Invers Suatu Matriks 112
- G. Penyelesaian Sistem Persamaan Linear dengan Matriks 128

Rangkuman 138

Tes Kemampuan Bab III 139

Latihan Ulangan Umum Semester 1 145

Semester 2

Bab IV Barisan dan Deret

- A. Barisan dan Deret 155
- B. Barisan dan Deret Aritmetika 159
- C. Barisan dan Deret Geometri 169
- D. Penerapan Konsep Barisan dan Deret 184
- E. Notasi Sigma 188
- F. Deret dalam Hitung Keuangan 197

Rangkuman 213

Tes Kemampuan Bab IV 214

Latihan Ujian Nasional 220

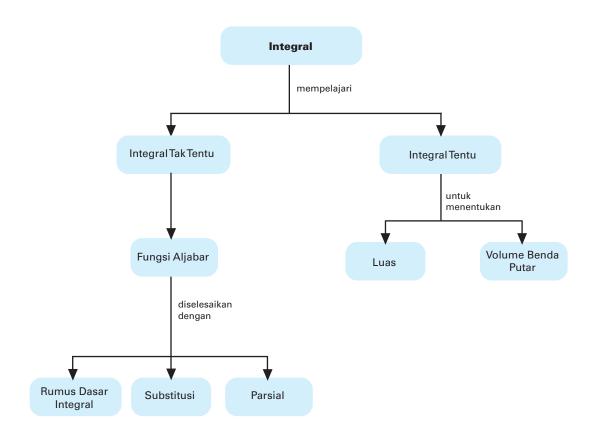
Daftar Pustaka 226 Lampiran 228 Glosarium 236 Indeks Subjek 239 Kunci Soal-Soal Terpilih 240

Bab

Tujuan Pembelajaran

Setelah mempelajari bab ini, diharapkan kalian dapat

- merancang aturan integral tak tentu dari aturan turunan;
- 2. menghitung integral tak tentu dari fungsi aliabar:
- menjelaskan integral tentu sebagai luas daerah pada bidang datar;
- menghitung integral tentu dengan menggunakan integral tak tentu;
- menghitung integral dengan rumus integral substitusi;
- menggambarkan suatu daerah yang dibatasi oleh beberapa kurva;
- 7. merumuskan integral tentu untuk luas suatu daerah:
- 8. menghitung integral yang menyatakan luas suatu daerah.


Sumber: www.cycling.co.cr

Integral

Motivasi

Pernahkah kalian memerhatikan bentuk kawat-kawat baja yang menggantung pada jembatan gantung? Perhatikan gambar jembatan Ampera yang melintasi Sungai Musi di atas. Jika kalian perhatikan, lengkungan yang terbentuk menyerupai lengkungan (kurva) parabola. Jika kita mengetahui persamaan lengkungan tersebut, kita akan dapat dengan mudah menentukan luas daerah yang dibatasi oleh kurva itu dan badan jalan bahkan kita juga dapat menentukan panjang lengkungan itu. Ilmu hitung integral dapat digunakan untuk menyelesaikan kasus-kasus semacam itu.

Peta Konsep

Kata Kunci

- batas atas
- batas bawah
- diferensial
- gradien
- integrable
- integral

- integral Riemann
- integral tak tentu
- integral tentu
- interval
- interval tertutup
- konstanta

- kurva
- luas bidang
- mengelilingi
- sumbu putar
- volume benda putar

Hitung integral sangat erat kaitannya dengan kalkulus diferensial atau turunan suatu fungsi. Sebenarnya hitung integral ditemukan terlebih dahulu baru kemudian ditemukan diferensial atau turunan. Namun demikian, hitung integral akan dapat dimengerti dan dipahami dengan mudah melalui turunan suatu fungsi. Materi tentang turunan telah kalian pelajari di kelas XI. Tentu kalian masih ingat, bukan? Namun, ada baiknya sebelum membahas integral, coba kalian ingat kembali konsep turunan dengan cara mengerjakan soal-soal berikut.

Prasyarat Kerjakan di buku

- 1. Tentukan turunan pertama dari fungsi $y = 3x^4 5x^2 + 1$ dan $y = \sqrt[3]{x}$.
- 2. Tentukan gradien garis singgung pada kurva y = (4x + 5)(2x + 4) di x = -1. Tentukan pula gradiennya di x = -2.
- 3. Suatu *home industry* memproduksi kotak tanpa tutup yang terbuat dari tripleks dengan volume 36.000 cm³. Jika ukuran panjang kotak dua kali lebarnya, tentukan ukuran kotak itu agar bahan yang digunakan seminimum mungkin.

Setelah kalian mampu mengerjakan soal-soal di atas, mari kita lanjutkan ke materi berikut.

A. Pengertian Integral

Setiap hari, tentulah kita melakukan aktivitas, seperti menghirup udara dan melepaskan udara. Melepas udara merupakan operasi kebalikan (invers) dari menghirup udara. Dalam matematika, kita juga mengenal operasi kebalikan (invers), contohnya pengurangan dengan penjumlahan, perkalian dengan pembagian, pemangkatan dengan penarikan akar, dan sebagainya. Pada subbab ini kita akan mempelajari invers dari diferensial, yaitu *integral*.

Kita telah mempelajari arti diferensial atau turunan di kelas XI. Jika kita mempunyai $f(x) = x^2 + 4$, turunannya adalah f'(x) = 2x. Dari contoh fungsi tersebut, kita dapat menentukan suatu fungsi yang turunannya f'(x) = 2x, yang disebut sebagai antiturunan atau antidiferensial atau pengintegralan. Jadi, pengintegralan merupakan operasi kebalikan dari pendiferensialan.

Misalnya diketahui f'(x) = 2x, fungsi ini merupakan turunan dari $f(x) = x^2 + 10$, $f(x) = x^2 - \log 3$, atau $f(x) = x^2 + 2\sqrt{5}$.

Terlihat fungsi-fungsi ini hanya berbeda konstantanya saja. Secara umum, dapat dituliskan bahwa $f(x) = x^2 + c$ merupakan antiturunan dari f'(x) = 2x, dengan c adalah bilangan real sembarang.

Dari uraian di atas dapat didefinisikan sembagai berikut.

Fungsi F(x) disebut antiturunan dari f(x) pada suatu domain

jika
$$\frac{d}{dx}[F(x)] = f(x)$$
.

B. Integral Tak Tentu

Misalkan diberikan fungsi-fungsi berikut.

$$y = x^2 + 2x + 5$$

$$y = x^2 + 2x - 2$$

Kedua fungsi itu memiliki turunan yang sama, yaitu $\frac{dy}{dx} = 2x + 2$.

Sekarang, tinjau balik. Misalkan diberikan $\frac{dy}{dx} = 2x + 2$. Jika

dicari integralnya, akan diperoleh fungsi-fungsi

$$y = x^2 + 2x + 5$$
,

$$y = x^2 + 2x - 2,$$

bahkan

$$y = x^2 + 2x + 10$$
,

$$y = x^2 + 2x - \log 3$$
,

dan sebagainya.

Dengan demikian, fungsi yang memiliki turunan $\frac{dy}{dx} = 2x + 2$

bukan saja dua fungsi di atas, tetapi banyak sekali. Walaupun demikian, fungsi-fungsi itu hanya berbeda dalam hal bilangan tetap saja (seperti 5, -2, 10, log 3, dan seterusnya). Bilangan-bilangan ini dapat disimbolkan dengan c. Karena nilai c itulah hasil integral ini disebut *integral tak tentu*.

1. Notasi Integral Tak Tentu

Perhatikan kembali definisi integral tak tentu di atas. Secara umum, jika F(x) menyatakan fungsi dalam variabel x, dengan f(x) turunan dari F(x) dan c konstanta bilangan real maka integral tak tentu dari f(x) dapat dituliskan dalam bentuk

$$\int f(x) \, dx = F(x) + c$$

dibaca "integral fungsi f(x) ke x sama dengan F(x) + c".

Keterangan:

 $\int f(x) dx$ = notasi integral tak tentu

F(x) + c= fungsi antiturunan

= fungsi yang diintegralkan (integran) f(x)

= konstanta C

= diferensial (turunan) dari xdx

2. Rumus Dasar Integral Tak Tentu

Pada subbab ini, akan dibahas integral fungsi aljabar saja. Oleh karena itu, kalian harus ingat kembali turunan fungsi aljabar yang telah kalian pelajari di kelas XI.

Pada pembahasan kalkulus diferensial atau turunan, diketahui bahwa turunan dari $x^{n+1} + c$ ke x adalah

$$\frac{d}{dx}[x^{n+1}+c] = (n+1)x^{(n+1)-1} = (n+1)x^n.$$

Dengan mengalikan $\frac{1}{n+1}$, untuk $n \neq -1$ pada kedua ruas,

diperoleh

$$\frac{1}{n+1}\frac{d}{dx}[x^{n+1}+c] = \frac{1}{n+1}(n+1)x^n = x^n.$$
Lodi
$$\frac{d}{dx}[x^{n+1}+c] = x^n$$
(1)

Jadi,
$$\frac{d}{dx} \left[\frac{1}{n+1} x^{n+1} + c \right] = x^n$$
(1)

Jika persamaan (1) dituliskan dalam bentuk integral, kalian akan memperoleh

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1} + c; \, n \neq -1$$

Bagaimana jika n = 0? Apa yang kalian peroleh? Tentu saja untuk n = 0, persamaan di atas menjadi $\int dx = x + c$.

Pada materi diferensial, kalian telah mengetahui jika y = F(x) + G(x) maka turunannya adalah $\frac{dy}{dx} = f(x) + g(x)$, dengan f(x) turunan dari F(x) dan g(x) turunan dari G(x). Dengan demikian, dapat dinyatakan bahwa

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx.$$

Kuis

• Kerjakan di buku tugas

$$\int (\frac{1}{x^3} - 3) \ dx = \dots$$

a.
$$\frac{1}{2x^2} - 3 + c$$

b.
$$\frac{1}{2x^2} - 3x + c$$

c.
$$-\frac{1}{2x^2} - 3x + c$$

d.
$$-3x + c$$

$$e. \quad \frac{1}{2x^2} + c$$

UMPTN 1989

Hal ini juga berlaku untuk operasi pengurangan.

Dari uraian di atas, kita dapat menuliskan rumus-rumus dasar integral tak tentu sebagai berikut.

1)
$$\int a \, dx = ax + c$$

2)
$$\int a f(x) dx = a \int f(x) dx$$

3)
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c; n \neq -1$$

4)
$$\int ax^n dx = \frac{a}{n+1} x^{n+1} + c; n \neq -1$$

5)
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

6)
$$\int [f(x) - g(x)] dx = \int f(x) dx - \int g(x) dx$$

Contoh 1:

Tentukan hasil integral fungsi-fungsi berikut.

a.
$$\int 5 dx$$

b.
$$\int 4x^5 dx$$

c.
$$\int 2\sqrt[3]{x} \ dx$$

Jawab:

a.
$$\int 5 dx = 5 \int dx = 5x + c$$

b.
$$\int 4x^5 dx = 4 \int x^5 dx$$
$$= \frac{4}{5+1} x^{5+1} + c$$
$$= \frac{4}{6} x^6 + c = \frac{2}{3} x^6 + c$$

c.
$$\int 2\sqrt[3]{x} \, dx = 2 \int x^{\frac{1}{3}} \, dx$$
$$= \frac{2}{\frac{1}{3} + 1} x^{\frac{1}{3} + 1} + c$$
$$= \frac{6}{4} x^{\frac{4}{3}} + c$$
$$= \frac{3}{2} x\sqrt[3]{x} + c$$

Contoh 2:

Selesaikan setiap pengintegralan berikut.

a.
$$\int x^4 \sqrt{x} \ dx$$

b.
$$\int (x+3)^2 dx$$

Jawab:

a.
$$\int x^4 \sqrt{x} \, dx = \int x^4 \cdot x^{\frac{1}{2}} dx$$
$$= \int x^{4\frac{1}{2}} dx = \frac{1}{4\frac{1}{2} + 1} x^{4\frac{1}{2} + 1} + c$$
$$= \frac{2}{11} x^{\frac{11}{2}} + c$$

b.
$$\int (x+3)^2 dx = \int (x^2 + 6x + 9) dx$$
$$= \frac{1}{3}x^3 + 3x^2 + 9x + c$$

Soal Kompetensi 1

• Kerjakan di buku tugas

Tentukan hasil pengintegralan berikut.

1.
$$\int (2x^2 + 3) dx$$

$$11. \int \frac{x^2 \sqrt{x}}{2\sqrt{x}} dx$$

2.
$$\int (4x^8 + 2x^5 + 3) \, dx$$

12.
$$\int \frac{6x(x-4)(x^2+4)}{x^{-2}} dx$$

$$3. \quad \int \frac{10}{x^4} dx$$

13.
$$\int 5x^2 \sqrt[3]{x} \, dx$$

4.
$$\int (5\sqrt{x} - x^2) dx$$

14.
$$\int x^4 (x^2 + 4x - 3) dx$$

5.
$$\int (x+5)^2 dx$$

15.
$$\int (x-1)(x+1)(x-2) dx$$

6.
$$\int (x+3)(x-4) dx$$

16.
$$\int \sqrt{x} (\sqrt{x} - 2x + \sqrt[3]{x}) dx$$

7.
$$\int x(x^2-2)^2 dx$$

17.
$$\int 6t^3(t-4)(t+4) dt$$

$$8. \quad \int \frac{(x^2 - 3x)^2}{x} dx$$

18.
$$\int \frac{5x^3(x-2)}{10\sqrt{x}} dx$$

9.
$$\int x^{-3}(x^3 - x)(2x^2 - 1) dx$$
 19. $\int \frac{s\sqrt{s} - 3s^3}{\sqrt[3]{s}} ds$

$$19. \int \frac{s\sqrt{s} - 3s^3}{\sqrt[3]{s}} ds$$

$$10. \int \sqrt{x} (x-3) dx$$

$$20. \int \frac{2m^{-2}(3m^3 - 4)}{m^{-3}} dm$$

3. Menentukan Persamaan Kurva

Di kelas XI, kalian telah mempelajari gradien dan persamaan garis singgung kurva di suatu titik. Jika y = f(x), gradien garis

singgung kurva di sembarang titik pada kurva adalah $y' = \frac{dy}{dx}$

f'(x). Oleh karena itu, jika gradien garis singgungnya sudah diketahui maka persamaan kurvanya dapat ditentukan dengan cara berikut.

$$y = \int f'(x) \, dx = f(x) + c$$

Jika salah satu titik yang melalui kurva diketahui, nilai c dapat diketahui sehingga persamaan kurvanya dapat ditentukan.

Contoh 1:

Diketahui turunan dari y = f(x) adalah $\frac{dy}{dx} = f'(x) = 2x + 3$.

Jika kurva y = f(x) melalui titik (1, 6), tentukan persamaan kurva tersebut.

Jawab:

Diketahui f'(x) = 2x + 3.

Dengan demikian, $y = f(x) = \int (2x + 3) dx = x^2 + 3x + c$.

Kurva melalui titik (1, 6), berarti f(1) = 6 sehingga dapat kita tentukan nilai c, yaitu $1 + 3 + c = 6 \Leftrightarrow c = 2$.

Jadi, persamaan kurva yang dimaksud adalah $y = f(x) = x^2 + 3x + 2$.

Contoh 2:

Gradien garis singgung kurva di titik (x, y) adalah 2x - 7. Jika kurva tersebut melalui titik (4, -2), tentukanlah persamaan kurvanya.

Jawab:

Gradien garis singgung adalah $f'(x) = \frac{dy}{dx} = 2x - 7$ sehingga

$$y = f(x) = \int (2x - 7) dx = x^2 - 7x + c.$$

Karena kurva melalui titik (4, -2) maka

$$f(4) = -2 \Leftrightarrow 4^2 - 7(4) + c = -2$$
$$\Leftrightarrow -12 + c = -2$$
$$\Leftrightarrow c = 10$$

Jadi, persamaan kurva tersebut adalah $y = x^2 - 7x + 10$.

Problem Solving

Kuis

• Kerjakan di buku tugas

Biaya marginal suatu perusahaan ditunjukkan oleh fungsi $M_C = 3Q^2 - 6Q + 4$, dengan Q = quantity dan biaya tetap k = 4, k adalah konstanta integral. Fungsi biaya total adalah

a.
$$Q^3 - 3Q^2 + 4Q + 4$$

b.
$$Q^3 - 3Q + 4Q + 4$$

c.
$$Q - 3Q + 4Q + 4$$

d.
$$Q - 3Q^2 + 4Q + 4$$

e.
$$Q^3 - 3Q^2 + 4Q$$

UN 2007

Biaya marginal suatu perusahaan ditunjukkan oleh $M_C = 4Q^2 - 3Q + 5$, dengan Q = banyak unit dan biaya tetap k = 3, k = 3, adalah konstanta integral. Tentukan persamaan biaya total (C).

Jawab:

Fungsi biaya marginal $M_c = 4Q^2 - 3Q + 5$.

$$M_C = \frac{dC}{dQ}$$
 dengan kata lain $dC = M_C dQ$

$$C = \int M_C dQ$$

= $\int (4Q^2 - 3Q + 5) dQ$
= $\frac{4}{3}Q^3 - \frac{3}{2}Q^2 + 5Q + k$

Oleh karena itu,
$$C = \frac{4}{3}Q^3 - \frac{3}{2}Q^2 + 5Q + 3$$
.

Soal Kompetensi 2

• Kerjakan di buku tugas

1. Gradien garis singgung kurva y = f(x) di sembarang titik (x, y) adalah $\frac{dy}{dx} = 4x + 3$. Jika kurva melalui titik (0, 5),

tentukanlah persamaan kurvanya.

2. Tentukan f(x) jika diketahui sebagai berikut.

a.
$$f(x) = 2x + 5 \operatorname{dan} f(2) = 6$$

b.
$$f'(x) = 6x^2 + 6 \operatorname{dan} f(2) = 20$$

c.
$$f(x) = 3x^2 + 6x + 6 \operatorname{dan} f(1) = 5$$

d.
$$f(x) = ax + b$$
; $f(1) = 0$ dan $f(-1) = 4$, dan $f(3) = 8$.

e.
$$f(x) = ax$$
; $f(0) - f(-1) = 3 dan f(1) - f(0) = 5$

3. Suatu kurva memiliki titik (3, 0) dan (2, -4). Gradien di setiap titik pada kurva dapat ditentukan dengan persamaan $m = 3x^2 - 4x - 5$.

Tentukan persamaan kurva itu.

4. Biaya marginal (M_c) merupakan biaya tambahan akibat adanya tambahan produksi satu unit. Secara matematika, biaya ini merupakan turunan (diferensial) dari biaya total (C) terhadap x unit produksi. Misalkan diketahui biaya marginal per unit $M_c(x) = 600 + 2x$ dan biaya total bulanan Rp6.000.000,00. Ketika x = 100 unit produksi per bulan. Tentukan fungsi biaya total dalam memproduksi x unit barang per bulan.

- 5. Diberikan fungsi $\frac{dC}{dx} = 8x 5$ sebagai fungsi biaya marginal. Biaya untuk memproduksi 10 unit barang adalah Rp80.000,00. Bagaimanakah bentuk fungsi biaya totalnya?
- 6. Suatu pabrik memproduksi barang sebanyak x unit dengan biaya marginal dirumuskan dengan $\frac{dC}{dx} = 64 0.025x$ (C adalah fungsi biaya). Untuk membuat 1 unit barang, diperlukan biaya Rp6.500,00. Berapa biaya total untuk membuat barang sebanyak 350 unit?
- 7. Diketahui sebuah pabrik memproduksi barang sebanyak t unit dengan biaya marginal dirumuskan dengan C' = 30 0.5t. (C adalah fungsi biaya). Untuk membuat 1 unit barang diperlukan biaya Rp3.500,00. Berapa biaya total untuk membuat barang sebanyak 500 unit?
- 8. Diberikan $\frac{dC}{dx} = 16x 10$ sebagai fungsi biaya marginal. Biaya untuk memproduksi 5 unit barang adalah Rp100.000,00. Tentukan bentuk fungsi biaya totalnya.

C. Integral Tertentu

1. Pengertian Integral sebagai Luas Suatu Bidang Datar

y = f(x) $O \quad a \quad b \quad X$

Gambar 1.1

Kalian pasti sudah pernah mempelajari perhitungan luas bangun datar. Bangun datar apa saja yang sudah kalian kenal? Bangun datar yang kalian kenal pasti merupakan bangun datar beraturan, misalnya segitiga, segi empat, lingkaran, dan sebagainya.

Perhatikan **Gambar 1.1**. Apakah gambar daerah yang diarsir tersebut merupakan bangun datar yang sudah kalian kenal? Termasuk bangun apakah gambar daerah tersebut? Dapatkah kalian menentukan luas bangun datar tersebut dengan rumus yang sudah kalian kenal? Tentu saja tidak.

Daerah atau bangun datar pada **Gambar 1.1** merupakan bangun datar yang dibatasi kurva y = f(x), sumbu X, serta garis x = a dan y = b.

Untuk memahami pengertian integral sebagai luas suatu bidang datar, perhatikan **Gambar 1.1**. Daerah yang diarsir adalah suatu daerah yang dibatasi kurva y = f(x) dan sumbu X dari a sampai b. Dimisalkan fungsi y = f(x) terdefinisi pada interval tertutup [a, b].

Bagilah interval tertutup tersebut menjadi n buah subinterval yang sama lebar sehingga terdapat n buah titik tengah, yaitu x_1 ,

$$x_2, x_3, ..., x_n$$
, dengan $x_1 = \frac{1}{2}(t_0 + t_1), x_2 = \frac{1}{2}(t_1 + t_2), ..., x_n = \frac{1}{2}(t_{n-1} + t_n)$

(perhatikan **Gambar 1.2**). Dimisalkan ujung paling kiri interval adalah $t_0 = a$ dan ujung paling kanan adalah $t_n = b$ dengan $a < t_1 < t_2 ... < t_{n-1} < b$.

Misalkan panjang tiap subinterval adalah $t_i - t_{i-1} = \Delta x$. Pada tiap subinterval $[t_{i-1}, t_i]$, tempatkan sebuah titik x (tidak harus di tengah, boleh sama dengan titik ujungnya).

Domain fungsi y = f(x) dibagi menjadi n buah subinterval dengan alas Δx dan tinggi $f(x_i)$ sehingga membentuk pias-pias persegi panjang. Luas masing-masing persegi panjang adalah $f(x_i)$ Δx . Jika semua luas persegi panjang dijumlahkan maka diperoleh

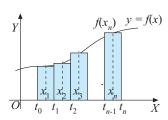
$$J = f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + \dots + f(x_n) \Delta x.$$

= $(f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n)) \Delta x$

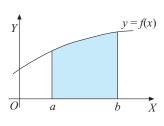
 $= \sum_{r=1}^n f(x_i) \Delta x$

dengan \sum merupakan notasi jumlah yang berurutan. J disebut dengan jumlahan Riemann. Notasi ini pertama kali digunakan oleh Bernhard Riemann.

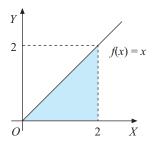
Jika banyak pias n mendekati tak berhingga ($n \to \infty$), jumlahan Riemann itu mendekati luas daerah dari **Gambar 1.1**. Oleh sebab itu, luas L dapat ditulis dalam bentuk


$$L = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \tag{1}$$

Jika $n \to \infty$ maka $\Delta x \to 0$.


Integral tertentu f dari a sampai b dinyatakan dengan $\int_{a}^{b} f(x) dx$ dan oleh Riemann nilainya didefinisikan sebagai

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_i) \Delta x \qquad (2)$$


Dari definisi integral tertentu di atas dapat dikatakan $\int_a f(x) dx$ menyatakan luas daerah yang dibatasi oleh garis x = a, garis x = b, kurva y = f(x), dan sumbu X.

Gambar 1.2

Gambar 1.3

Gambar 1.4

Perhatikan bahwa substitusi (1) dan (2) menghasilkan

$$L = \int_{a}^{b} f(x) dx \qquad (3)$$

Sekarang kita misalkan $\int f(x) dx = F(x) + c$. Luas L di atas merupakan fungsi dari x dengan $x \in [a, b]$ berbentuk

$$L(x) = \int_{a}^{x} f(x) dx = F(x) + c$$

Jika nilai t ada pada interval [a, b], yaitu $\{x \mid a \le x \le b\}$ kita dapat mendefinisikan luas L sebagai fungsi dari t berbentuk

$$L(t) = \int_{a}^{t} f(x) dx = F(t) + c$$

Akibat dari pemisalan di atas, akan diperoleh

$$L(a) = \int_{a}^{a} f(x) \, dx = F(a) + c = 0.$$

Sebab luas daerah dari x=a hingga x=a berbentuk ruas garis sehingga luasnya sama dengan nol. Karena L(a)=0 maka diperoleh

$$F(a) + c = 0$$
 atau $c = -F(a)$ (4)

Akibat lain dari pemisalan itu, akan diperoleh

$$L(b) = \int_{a}^{b} f(x) dx = F(b) + c \dots (5)$$

Hasil substitusi dari persamaan (4) ke (5), diperoleh

$$L(b) = \int_{a}^{b} f(x) dx = F(b) - F(a)$$

Dengan demikian, dapat disimpulkan bahwa jika L adalah luas daerah yang dibatasi oleh kurva y = f(x), sumbu X, garis x = a dan garis x = b maka

$$L = \int_{a}^{b} f(x) dx = F(b) - F(a)$$

2. Pengertian Integral Tertentu

Kalian tahu bahwa

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

menyatakan luas daerah yang dibatasi oleh kurva y = f(x), sumbu X, garis x = a, dan garis x = b.

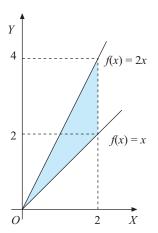
Misalkan f kontinu pada interval tertutup [a, b] atau $a \le x \le b$. Jika F suatu fungsi sedemikian rupa sehingga F'(x) = f(x) untuk semua x pada [a, b], berlaku

$$\int_{a}^{b} f(x) \ dx = [f(x)]_{a}^{b} = F(b) - F(a)$$

F(x) adalah antiturunan dari f(x) pada $a \le x \le b$.

Menggambar Daerah yang Dibatasi oleh Kurva

Tentu kalian masih ingat bagaimana menggambar grafik fungsi linear, fungsi kuadrat, maupun fungsi trigonometri. Grafik fungsi-fungsi tersebut banyak dibahas di sini, berkaitan dengan pencarian luas daerah yang batasi oleh kurva. Bagaimana cara menggambarkan daerah itu? Misalkan kita akan menggambar daerah yang dibatasi oleh kurva f(x) = x dari x = 0 sampai x = 2, sumbu X, dan garis x = 2.


Langkah pertama adalah menggambar grafik f(x) = x. Kemudian, tarik garis batasnya, yaitu dari x = 0 sampai x = 2 hingga memotong kurva. Arsir daerah yang berada di bawah kurva f(x) = x dari x = 0 sampai x = 2 dan di atas sumbu x. Hasilnya tampak seperti gambar di samping.

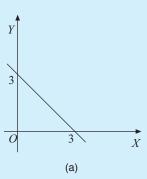
Bagaimana jika daerah yang akan digambar dibatasi oleh dua kurva? Pada dasarnya sama dengan cara di atas. Misalkan kita akan menggambar daerah yang dibatasi oleh grafik f(x) = x dan g(x) = 2x dari x = 0 sampai x = 2 dan garis x = 2.

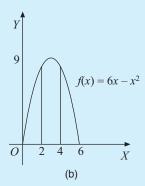
Terlebih dahulu, kita gambar f(x) = x dan g(x) = 2x pada bidang koordinat. Tarik garis batasnya, yaitu x = 0 dan x = 2 hingga memotong kedua grafik. Kemudian, arsir daerah yang dibatasi oleh grafik itu dari x = 0 sampai x = 2. Hasilnya tampak seperti gambar di samping.

Cobalah kalian gambar daerah yang dibatasi oleh kurva-kurva berikut.

- 1. $f(x) = x^2 \operatorname{dan sumbu} X$
- 2. $f(x) = x^2 \operatorname{dan} g(x) = x$
- 3. $f(x) = x^2 \operatorname{dan} g(x) = x^3$

Gambar 1.5


Contoh 1:


Tentukan integral tertentu untuk menghitung luas daerah yang diarsir pada gambar-gambar berikut.

Tugas: Inkuiri

• Kerjakan di buku tugas

Dalam perhitungan luas suatu daerah dengan menggunakan rumus integral, terlebih dahulu kalian harus dapat menggambar sketsa grafiknya. Jelaskan langkahlangkah untuk menggambar grafik fungsi linear dan fungsi kuadrat. Berilah satu contoh untuk menggambar grafik fungsi tersebut.

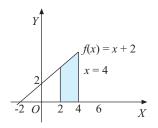
Gambar 1.6

Jawab:

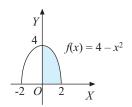
a. **Gambar 1.6** (a) merupakan grafik garis lurus yang melalui titik (0, 3) dan (3, 0) maka persamaan garisnya adalah x + y = 3 atau y = 3 - x. Untuk batas kiri adalah sumbu Y, berarti x = 0 dan batas kanan adalah x = 3. Jadi, luas daerahnya

dapat dinyatakan dengan $\int_{0}^{3} (3-x) dx.$

b. **Gambar 1.6** (b) merupakan suatu daerah yang dibatasi oleh sumbu X dan kurva y = f(x). Karena kurva memotong sumbu X di titik (0,0) dan (6,0) maka $y = 6x - x^2$. Untuk batas kiri adalah garis x = 2 dan batas kanan adalah x = 4. Jadi, luas daerahnya dapat dinyatakan dengan


$$\int_{2}^{4} (6x - x^2) \, dx.$$

Contoh 2:


Gambarkan daerah-daerah yang luasnya dinyatakan dengan integral berikut.

a.
$$\int_{2}^{4} (x+2) dx$$

b.
$$\int_{0}^{2} (4-x^2) dx$$

Gambar 1.7

Gambar 1.8

Kuis

• Kerjakan di buku tugas

Nilai dari $\int_{0}^{1} 5x(1-x)^{6} dx =$

Jawab:

Grafik y = f(x) = x + 2 mempunyai titik potong (0, 2) dan (-2,0) sehingga $\int (x+2) dx$ dapat digambarkan seperti pada Gambar 1.7.

b.
$$\int_{0}^{2} (4 - x^2) dx$$

Diketahui $f(x) = 4 - x^2$ dengan batas bawah x = 0 dan batas atas x = 2. Kurva $f(x) = 4 - x^2$ merupakan parabola dengan titik potong (-2, 0) dan (2, 0) yang membuka ke bawah. Dengan demikian, daerah tersebut dapat digambarkan seperti pada Gambar 1.8.

Contoh 3:

Tentukan nilai-nilai integral berikut.

a.
$$\int_{-1}^{1} (x+3) dx$$

b.
$$\int_{2}^{4} (x^3 - x) dx$$

Jawab:

a.
$$\int_{-1}^{1} (x+3) dx = \left[\frac{1}{2} x^2 + 3x \right]_{-1}^{1}$$
$$= \left[\frac{1}{2} (1)^2 + 3(1) \right] - \left[\frac{1}{2} (-1)^2 + 3(-1) \right]$$
$$= 6$$

b.
$$\int_{2}^{4} (x^{3} - x) dx = \left[\frac{1}{4} x^{4} - \frac{1}{2} x^{2} \right]_{2}^{4}$$
$$= \left(\frac{1}{4} (4)^{4} - \frac{1}{2} (4)^{2} \right) - \left(\frac{1}{4} (2)^{4} - \frac{1}{2} (2)^{2} \right)$$
$$= 54$$

e.
$$\frac{-10}{56}$$

UAS 2007

3. Sifat-Sifat Integral Tertentu

Integral sebenarnya dapat ditentukan dengan mudah. Untuk mempermudah perhitungan integral, kalian dapat memanfaatkan sifat-sifat integral. Agar kalian menemukan sifat-sifat integral, perhatikan contoh-contoh berikut.

Contoh 1:

Hitunglah nilai integral dari fungsi berikut.

a.
$$\int_{2}^{2} (2x + 4) dx$$

b.
$$\int_{0}^{2} (3x^{2} + 4x) dx$$

c.
$$\int_{2}^{0} (3x^2 + 4x) dx$$

d. Apa yang dapat kalian simpulkan dari hasil b dan c?

Jawab:

a.
$$\int_{0}^{2} (2x + 4) dx = \left[x^{2} + 4x \right]_{2}^{2}$$
$$= \left[2^{2} + 4(2) \right] - \left[2^{2} + 4(2) \right]$$
$$= (4 + 8) - (4 + 8) = 12 - 12 = 0$$

b.
$$\int_{0}^{2} (3x^{2} + 4x) dx = \left[x^{3} + 2x^{2} \right]_{2}^{2}$$
$$= \left[2^{2} + 2(2)^{2} \right] - \left[0^{3} + 2(0)^{2} \right]$$
$$= (8 + 8) - (0 + 0) = 16$$

c.
$$\int_{2}^{0} (3x^{2} + 4x) dx = \left[x^{3} + 2x^{2} \right]_{2}^{0}$$
$$= \left[0^{3} + 2(0)^{2} \right] - \left[2^{3} + 2(2)^{2} \right]$$
$$= 0 - (8 + 8) = -16$$

d. Dari hasil perhitungan b dan c tampak bahwa

$$\int_{0}^{2} (3x^{2} + 4x) dx = -\int_{2}^{0} (3x^{2} + 4x) dx$$

Contoh 2:

Tentukan nilai-nilai integral berikut.

a.
$$\int_{1}^{2} 6x^2 dx$$

b.
$$6\int_{1}^{2} x^2 dx$$

c.
$$\int_{2}^{3} (5x^4 + 2x) dx$$

d.
$$\int_{2}^{3} 5x^{4} dx + \int_{2}^{3} 2x dx$$

e. Dari nilai integral pada bagian a sampai dengan d tersebut, apa yang dapat kalian simpulkan dari hubungan tersebut?

Jawab:

a.
$$\int_{1}^{2} 6x^{2} dx = \left[3x^{3}\right]_{1}^{2} = \left[3(2)^{3}\right] - \left[3(1)^{3}\right] = 16 - 2 = 14$$

b.
$$6 \int_{1}^{2} x^{2} dx = 6 \left[\frac{1}{3} x^{3} \right]_{1}^{2} = 6 \left\{ \left[\frac{1}{3} (2)^{3} \right] - \left[\frac{1}{3} (1)^{3} \right] \right\}$$
$$= 6 \left\{ \frac{8}{3} - \frac{1}{3} \right\} = 6 \left(\frac{7}{3} \right) = 14$$

c.
$$\int_{2}^{3} (5x^{4} + 2x) dx = \left[x^{5} + x^{2}\right]_{2}^{3} = (3^{5} + 3^{2}) - (2^{5} + 2^{2})$$
$$= (243 + 9) - (32 + 4)$$
$$= 252 - 36 = 216$$

d. 1)
$$\int_{2}^{3} 5x^{4} dx = \left[x^{5}\right]_{2}^{3} = 3^{5} - 2^{5} = 243 - 32 = 211$$

2)
$$\int_{2}^{3} 2x \ dx = \left[x^{2}\right]_{2}^{3} = 3^{2} - 2^{2} = 9 - 4 = 5$$

Jadi,
$$\int_{2}^{3} 5x^4 dx + \int_{2}^{3} 2x dx = 211 + 5 = 216.$$

e. Tampak dari keempat nilai di atas diperoleh hubungan sebagai berikut.

1)
$$\int_{1}^{2} 6x^{2} dx = 6 \int_{1}^{2} x^{2} dx$$

2)
$$\int_{2}^{3} (5x^{4} + 2x) dx = \int_{2}^{3} 5x^{4} dx + \int_{2}^{3} 2x dx$$

Contoh 3:

Tentukan nilai-nilai integral berikut.

a.
$$\int_{1}^{4} 4x^3 dx$$

c. Dari hasil a dan b, apa kesimpulan kalian?

b.
$$\int_{1}^{2} 4x^{3} dx + \int_{2}^{4} 4x^{3} dx$$

Jawab:

a.
$$\int_{1}^{4} 4x^{3} dx = \left[x^{4}\right]_{1}^{4} = 4^{4} - 1^{4} = 256 - 1 = 255$$

b.
$$\int_{1}^{2} 4x^{3} dx + \int_{2}^{4} 4x^{3} dx = \left[x^{4}\right]_{1}^{2} + \left[x^{4}\right]_{2}^{4}$$
$$= (2^{4} - 1^{4}) + (4^{4} - 2^{4})$$
$$= (16 - 1) + (256 - 16)$$
$$= 15 + 240 = 255$$

c. Tampak dari hasil a dan b bahwa $\int_{1}^{4} 4x^{3} dx =$

$$\int_{1}^{2} 4x^{3} dx + \int_{2}^{4} 4x^{3} dx$$

Dari contoh-contoh di atas maka dapat dituliskan sifat-sifat integral sebagai berikut.

Misalkan f(x) dan g(x) adalah fungsi-fungsi kontinu pada [a, b], berlaku sebagai berikut.

Tugas: Inkuiri

• Kerjakan di buku tugas

Dengan menggunakan dasardasar integral yang telah kalian pelajari, coba buktikan sifat-sifat integral tertentu di samping.

a.
$$\int_{a}^{a} f(x) \, dx = 0$$

b.
$$\int_{a}^{b} c f(x) dx = c \int_{a}^{b} f(x) dx$$
, dengan $c = \text{konstanta}$

c.
$$\int_a^b f(x) dx = -\int_b^a f(x) dx$$

d.
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

e.
$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx, \text{ dengan } a \le c \le b$$

Jendela Informasi

Informasi lebih lanjut

Bernhard Riemann (1826–1866)

Sumber: www.cygo.com

George Friedrich Bernhard Riemann

Tokoh yang hidup antara tahun 1826–1866 ini adalah ilmuwan pemberi definisi modern tentang integral tertentu. Melalui teori fungsi kompleks, dia memprakarsai topologi dan geometri yang 50 tahun kemudian memuncak dalam teori relativitas Einstein. Salah satu karyanya dalam bidang kalkulus adalah integral Riemann.

Sumber: www.myscienceblog.com

Soal Kompetensi 3

• Kerjakan di buku tugas

1. Hitunglah nilai dari integral berikut.

a.
$$\int_{1}^{3} (5x^2 + 3) dx$$

d.
$$\int_{-1}^{3} (x^5 - \frac{1}{x^3}) dx$$

b.
$$\int_{-2}^{3} x^3 \sqrt{x} \, dx$$

e.
$$\int_{0}^{5} (2x-1)(3x+2) dx$$

c.
$$\int_{-2}^{2} \frac{dx}{x^4}$$

f.
$$\int_{1}^{4} x^2(x-2)^2 dx$$

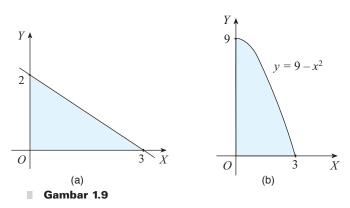
2. Tentukan nilai a dari integral berikut.

a.
$$\int_{0}^{a} x(3x-2) dx = 48$$

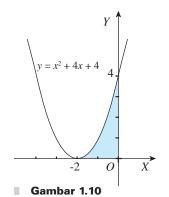
b.
$$\int_{a}^{4} \frac{dx}{\sqrt{x}} = 2$$

c.
$$\int_{-1}^{a} (3-2t) dt + \int_{a}^{4} (3-2t) dt = -15$$

3. Jika x = 2 - 3y, tentukan nilai-nilai integral berikut.


a.
$$\int_{0}^{2} x \, dy$$

c.
$$\int_{-2}^{2} y \, dx$$


b.
$$\int_{1}^{2} (x+x^2) dy$$

d.
$$\int_{0}^{4} (y^2 - y) dx$$

4. Tentukan luas daerah yang diarsir pada gambar berikut.

- 5. Tentukan luas daerah yang dibatasi oleh garis $y = x^2 + 4x + 4$ dan sumbu X dari x = -2 sampai x = 0 (perhatikan **Gambar 1.10**).
- 6. Keluarga Pak Dedi ingin membeli sebidang tanah dengan bentuk seperti bidang yang dibatasi oleh $f(x) = \sqrt{x}$, x = 16 dan sumbu X (dalam satuan m). Jika harga tanah tersebut Rp400.000,00/m², berapa rupiahkah uang yang harus dibayarkan Pak Dedi untuk pembelian tanah itu?
- 7. Sebidang tanah berbentuk seperti bidang yang dibatasi $f(x) = \sqrt{x+2}$, x = 2, dan sumbu X (dalam satuan m). Tentukan berapa harga tanah tersebut jika harga per meter perseginya adalah Rp450.000,00.
- 8. Diberikan fungsi $\frac{dC}{dx} = 10x + 7$ sebagai fungsi biaya marginal. Tentukan berapa biaya total C(x) yang diperlukan untuk memproduksi barang antara 10 unit sampai 20 unit.

D. Pengintegralan dengan Substitusi

Salah satu cara untuk menyelesaikan hitung integral adalah dengan substitusi. Beberapa bentuk integral yang dapat diselesaikan dengan melakukan substitusi tertentu ke dalam fungsi yang diintegralkan, misalnya bentuk $\int u^n du$.

Bagaimana cara menyelesaikannya? Untuk itu, perhatikan uraian berikut.

Pada pembahasan sebelumnya, diperoleh

 $\int x^n = \frac{1}{n+1} x^{n+1} + c$. Oleh karena itu, untuk menyelesaikan integral bentuk $\int (f(x))^n d(x)$ maka kita dapat menggunakan

substitusi u = f(x) sehingga integral tersebut berbentuk $\int u^n du$.

Dengan demikian, diperoleh $\int u^n du = \frac{1}{n+1} u^{n+1} + c$. Oleh karena itu, dapat dituliskan sebagai berikut.

$$\int (f(x))^n \ d(f(x)) = \int u^n \ du = \frac{1}{n+1} \ u^{n+1} + c$$

dengan $u = f(x) \operatorname{dan} n \neq -1$.

Contoh 1:

Tentukan hasil integral berikut.

a.
$$\int (2x+6)(x^2+6x+3)^7 dx$$

b.
$$\int (x^2 - 8x + 1)(x - 4) dx$$

Jawab:

a.
$$\int (2x+6)(x^2+6x+3)^7 dx = \int (x^2+6x+3)^7 (2x+6) dx$$

Cara 1:

Misalkan
$$u = x^2 + 6x + 3 \Leftrightarrow \frac{du}{dx} = 2x + 6$$

 $\Leftrightarrow du = (2x + 6) dx$.

Oleh karena itu,

$$\int (x^2 + 6x + 3)^7 (2x + 6) dx = \int u^7 du$$

$$= \frac{1}{8} u^8 + c$$

$$= \frac{1}{8} (x^2 + 6x + 3)^8 + c$$

Cara 2:

$$\int (2x+6)(x^2+6x+3)^7 dx = \int (x^2+6x+3)^7 d(x^2+6x+3)$$
$$= \frac{1}{8}(x^2+6x+3)^8 + c$$

b.
$$\int (x^2 - 8x + 1)(x - 4) dx$$

Cara 1:

Misalkan $u = x^2 - 8x + 1$.

$$\frac{du}{dx} = 2x - 8 \Leftrightarrow \frac{1}{2}du = (x - 4) dx$$

Oleh karena itu,

$$\int (x^2 - 8x + 1)(x - 4)dx = \int u \cdot \frac{1}{2} du$$

$$= \frac{1}{2} \int u du$$

$$= \frac{1}{2} (\frac{1}{2}u^2) + c = \frac{1}{4}u^2 + c$$

$$= \frac{1}{4} (x^2 - 8x + 1)^2 + c$$

Cara 2:

$$\int (x^2 - 8x + 1)(x - 4)dx$$

$$= \int (x^2 - 8x + 1) \frac{1}{2} d(x^2 - 8x + 1)$$

$$= \frac{1}{2} \int (x^2 - 8x + 1) d(x^2 - 8x + 1)$$

$$= \frac{1}{2} (\frac{1}{2} (x^2 - 8x + 1)^2) + c$$

$$= \frac{1}{4} (x^2 - 8x + 1)^2 + c$$

Tantangan

Inkuiri

• Kerjakan di buku tugas

Coba kamu jelaskan langkah-langkah menyelesaikan integral berikut.

a.
$$\int (3x^2 + 2x)^6 (3x + 1) dx$$

b.
$$\int_1^4 \frac{(\sqrt{x} + 2)^4}{\sqrt{x}} dx$$

Jika ada cara lain, coba kamu tunjukkan cara itu.

Contoh 2

Tentukan integral berikut.

a.
$$\int x\sqrt{x^2-1}\ dx$$

b.
$$\int \frac{3x^2}{\sqrt{2x^3 + 1}} \, dx$$

Jawab:

a.
$$\int x \sqrt{x^2 - 1} \ dx$$

Misalkan $u = x^2 - 1 \Leftrightarrow du = 2x dx$ sehingga $x dx = \frac{1}{2} du$

$$\int x \sqrt{x^2 - 1} \, dx = \int \sqrt{u} \frac{1}{2} du$$
$$= \frac{1}{2} \int u^{\frac{1}{2}} du$$

$$= \frac{1}{2} \left[\frac{1}{\frac{1}{2} + 1} 4^{\frac{1}{2} + 1} \right] + c$$

$$= \frac{1}{2} \left[\frac{2}{3} u^{\frac{3}{2}} \right] + c$$

$$= \frac{1}{3} u \sqrt{u} + c$$

$$= \frac{1}{3} (u^2 - 1) \sqrt{u^2 - 1} + c$$

$$b. \quad \int \frac{3x^2}{\sqrt{2x^3 + 1}} \, dx$$

Misalkan $u = 2x^3 + 1 \Leftrightarrow du = 6x^2 dx$ sehingga $3x^2 dx = \frac{1}{2} du$.

$$\int \frac{3x^2}{\sqrt{2x^3 + 1}} dx = \int \frac{\frac{1}{2} du}{\sqrt{u}}$$

$$= \frac{1}{2} \int u^{-\frac{1}{2}} du$$

$$= \frac{1}{2} \left[\frac{1}{-\frac{1}{2} + 1} u^{-\frac{1}{2} + 1} \right] + c$$

$$= \frac{1}{2} (2u^{\frac{1}{2}}) + c$$

$$= \sqrt{u} + c$$

$$= \sqrt{2x^3 + 1} + c$$

Bagaimana jika integral yang akan ditentukan adalah integral tertentu? Caranya sama saja dengan integral tak tentu. Hanya, yang perlu diperhatikan adalah batas integrasinya. Batas integrasi dapat digunakan variabel sebelum substitusi maupun variabel substitusi. Untuk lebih jelasnya, perhatikan contoh berikut.

Contoh 3:

Tentukan nilai dari $\int_{0}^{1} x \sqrt{x^2 - 1} \ dx$.

Jawab:

Misalkan $u = x^2 - \Leftrightarrow du = 2x$ sehingga $\frac{1}{2}du = xdx$.

Penentuan batas integrasi

Batas bawah: Untuk x = 0 maka $u = 0^2 - 1 = -1$.

Batas atas: Untuk x = 1 maka $u = 1^2 - 1 = 0$.

$$\int_{0}^{1} x \sqrt{x^{2} - 1} dx = \int_{-1}^{0} \sqrt{u} \frac{1}{2} du$$

$$= \frac{1}{2} \int_{-1}^{0} u^{\frac{1}{2}} du$$

$$= \frac{1}{2} \left[\frac{1}{\frac{1}{2} + 1} u^{\frac{1}{2} + 1} \right]_{-1}^{0}$$

$$= \frac{1}{2} \left[\frac{1}{\frac{3}{2}} u^{\frac{3}{2}} \right]_{-1}^{0}$$

$$= \frac{1}{3} \left[u^{\frac{3}{2}} \right]_{-1}^{0}$$

$$= 0 - (-1)$$

$$= 1$$

Jika kalian menggunakan variabel sebelum substitusi, yaitu x maka terlebih dahulu dicari integralnya. Setelah itu, substitusikan nilai x itu. Jadi, setelah diperoleh hasil

$$\int x\sqrt{x^{2-1}}dx = \frac{1}{3}(x^2 - 1)^{\frac{3}{2}}, \text{ substitusikan batas-batas } x.$$

$$\left[\frac{1}{3}(x^2-1)^{\frac{3}{2}}\right]_0^1$$

Kalian akan memperoleh hasil yang sama. Coba kalian uji.

Soal Kompetensi 4

• Kerjakan di buku tugas

Tentukan integral berikut.

$$1. \quad \int (2x-5)^4 dx$$

2.
$$\int (1-3x^2)^3 dx$$

3.
$$\int (1-(2-x)^2)^3 dx$$

4.
$$\int (3x^2 - x)(x^3 - \frac{1}{2}x^2 + 10)^5 dx$$

$$5. \quad \int x\sqrt{5-x^2}\,dx$$

$$6. \qquad \int x^2 \sqrt{2 - 3x^3} \, dx$$

Tantangan

Kreativitas

• Kerjakan di buku tugas

Tentukan integral berikut.

a.
$$\int (2x+1)(3x^2+3x+1)^4 dx$$

b.
$$\int \frac{4x^2}{\sqrt{2x^3+1}} dx$$

$$7. \quad \int \frac{4x}{\sqrt{3x^2 - 1}} dx$$

8.
$$\int \frac{3x^2}{\sqrt{5+4x^3}} dx$$

$$9. \quad \int \frac{3x^2}{\sqrt{(x^3 + 9)^5}} dx$$

10.
$$\int (x+3)\sqrt{1+x}dx$$

Untuk soal nomor 11-15, tentukan nilai integral berikut.

11.
$$\int_{0}^{1} (8x+1)^{5} dx$$

12.
$$\int_{1}^{2} (1-x^2)xdx$$

13.
$$\int_{0}^{1} (3x^{2} - 1)\sqrt{x^{3} - x + 1} dx$$

14.
$$\int_{1}^{2} (x+2)\sqrt{x+1} dx$$

15.
$$\int_{-1}^{1} \frac{4x^2}{\sqrt{(6+2x^3)^4}} dx$$

E. Integral Parsial

Kadang-kadang, bentuk integral $\int u \, dv$, dengan u dan v merupakan fungsi-fungsi dalam variabel x, sangat sulit dikerjakan, sedangkan $\int v \, du$ lebih mudah dikerjakan. Jika kita menjumpai bentuk seperti itu maka kita perlu mengetahui hubungan antara kedua integral tersebut untuk memperoleh penyelesaian $\int u \, dv$.

Misalnya y = uv dengan y = y(x), u = u(x), dan v = v(x) merupakan fungsi diferensiabel. Jika fungsi y diturunkan maka diperoleh

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\Leftrightarrow dy = u dv + v du$$

$$\Leftrightarrow d(uv) = u dv + v du$$

Jika kedua ruas persamaan di atas diintegralkan maka diperoleh

$$\int d(uv) = \int u \, dv + \int v \, du$$

$$\Leftrightarrow uv = \int u \, dv + \int v \, du$$

Dengan demikian, diperoleh suatu rumus sebagai berikut.

$$\int u \, dv = uv - \int v \, du$$

Dari rumus di atas terlihat bahwa integral dipisah menjadi 2 bagian, yaitu u dan dv (yang mengandung dx) sehingga disebut sebagai $integral\ parsial$. Untuk menggunakan rumus integral parsial, perlu diperhatikan bahwa bagian yang dipilih sebagai dv harus dapat diintegralkan dan $\int v\ du$ harus lebih sederhana (lebih mudah dikerjakan) daripada $\int u\ dv$. Agar lebih memahami integral parsial, perhatikan contoh berikut.

Contoh 1:

Tentukan $\int x \sqrt{x} dx$.

Jawab:

Berdasarkan rumus integral parsial maka integral tersebut dibagi menjadi dua bagian, yaitu u dan dv. Untuk menentukan bagian u dan dv ada beberapa kemungkinan sehingga harus dipilih yang paling tepat sesuai dengan kaidah di atas.

Kemungkinan yang dapat terjadi untuk memilih u dan dv adalah sebagai berikut.

a. Misalkan $u = x\sqrt{x} \, dan \, dv = dx$.

Oleh karena itu, $du = \sqrt{x} - \frac{x}{2\sqrt{x}} dx$ dan v = x sehingga

$$\int x \sqrt{x} \ dx = x \sqrt{x}(x) - \int x(\sqrt{x} - \frac{x}{2\sqrt{x}}) \ dx$$

Dari integral di atas terlihat bahwa bentuk tersebut sulit untuk ditentukan penyelesaiannya. Oleh karena itu, untuk pemisalan u dan dv di atas ditolak.

b. Misalkan $u = \sqrt{x} \, dan \, dv = x \, dx$.

Dengan demikian, diperoleh $du = \frac{1}{2\sqrt{x}} dx$ dan

$$v = \int x \, dx = \frac{1}{2} x^2$$

sehingga

$$\int x\sqrt{x} \, dx = \sqrt{x} \cdot \frac{1}{2}x^2 - \int \frac{1}{2}x^2 \cdot \frac{1}{2\sqrt{x}} \, dx$$
$$= \frac{1}{2}x^2\sqrt{x} - \int \frac{x^2}{4\sqrt{x}} \, dx$$

Dari bentuk integral di atas maka terlihat bahwa bentuk tersebut juga sulit ditentukan penyelesaiannya. Jadi, untuk pemisalan u dan dv di atas ditolak.

c. Misalkan
$$u = x \operatorname{dan} dv = \sqrt{x} dx$$
.

Untuk $u = x \Leftrightarrow du = dx$

Untuk
$$dv = \sqrt{x} dx \Leftrightarrow \int dv = \int \sqrt{x} dx$$

$$\Leftrightarrow v = \frac{2}{3}x^{\frac{3}{2}}$$

Oleh karena itu,

$$\int x\sqrt{x} \, dx = x \cdot \frac{2}{3} x^{\frac{3}{2}} - \int \frac{2}{3} x^{\frac{3}{2}} dx$$

$$= \frac{2}{3} x^{\frac{5}{2}} - \frac{2}{3} \left[\frac{1}{\frac{3}{2} + 1} x^{\frac{3}{2} + 1} \right] + c$$

$$= \frac{2}{3} x^{\frac{5}{2}} - \frac{4}{15} x^{\frac{5}{2}} + c$$

$$= \frac{6}{15} x^{\frac{5}{2}} + c$$

$$= \frac{2}{5} x^{2} \sqrt{x} + c$$

Contoh 2:

Tentukan
$$\int x\sqrt{1+x} dx$$
.

Jawab:

Misalkan $u = x \Leftrightarrow du = dx$.

$$dv = \sqrt{1+x} \ dx$$

$$\Leftrightarrow \int dv = \int (1+x)^{\frac{1}{2}} dx$$

$$\Leftrightarrow v = \frac{2}{3}(1+x)^{\frac{3}{2}}$$

Oleh karena itu,

$$\int x\sqrt{1+x} \, dx = x\left(\frac{2}{3}(1+x)^{\frac{3}{2}}\right) - \int \frac{2}{3}(1+x)^{\frac{3}{2}} \, dx$$
$$= \frac{2}{3}x(1+x)^{\frac{3}{2}} - \frac{4}{15}(1+x)^{\frac{5}{2}} + c$$

Ada suatu metode yang mempermudah pengerjaan integral parsial yang disebut dengan *aturan Tanzalin*. Aturan Tanzalin digunakan untuk menyelesaikan $\int u \, dv$ apabila turunan ke-k dari fungsi u(x) bernilai nol dan integral ke-k dari fungsi v = v(x) ada.

Perhatikan contoh-contoh berikut.

Contoh 3:

Tentukan hasil integral $\frac{8x^2}{(x+2)^4} dx$.

Jawab:

$$\frac{8x^2}{(x+2)^4} dx$$

$$\Leftrightarrow 8 \int x^2 (x+2)^{-4} dx$$

Untuk integral di atas, bagian yang lebih mudah didiferensialkan adalah x^2 . Jadi, $u = x^2$ dan $dv = (x + 2)^{-4} dx$. Kita gunakan aturan Tanzalin untuk mengerjakan integral tersebut.

٠	т.			
	luo	as:	Eksp	loras

• Kerjakan di buku tugas

Gunakan aturan integral parsial untuk mengerjakan kembali contoh di samping. Bandingkan hasilnya. Menurut kalian, cara mana yang lebih mudah? Apa alasankalian?

Didife	rensialkan	Diintegralkan	
x^2	+	$(x+2)^{-4}$	
2 <i>x</i>	-	$(x+2)^{-4}$ $-\frac{1}{3}(x+2)^{-3}$	
2	+	$\frac{1}{6}(x+2)^{-2}$	
0	-	$-\frac{1}{6}(x+2)^{-1}$	

$$\int \frac{8x^2}{(x+2)^4} dx = 8 \left[x^2 \left(-\frac{1}{3} (x+2)^{-3} \right) - 2x \left(\frac{1}{6} (x+2)^{-2} \right) + 2 \left(-\frac{1}{6} (x+2)^{-1} \right) \right] + c$$

$$= -\frac{8}{3} x^2 (x+2)^{-3} - \frac{8}{3} x (x+2)^{-2} - \frac{8}{3(x+2)} + c$$

Soal Kompetensi 5

• Kerjakan di buku tugas

Hitunglah integral-integral berikut.

a.
$$\int x(x-2)^4 dx$$

d.
$$\int (1-x)^{-\frac{1}{2}} dx$$

b.
$$\int 10x (5x+3)^3 dx$$

b.
$$\int 10x (5x+3)^3 dx$$
 e. $\int 10x (4-x^2)^{-1} dx$

c.
$$\int \frac{4x}{\sqrt{2x+5}} \ dx$$

f.
$$\int x(5-x)^{-3} dx$$

Dengan menggunakan lebih dari satu kali rumus integral parsial, tentukan nilai-nilai integral berikut.

a.
$$\int x^2 \sqrt{x+5} \ dx$$

$$d. \quad \int x^2 \sqrt{x^2 - 9} \ dx$$

b.
$$\int x^3 \sqrt{x-1} \ dx$$

b.
$$\int x^3 \sqrt{x-1} \, dx$$
 e. $\int 2x^3 \sqrt{1-x^2} \, dx$

c.
$$\int x^2 \sqrt{1 + 2x} \ dx$$

3. Gunakan aturan Tanzalin untuk menentukan nilai integral berikut.

a.
$$\int 2x^3 \sqrt{x} \ dx$$

d.
$$\int 2(x-3)^2 \sqrt[3]{x} \, dx$$

b.
$$\int x^3 (1 - \sqrt{x}) \, dx$$

b.
$$\int x^3 (1 - \sqrt{x}) dx$$
 e. $\int \frac{5x^2}{(x+2)^{\frac{3}{2}}} dx$

c.
$$\int x^5 \sqrt{x+3} \ dx$$

Tentukan nilai integral berikut.

a.
$$\int_{2}^{5} x \sqrt{x+3} \ dx$$

b.
$$\int_{0}^{5} \frac{x^4}{(x+4)\sqrt{x+4}} \, dx$$

Tentukan hasil dari integral-integral berikut.

a.
$$\int_{0}^{1} x^2 \sqrt{x^3 - 1} \, dx$$

a.
$$\int_{0}^{1} x^{2} \sqrt{x^{3} - 1} dx$$
 c. $\int_{0}^{1} (x - 1)^{3} \sqrt{x - 1} dx$

b.
$$\int_{0}^{1} x^{3} \sqrt{3x^{4} + 5} \, dx$$

F. Penggunaan Integral Tertentu

Pada pembahasan sebelumnya, kita telah mempelajari teoriteori yang berhubungan dengan integral tertentu. Sekarang kita akan mempelajari beberapa penggunaan integral tertentu, yaitu untuk menentukan luas suatu daerah dan volume benda putar jika suatu daerah diputar mengelilingi sumbu tertentu.

1. Luas Daerah yang Dibatasi oleh Kurva y = f(x), Sumbu X, Garis x = a, dan Garis x = b

X

a. Untuk $f(x) \ge 0$ pada Interval $a \le x \le b$

Misalkan L adalah luas daerah pada bidang Cartesius yang dibatasi oleh kurva y = f(x), sumbu X, garis x = a dan garis x = b seperti gambar di samping. Luas daerah L ditentukan oleh rumus berikut.

$$L = \int_{a}^{b} f(x) \, dx$$

Gambar 1.11

a O

Y'

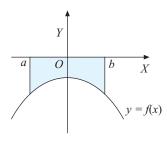
Contoh:

Suatu daerah dibatasi oleh kurva y = x - 1, x = 1, x = 3, dan sumbu X.

Lukislah kurva tersebut dan arsir daerah yang dimaksud, kemudian tentukan luasnya.

Jawab:

Kurva daerah yang dimaksud seperti Gambar 1.12.


$$L = \int_{1}^{3} (x-1) dx$$

$$= \left[\frac{1}{2} x^{2} - x \right]_{1}^{3}$$

$$= \left[\frac{1}{2} (3)^{2} - 3 \right] - \left[\frac{1}{2} (1)^{2} - 1 \right]$$

$$= \left(\frac{9}{2} - 3 \right) - \left(\frac{1}{2} - 1 \right)$$

$$= \frac{3}{2} + \frac{1}{2} = 2$$

Gambar 1.13

b. Kurva $f(x) \le 0$ pada Interval $a \le x \le b$

Misalkan L adalah luas daerah pada bidang Cartesius yang dibatasi oleh kurva y = f(x), sumbu X, garis x = a, dan garis x = b seperti **Gambar 1.13**.

Dari gambar di samping, nilai integral tertentu $\int_{a}^{b} f(x) dx$

akan bernilai negatif. Padahal luas suatu daerah harus bernilai positif sehingga rumus untuk menghitung luas daerah di bawah sumbu X sebagai berikut.

$$L = -\int_{a}^{b} f(x) dx = \int_{b}^{a} f(x) dx$$

Contoh:

Tentukan luas daerah yang dibatasi oleh

a.
$$y = f(x) = -3$$
, sumbu X , garis $x = 1$ dan $x = 5$;

b.
$$y = f(x) = 1 - x^2$$
, sumbu *X*, garis $x = 1$, dan $x = 2$.

Jawab:

a. y = f(x) = -3 dapat digambarkan seperti **Gambar 1.14**. Karena daerah yang dimaksud berada di bawah sumbu X maka

$$L = -\int_{a}^{b} f(x) dx$$
$$= -\int_{1}^{5} -3 dx = \int_{1}^{5} 3 dx$$
$$= \left[3x\right]_{1}^{5} = 3(5) - 3(1) = 12$$

b. Kurva $y = 1 - x^2$ tampak seperti **Gambar 1.15**. Karena daerah yang akan dicari luasnya berada di bawah sumbu X maka luasnya adalah

$$L = -\int_{1}^{2} f(x)$$

$$= \int_{2}^{1} (1 - x^{2}) dx = \left[x - \frac{1}{3} x^{3} \right]_{2}^{1}$$

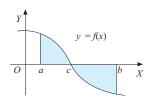
$$= \left[1 - \frac{1}{3} (1)^{3} \right] - \left[2 - \frac{1}{3} (2)^{3} \right]$$

$$= \frac{2}{3} - \left(-\frac{2}{3} \right) = 1\frac{1}{3}$$
Gambar 1.15

O 1 5 X

Gambar 1.14

Tantangan


Penalaran

• Kerjakan di buku tugas

Misalnya diberikan suatu

fungsi turunan
$$\frac{dy}{dx} = 2x + 2$$
.

Fungsi y = f(x) melalui titik (3, 12). Bagaimana cara menentukan luas daerah yang dibatasi oleh kurva y = f(x), sumbu X, sumbu Y, dan garis x = 2? Berapakah luas daerah yang dimaksud?

Gambar 1.16

c. Untuk $f(x) \ge 0$ pada Interval $a \le x \le c \operatorname{dan} f(x) \le 0$ pada Interval $c \le x \le b$

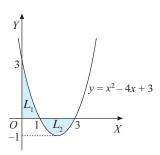
Misalkan L luas daerah yang dibatasi oleh y = f(x), sumbu X, garis x = a, dan garis x = b seperti gambar di samping.

Luas daerah L tidak dapat dihitung menggunakan rumus $\int_a^b f(x) dx$ karena luas daerah L terbagi menjadi dua bagian, yaitu

di atas dan di bawah sumbu X sehingga akan memberikan hasil yang salah. Cara menghitung luas daerah L adalah dengan membagi luas daerah L menjadi dua bagian, yaitu L_1 sebagai luas daerah yang berada di atas sumbu X dan L_2 sebagai luas daerah yang berada di bawah sumbu X. Oleh karena itu, luas seluruh bagian yang diarsir adalah

$$L = \int_{a}^{c} f(x) \, dx - \int_{c}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{b}^{c} f(x) \, dx$$

Contoh:


Tentukan luas daerah yang dibatasi oleh kurva $y = x^2 + 4x + 3$, sumbu X, sumbu Y, dan x = 3.

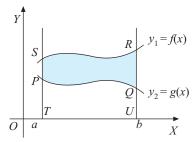
Jawab:

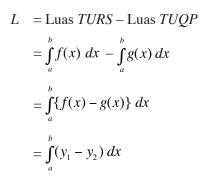
Gambar kurva $y = x^2 - 4x + 3$ tampak di samping.

Grafik memotong sumbu X sehingga diperoleh titik potong (1,0) dan (3,0). Daerah yang dimaksud adalah daerah yang diarsir. Kita bagi daerah tersebut menjadi dua bagian yaitu L_1 dan L_2 . Karena L_2 terletak di bawah sumbu X (bernilai negatif), L_2 diberi tanda negatif (agar menjadi positif). Oleh karena itu, luas daerah yang dicari adalah sebagai berikut.

Luas =
$$L_1 + L_2$$

= $\int_0^1 f(x) dx - \int_1^3 f(x) dx$
= $\int_0^1 (x^2 - 4x + 3) dx + \int_3^1 (x^2 - 4x + 3) dx$
= $\left[\frac{1}{3}x^3 - 2x^2 + 3x\right]_0^1 + \left[\frac{1}{3}x^3 - 2x^2 + 3x\right]_3^1$
= $\left[\frac{1}{3}(1)^3 - 2(1)^2 + 3(1) - 0\right] + \left[\frac{1}{3}(1)^3 - 2(1)^2 + 3(1)\right]$


Gambar 1.17


$$-\left[\frac{1}{3}(3)^3 - 2(3)^2 + 3(3)\right]$$

$$= 1\frac{1}{3} + 1\frac{1}{3} = 2\frac{2}{3} \text{ satuan luas}$$

2. Luas Daerah antara Dua Kurva

Misalkan L adalah luas daerah yang dibatasi oleh kurva $y_1 =$ $f(x) \operatorname{dan} y_2 = g(x)$, dengan f(x) > g(x), x = a, dan x = b seperti pada Gambar 1.18. Luas daerah tersebut dapat dihitung dengan cara berikut.

Jadi, luas daerah antara dua kurva $y_1 = f(x)$, $y_2 = g(x)$, x = a, dan x = b adalah sebagai berikut.

Contoh:

Tentukan luas daerah yang dibatasi oleh kurva $y = x^2$ dan y =x + 2.

Kuis

• Kerjakan di buku tugas

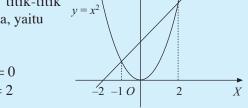
Titik-titik A(a, b), B(b, 1), dan C(c, -4) terletak pada kurva $y^2 = 12x$. Luas daerah $\Delta ABC = \dots$ satuan luas

a.
$$10\frac{1}{4}$$
 d. $10\frac{5}{12}$

b.
$$11\frac{1}{3}$$
 e. $11\frac{7}{10}$

c.
$$9\frac{2}{15}$$

Kompetisi Matematika DKI, 2000


Jawab:

Batas-batas x diperoleh dengan menentukan titik-titik potong kedua kurva, yaitu

$$x^2 = x + 2$$

$$\Leftrightarrow x^2 - x - 2 = 0$$

$$\Leftrightarrow (x+1)(x-2) = 0$$

\Rightarrow x = -1 atau x = 2

Untuk x = -1 maka nilai y = 1.

Gambar 1.19 Untuk x = 2 maka nilai y = 4.

Jadi, titik potong kedua kurva, yaitu x = -1 dan x = 2merupakan batas pengintegralan.

$$L = \int_{-1}^{2} (y_1 - y_2) dx$$

$$= \int_{-1}^{2} (x + 2 - x^2) dx$$

$$= \left[\frac{1}{2} x^2 + 2x - \frac{1}{3} x^3 \right]_{-1}^{2}$$

$$= (2 + 4 - \frac{8}{3}) - (\frac{1}{2} - 2 + \frac{1}{3})$$

$$= \frac{27}{6} = \frac{9}{2} \text{ satuan luas}$$

Mari Berdiskusi

Inovatif

Suatu daerah yang dibatasi oleh dua kurva (linear-kuadrat atau kuadrat-kuadrat) dapat ditentukan luasnya dengan cara berikut. Misalnya D menyatakan diskriminan dari persamaan kuadrat gabungan yang berbentuk, $ax^2 + bx + c = 0$.

luas =
$$\frac{D\sqrt{D}}{6a^2}$$

Persamaan kuadrat gabungan diperoleh dari $y_1 - y_2 = 0$, asalkan $y_1 > y_2$. Tugas kalian bersama teman-teman kalian berkreasi dengan rumus yang telah kalian pahami untuk mencari dari mana rumus itu diperoleh.

Problem Solving

Tentukan luas daerah yang dibatasi parabola $y = x^2$ dan garis 2x - y + 3 = 0.

Jawab:

$$y_1 = x^2 \operatorname{dan} 2x - y + 3 = 0 \iff y_2 = 2x + 3.$$

$$y_1 - y_2 = 0$$

$$x^2 - (2x + 3) = 0$$

$$x^2 - 2x - 3 = 0 \implies a = 1, b = -1, \operatorname{dan} c = -3.$$

$$D = (-2)^2 - 4 \cdot 1 \cdot (-3)$$

$$= 4 + 12$$

$$= 16$$

Luas =
$$\frac{D\sqrt{D}}{6a^2} = \frac{16\sqrt{16}}{6\cdot 1^2} = \frac{16\times 4}{6} = \frac{32}{3}$$
 satuan luas.

(Coba kalian tunjukkan daerah yang dimaksud dengan menggambarkannya pada bidang koordinat.)

Mari Berdiskusi Inkuiri

Buatlah sembarang 3 persamaan garis lurus pada bidang Cartesius. Dari ketiga garis yang kalian buat, dapatkah ditentukan sebuah bidang datar? Dapatkah ditentukan luasnya dengan menggunakan integral?

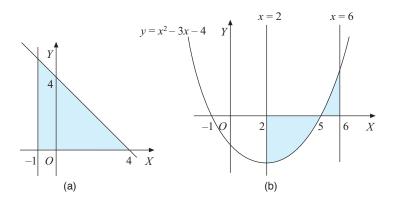
Soal Kompetensi 6

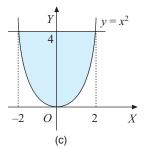
• Kerjakan di buku tugas

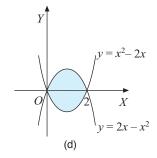
Hitunglah luas daerah yang diarsir pada gambar berikut.

Kuis

• Kerjakan di buku tugas

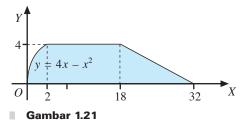

Luas persegi panjang terbesar yang dapat dibuat dalam daerah yang dibatasi


kurva
$$y = \frac{1}{6}x^2$$
 dan $y = 4$


adalah

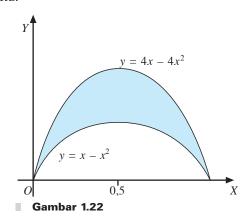
- a. 8 satuan
- b. 32 satuan
- c. $8\sqrt{2}$ satuan
- d. $32\sqrt{2}$ satuan
- $\frac{32}{3}$ satuan

Kompetisi Matematika DKI, 2000


Gambar 1.20

- 2. Dengan membuat sketsa gambar terlebih dahulu, tentukan luas daerah yang dibatasi oleh kurva-kurva di bawah ini.
 - y = 2x + 6, garis x = -2, garis x = 3, dan sumbu X.
 - $y = 4 x^2$, garis x = -1, garis x = 1, dan sumbu X.
 - $y = \sqrt{x}$, garis x = 0, garis x = 2, dan sumbu X.
 - y = x 4, garis x = 3, sumbu Y, dan sumbu X.
 - $y = x^2 x 6$, garis x = -1, garis x = 2, dan sumbu X.
- Tentukan luas daerah yang dibatasi oleh dua kurva berikut. y = 3x dan y = 5
- c. $y = x^2 x \operatorname{dan} y = x + 8$
- b. $y = x^2 \text{ dan } y = 4x x^2$ d. $y = \frac{1}{2}x \text{ dan } y = \sqrt{x}$

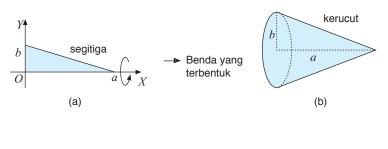
4. Diketahui luas bidang yang dibatasi oleh garis $y = \frac{3}{2}x$, y =


500 - x, dan sumbu X antara x = a dan x = b menyatakan banyaknya karyawan suatu pabrik yang berpenghasilan antara a ribu rupiah dan b ribu rupiah. Jika a = 200 dan b = 400 maka tentukan banyaknya karyawan yang berpenghasilan di atas 400 ribu rupiah.

- 5. Diketahui grafik fungsi f'(x) = 2x + 5. Grafik fungsi f(x) melalui titik (1, 10). Tentukan luas daerah yang dibatasi kurva y = f(x), sumbu X, sumbu Y, dan garis x = -4 dan x = 0.
- 6. Pak Sanjaya memiliki tanah yang letaknya di tepi sungai. Tanah Pak Sanjaya menyerupai bentuk suatu bidang yang dibatasi oleh kurva $y = x^2$, y = 0, x = 0, dan x = 8. Pak Sanjaya menghendaki keuntungan dari penjualan per m²-nya sebesar Rp60.000,00. Jika keinginan itu tercapai, berapa keuntungan total yang diperoleh Pak Sanjaya?
- 7. Pak Fery memiliki sebuah perkebunan karet yang bentuknya seperti bagian diarsir pada **Gambar 1.21**. Berapakah luas perkebunan karet milik Pak Fery itu?

8. Sebuah karton memiliki bentuk seperti **Gambar 1.22** yang diarsir.

Bentuk karton itu berupa bangun datar yang dibatasi oleh kurva $y = 4x - 4x^2$ dan $y = x - x^2$ dari x = 0 sampai dengan x = 1. (Setiap 1 satuan mewakili 1 dm). Tentukan luas karton itu.


- 9. Pak Ketut memiliki sebidang tanah yang terletak di tepi sungai. Bentuk permukaan (daerah) dari tanah itu menyerupai daerah yang dibatasi oleh kurva $y = x^2$, sumbu X, garis x = 0, dan garis x = 10 (satuan dalam m). Pak Ketut ingin menjual tanah itu. Pak Ketut mengharap keuntungan Rp50.000,00 per m². Berapakah total keuntungan yang dapat diperoleh Pak Ketut jika tanah itu terjual seluruhnya?
- 10. Suatu perusahaan produsen mesin-mesin canggih merakit *x* unit mesin per bulan. Keuntungan marginal bulanan (dalam ratusan ribu) dinyatakan oleh fungsi


$$M(x) = 165 - \frac{1}{10}x$$
, untuk $(0 \le x < 4.000)$

Pada saat ini, perusahaan itu merakit 1.500 unit mesin per bulan, tetapi berencana meningkatkan produksinya. Berapakah perubahan total keuntungan per bulan jika produksi ditingkatkan hingga 1.600 unit? **Petunjuk**: Perubahan total keuntungan dapat ditentukan dengan M(1.600) - M(1.500).

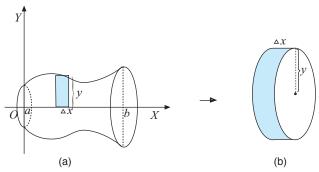
3. Volume Benda Putar (Pengayaan)

Benda putar adalah suatu benda yang terbentuk dari suatu daerah tertutup pada bidang Cartesius dan diputar mengelilingi sumbu X atau sumbu Y dengan satu putaran penuh (360°). Misalnya:

Gambar 1.23

Tantangan

Kreativitas


• Kerjakan di buku tugas

Andaikan alas sebuah benda pejal berupa bidang datar dan terletak di kuadran I

yang dibatasi oleh $y = 1 - \frac{x^2}{4}$,

sumbu *X*, dan sumbu *Y*. Anggaplah penampang yang tegak lurus pada sumbu *X* berbentuk persegi. Berapakah volume benda ini?

- a. Daerah Dibatasi Kurva y = f(x), Sumbu X atau Sumbu Y, Garis x = a, dan Garis x = b
- 1) Perputaran Mengelilingi Sumbu XMisalkan suatu daerah dibatasi kurva y = f(x), sumbu X, garis x = a, dan garis x = b diputar mengelilingi sumbu X seperti pada **Gambar 1.24** (a).

Gambar 1.24

Jika benda putar tersebut dipotong dengan tebal potongan setebal Δx dari interval $a \le x \le b$, akan terbentuk n buah keping. Keping tersebut berupa silinder dengan jarijari $y = f(x_i)$ dan tinggi (tebalnya) Δx . Perhatikan **Gambar 1.24** (b).

Volume keping ke-i adalah $V_i=\pi\,y_i^2\,\Delta x$, sedangkan volume semua benda adalah jumlah volume keping sebanyak n buah, yaitu

$$V = \sum_{i=1}^{n} \pi y_i^2 \Delta x$$

Jika $n \to \infty$ maka $\Delta x \to 0$ sehingga diperoleh

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} \pi y_i^2 \Delta x = \int_a^b \pi y^2 dx$$

Dengan demikian, dapat kita simpulkan sebagai berikut.

Volume benda putar yang terjadi dari daerah yang dibatasi oleh y = f(x), sumbu X, garis x = a, dan garis x = b diputar mengelilingi sumbu X sejauh 360° , volumenya adalah

$$V = \pi \int_{a}^{b} y^2 \ dx$$

Contoh:

Gambar 1.25

Tentukan volume benda putar yang terjadi jika bidang datar yang dibatasi oleh kurva y = x, sumbu X, dan garis x = 3 diputar mengelilingi sumbu X sejauh 360°.

Jawab:

$$V = \pi \int_{a}^{b} y^{2} dx$$

$$= \pi \int_{0}^{3} x^{2} dx$$

$$= \pi \left[\frac{1}{3} x^{3} \right]_{0}^{3}$$

$$= \pi \left[\frac{1}{3} (3)^{3} - 0 \right]$$

$$= 9\pi \text{ satuan volume}$$

$\begin{array}{c} Y \\ d \\ x = f(y) \\ \Delta y \\ \end{array}$

Gambar 1.26

2) Perputaran Mengelilingi Sumbu *Y*

Misalkan suatu daerah dibatasi kurva y = f(x), sumbu Y, garis y = c, dan y = d diputar mengelilingi sumbu Y sejauh 360°, akan membentuk benda putar seperti gambar di samping. Cara menentukan volume benda putar dari daerah yang diputar mengelilingi sumbu Y sama seperti menentukan volume benda putar yang mengelilingi sumbu X.

Jika daerah yang dibatasi oleh x = f(y), sumbu Y, garis y = c, dan garis y = d diputar mengelilingi sumbu Y sejauh 360°, volume benda putarnya adalah

$$V = \pi \int_{c}^{d} x^{2} dy$$

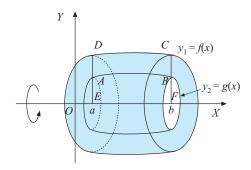
Contoh:

Tentukan volume benda putar yang terjadi jika daerah yang dibatasi oleh sumbu Y, kurva $y = x^2$, garis y = 2, dan garis y = 5 diputar mengelilingi sumbu Y.

Jawab:

$$V = \pi \int_{c}^{d} x^{2} dy$$
$$= \pi \int_{2}^{5} (\sqrt{y})^{2} dy$$

$$= \pi \int_{2}^{5} y \, dy$$


$$= \pi \left[\frac{1}{2} y^{2} \right]_{2}^{5}$$

$$= \pi \left[\frac{1}{2} (5)^{2} - \frac{1}{2} (2)^{2} \right]$$

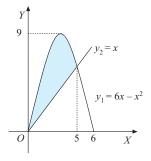
$$= \frac{21}{2} \pi \text{ satuan volume}$$
Gambar 1.27

b. Volume Benda Putar Daerah di antara Dua Kurva

1) Perputaran Mengelilingi Sumbu *X*

Gambar 1.28

Dimisalkan A adalah daerah tertutup yang dibatasi oleh kurva-kurva $y_1 = f(x)$ dan $y_2 = g(x)$ dengan $|f(x)| \ge |g(x)|$ pada interval $a \le x \le b$. Daerah yang terbentuk diputar mengelilingi sumbu X sejauh 360° sehingga terbentuk suatu benda putar yang tengahnya kosong. Perhatikan gambar di samping. Volume benda yang terbentuk dari daerah yang dibatasi oleh kurva $y_1 = f(x)$, $y_2 = g(x)$, garis x = a dan x = b adalah


$$V = \pi \int_{a}^{b} (f(x))^{2} dx - \pi \int_{a}^{b} (g(x))^{2} dx$$
$$= \pi \int_{a}^{b} ((f(x))^{2} - ((g(x))^{2}) dx$$
$$= \pi \int_{a}^{b} (y_{1}^{2} - y_{2}^{2}) dx$$

Dengan demikian, dapat disimpulkan sebagai berikut.

Jika daerah yang dibatasi oleh kurva $y_1 = f(x)$, kurva $y_2 = g(x)$, garis x = a, dan garis x = b, dengan $|f(x)| \ge |g(x)|$ diputar mengelilingi sumbu X sejauh 360° maka volume benda putar yang terjadi adalah

$$V = \pi \int_{a}^{b} (y_1^2 - y_2^2) dx \text{ atau } V = \pi \int_{a}^{b} [(f(x))^2 - (g(x))^2] dx$$

Contoh:

Gambar 1.29

Tentukan volume benda putar yang terjadi, jika daerah yang dibatasi oleh kurva $y = 6x - x^2$ dan y = x diputar mengelilingi sumbu X sejauh 360°

Jawab:

Perpotongan antara kurva $y = 6x - x^2 dan y = x$ adalah sebagai

$$y_1 = y_2$$

$$\Leftrightarrow 6x - x^2 = x$$

$$\Leftrightarrow 6x - x^2 = x$$

$$\Leftrightarrow$$
 $5x - x^2 = 0$

$$\Leftrightarrow x(5-x)=0$$

$$\Leftrightarrow x = 0 \text{ atau } x = 5$$

Nilai x = 0 dan x = 5 digunakan sebagai batas-batas integrasi volume benda putarnya. Dengan demikian, diperoleh

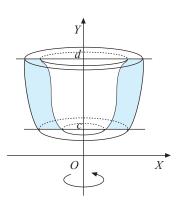
$$V = \pi \int_{a}^{b} (y_{1}^{2} - y_{2}^{2}) dx$$

$$= \pi \int_{0}^{5} [(6x - x^{2})^{2} - x^{2}] dx$$

$$= \pi \int_{0}^{5} (x^{4} - 12x^{3} + 35x^{2}) dx$$

$$= \pi \left[\frac{1}{5} x^5 - 3x^4 + \frac{35}{3} x^3 \right]_0^5 = 208 \frac{1}{3} \pi \text{ satuan volume}$$

Perputaran Mengelilingi Sumbu *Y*


Misalkan A adalah daerah tertutup yang dibatasi oleh kurvakurva $x_1 = f(y) \operatorname{dan} x_2 = g(y) \operatorname{dengan} |f(y)| \ge |g(y)|$ pada interval $c \le y \le d$.

Cara yang sama dapat diterapkan untuk mencari volume benda putar yang dibatasi dua kurva $x_1 = f(y)$, $x_2 = g(y)$, garis $y = c \operatorname{dan} y = d \operatorname{seperti}$ saat kita menentukan volume benda putar jika diputar mengelilingi sumbu X.

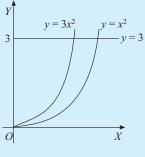
Dengan demikian, dapat ditunjukkan bahwa volume benda putar itu adalah sebagai berikut.

Jika suatu daerah yang dibatasi oleh kurva $x_1 = f(y)$, kurva $x_2 = g(y)$, garis y = c, dan garis y = d dengan |f(y)| $\geq |g(y)|$ diputar mengelilingi sumbu Y sejauh 360°, volume benda putar yang terjadi adalah

$$V = \pi \int_{c}^{d} (x_{1}^{2} - x_{2}^{2}) dy \text{ atau } \pi \int_{c}^{d} ((f(y))^{2} - (g(y))^{2}) dy$$

Gambar 1.30

Contoh:


Hitunglah volume benda putar yang terjadi jika daerah yang dibatasi oleh kurva $y = x^2$, $y = 3x^2$, dan y = 3 di kuadran pertama diputar mengelilingi sumbu Y sejauh 360°.

Jawab:

Kurva
$$y = x^2 \implies x_1 = \sqrt{y} \implies x_1^2 = y$$

Kurva
$$y = 3x^2 \implies x_2 = \sqrt{\frac{1}{3}y}$$

$$\Rightarrow x_2^2 = \frac{1}{3}y$$

Gambar 1.31

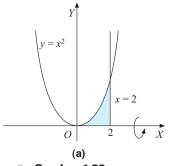
Dengan demikian, volume benda putarnya adalah

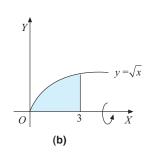
$$V = \pi \int_{c}^{d} (x_{1}^{2} - x_{2}^{2}) dy$$

$$= \pi \int_{0}^{3} (y - \frac{1}{3}y) dy$$

$$= \pi \int_{0}^{3} \frac{2}{3}y dy$$

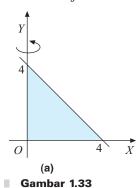
$$= \pi \left[\frac{1}{3}y^{2}\right]_{0}^{3}$$

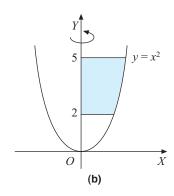

$$= \pi \left[\frac{1}{3}(3)^{2} - \frac{1}{3}(0)\right]$$


$$= 3\pi \text{ satuan volume}$$

• Kerjakan di buku tugas

Soal Kompetensi 7


- Tentukan volume benda putar dari daerah yang diarsir berikut jika diputar mengelilingi
 - a. sumbu X sejauh 360° ;



Gambar 1.32

b. sumbu Y sejauh 360°.

- Gailibar 1.53
- 2. Tentukan volume benda putar yang terjadi jika daerah-daerah yang dibatasi oleh kurva-kurva berikut diputar mengelilingi sumbu *X* sejauh 360°.

a.
$$y = 2x + 1$$
, sumbu *Y*, dan sumbu *X*

b.
$$y = 9x - x^2$$
 dan sumbu X

c.
$$y = x^2 \text{ dan } y = x + 2$$

d.
$$y = x + 1 \text{ dan } y = 3$$

e.
$$y = x^2 - 6 \operatorname{dan} y = 2 - x^2$$

f.
$$y = \sqrt{x} \operatorname{dan} y = x^2$$

- 3. Tentukan volume benda putar yang terjadi jika daerah-daerah yang dibatasi oleh kurva diputar mengelilingi sumbu *Y* sejauh 360°.
 - a. y = x 2, sumbu Y, y = 3, dan sumbu X

b.
$$y = \sqrt{x}$$
, sumbu *Y*, dan garis $y = 3$

c.
$$y = x + 6$$
, garis $y = 2$, dan garis $y = 6$

d.
$$y = 2x^2$$
, $y = 3 - x$, dan sumbu *Y*

(Petunjuk: bagilah daerah luasan menjadi dua bagian)

e.
$$y = x^2$$
, garis $x = 3$, dan sumbu X

$$f. \quad y^2 = x \text{ dan } y = 2 - x$$

g.
$$x = y^2 \operatorname{dan} y = x^2$$

h.
$$x = \sqrt{9 - y^2} \, dan \, x = 3 - y$$

4. Kalian tentu tahu bahwa volume sebuah tabung adalah $V = \pi r^2 t$, dengan r = jari-jari alas tabung dan t tinggi tabung. Coba kalian tunjukkan dengan menggunakan konsep benda

Coba kalian tunjukkan dengan menggunakan konsep ben putar. (**Petunjuk**: ambillah permisalan fungsi konstan)

5. Di kelas X, bahkan SMP dan SD, kalian telah diperkenalkan

dengan volume kerucut, yaitu $V = \frac{1}{3}\pi r^2 \times t$.

Dengan menggunakan konsep benda putar, coba tunjukkan kebenaran rumus itu. (**Petunjuk**: ambillah permisalan fungsi linear).

- 6. Misalkan diberikan persamaan lingkaran $x^2 + y^2 = r^2$, r dari jari-jari lingkaran. Dengan menggunakan persamaan ini dan terapan konsep benda putar, tunjukkan bahwa volume bola adalah $V = \frac{4}{3}\pi r^3$, dengan r adalah jari-jari bola.
- 7. Tentukan volume benda putar yang terjadi jika daerah yang dibatasi oleh parabola $y = x^2$ dan $y = 2x x^2$ yang diputar mengelilingi sumbu X sebesar 360°. (UAN 2005)
- 8. Tentukan volume benda putar yang terjadi jika
 - a. daerah yang dibatasi oleh kurva $y = x^2 + 1$ dan garis y = 3 diputar mengelilingi sumbu X sejauh 360°;
 - b. daerah yang dibatasi oleh garis y = 2x dan parabola $y = x^2$ diputar mengelilingi sumbu X sejauh 360°.
- 9. Tentukan volume benda putar yang terjadi jika daerah antara kurva $y = x^2 + 1$ dan y = x + 3 diputar mengelilingi sumbu X sejauh 360°. (UAN 2006)
- 10. Tentukan volume benda putar yang terjadi jika daerah yang dibatasi oleh sumbu X dan kurva $y = 2\sqrt{1-\frac{x^2}{9}}$ diputar mengelilingi sumbu X sejauh 360°.

Rangkuman

- 1. Bentuk integral $\int f(x) dx = F(x) + c$ dinamakan integral tak tentu.
- 2. Rumus-rumus integral tak tentu adalah sebagai berikut.

a.
$$\int dx = x + c$$

b.
$$\int a \, dx = ax + c$$
, a konstanta

c.
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

3. Jika F antiturunan dari f maka rumus untuk integral tertentu yang dinyatakan sebagai luas daerah yang dibatasi oleh kurva y = f(x), sumbu X, garis x = a, dan garis x = b adalah

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

4. Sifat-sifat integral tertentu adalah

a.
$$\int_{a}^{a} f(x) dx = 0$$

b.
$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

c.
$$\int_{a}^{b} f(x) \ dx = -\int_{b}^{a} f(x) \ dx$$

d
$$\int_{a}^{b} f(x) \ dx = \int_{a}^{b} f(t) \ dt$$

e.
$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$
dengan $a < c < b$

f.
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm$$

$$\int_{a}^{b} g(x) \, dx$$

5. Luas daerah yang dibatasi oleh dua kurva $y_1 = f(x)$, $y_2 = g(x)$, garis x = a, dan garis x = b dengan $|f(x)| \ge |g(x)|$ adalah

$$L = \int_{a}^{b} (y_1 - y_2) \ dx \ .$$

- 6. Volume benda putar (Pengayaan)
 - a. Jika daerah dibatasi kurva y = f(x), sumbu X, garis x = a, dan garis x = b diputar mengelilingi sumbu X sejauh 360°, volume benda putarnya adalah

$$V = \pi \int_{a}^{b} (f(x))^{2} dx = \pi \int_{a}^{b} y^{2} dx$$

b. Jika daerah yang dibatasi oleh kurva x = f(y), sumbu Y, garis y = c, dan garis y = d diputar mengelilingi sumbu Y sejauh 360° , volume benda putarnya adalah

$$V = \pi \int_{c}^{d} (f(y))^{2} dy = \pi \int_{c}^{d} x^{2} dy$$

Refleksi

Apa yang menurut kalian menarik dari materi ini? Adakah hal baru yang kalian peroleh? Apakah setiap fungsi dapat diintegralkan? Jika ada fungsi yang tidak dapat diintegralkan, fungsi seperti apakah itu? Jelaskan.

Tes Kemampuan Bab I

· Kerjakan di buku tugas

- A. Pilihlah jawaban yang tepat dengan memberi tanda silang (x) pada huruf a, b, c, d, atau e.
- 1. $\int 2x(x^2 9)^5 dx = \dots$

a.
$$\frac{1}{5}(x^2-9)^5+c$$

b.
$$\frac{1}{6}(x^2-9)^5+c$$

c.
$$\frac{1}{6}(x^2-9)^6+c$$

d.
$$\frac{1}{6}(x^2-9)^4+c$$

e.
$$\frac{1}{5}(x^2-9)^6+c$$

$$2. \quad \int \frac{x+6}{x+4} dx = \dots$$

a.
$$\frac{1}{2}(x-4)^{-1}(x+6)+c$$

b.
$$x - \ln |x + 6| + c$$

c.
$$x + \ln|x + 6| + c$$

d.
$$x - \ln |x + 4| + c$$

$$e. \quad x + \ln|x + 4| + c$$

3.
$$\int \frac{4(x-3)^2}{x^5} \ dx = \dots$$

a.
$$4(x-3)x^{-5} + c$$

b.
$$4(x-3)x^{-4}+c$$

c.
$$-2x^{-2} + 8x^{-3} - 9x^{-4} + c$$

d.
$$-2x^2 + 8x^{-3} + c$$

e.
$$4x^{-5} + c$$

- 4. $\int (15x^4 6x^2 + 4x 3) dx = \dots$ (Ebtanas 1991)
 - a. $20x^5 12x^3 + 4x^2 3x + c$
 - b. $20x^5 12x^3 + 4x^2 + c$
 - c. $5x^5 6x^3 + 4x^2 3x + c$
 - d. $x^5 2x^3 + 2x^2 + 3x + c$
 - e. $3x^5 2x^3 + 2x^2 3x + c$
- 5. Diketahui f'(x) = 2ax + (a 1). Jika $f(1) = 3 \operatorname{dan} f(2) = 0$, nilai a adalah
 - a. 1
- d. $-\frac{1}{2}$
- b. 2
- e. $\frac{1}{2}$
- c. -1
- 6. Gradien garis singgung kurva y = f(x) di sembarang titik (x, y) adalah f'(x) = 4x 3. Jika kurva f(x) melalui titik (-1, 12), persamaan kurva f(x) =
 - a. $-x^3 + 4x^2 5$
 - b. $x^2 4x 5$
 - c. $2x^2 3x + 6$
 - d. $x^2 3x + 6$
 - e. $2x^2 3x + 7$
- 7 Nilai $\int_{-2}^{0} (4 x^2) dx = \dots$
 - a. 0
- d. $-\frac{16}{3}$
- b. 4
- e. $\frac{16}{3}$
- c. 8
- 8. Luas daerah yang dibatasi kurva $f(x) = -x^2 + 4$, x = -2, dan x = 0 adalah ... satuan luas.
 - a. $\frac{9}{8}$
- d. $\frac{15}{8}$
- b. $\frac{16}{3}$
- e. $\frac{13}{7}$
- c. $\frac{15}{7}$

- 9. Luas daerah yang dibatasi oleh kurva $y^2 = x + 2$ dan garis x = 2 adalah ... satuan luas.
 - a. 12
 - b. $5\frac{1}{3}$
 - c. $2\frac{2}{3}$
 - d. 8
 - e. $10\frac{2}{3}$
- 10. Misalkan diketahui $\int_{0}^{m} \frac{1}{2} \sqrt[3]{x^2} dx = \frac{3}{10}$ dan
 - $\int_{0}^{n} (2x 3) dx = 4, \text{ dengan } m, n > 0. \text{ Nilai}$
 - $(m+n)^2 = \dots$
 - a. 10
 - b. 15
 - c. 20
 - d. 25
 - e. 30
- 11. Luas daerah yang dibatasi oleh kurva y = 2x + 3 dan $y = x^2 4x 8$ adalah ... satuan luas.
 - a. $8\frac{1}{3}$
 - b. $8\frac{3}{5}$
 - c. 10
 - d. $10\frac{2}{3}$
 - e. $10\frac{3}{5}$
- 12. Luas daerah yang dibatasi oleh kurva $y = x^3 \operatorname{dan} y = \sqrt{x}$ adalah (UN 2004)
 - a. $\frac{1}{4}$ satuan luas
 - b. $\frac{5}{12}$ satuan luas
 - c. $\frac{5}{6}$ satuan luas
 - d. $\frac{11}{12}$ satuan luas
 - e. $\frac{5}{4}$ satuan luas

13. Persamaan kurva fungsi yang memenuhi

syarat
$$\frac{dy}{dx} = 3x^2 - 12x + 9$$
 dan nilai

minimum 0 adalah

a.
$$y = x^3 - 6x^2 + 9x - 4$$

b.
$$y = x^3 - 6x^2 + 9x + 4$$

c.
$$y = x^3 - 6x^2 - 9x - 4$$

d.
$$y = x^3 + 6x^2 + 9x - 4$$

e.
$$y = x^3 + 6x^2 + 9x + 4$$

14. Diketahui persamaan garis singgung pada suatu kurva di titik (1, 0) adalah

$$\frac{dy}{dx} = 6 - 6x$$
. Andaikan di titik (x, y) pada

kurva berlaku
$$\frac{d^2y}{dx^2} = 12x^2 - 10$$
,

persamaan kurva itu adalah

a.
$$y = x^4 - 5x^2 - 4$$

b.
$$y = x^4 - 5x^2 + 4$$

c.
$$v = x^4 + 5x^2 + 4$$

d.
$$y = x^4 + 5x^2 - 4$$

e.
$$y = x^4 - 4x^2 - 5$$

15. Diketahui biaya marginal yang dikeluarkan suatu perusahaan dirumuskan dengan C'(Q) = 6Q - 2 (dalam juta rupiah). Biaya total untuk memproduksi 100 unit barang yang sama adalah 29,805 juta rupiah. Fungsi biaya totalnya C(Q) =

- ...

a.
$$2Q^3 - 2Q + 5$$

b.
$$2Q^3 + 2Q + 5$$

c. $3Q^2 - 2Q + 5$

d.
$$3Q^2 - 2Q - 5$$

e.
$$3O^2 + 2O - 5$$

16. Diketahui $F'(x) = 6x^2 + 2x - 4$ dan F(2) = 0 maka F(x) = (Ebtanas 1995)

a.
$$2x^3 + x^2 - 4x + 28$$

b.
$$2x^3 + x^2 - 4x - 8$$

c.
$$2x^3 + x^2 - 4x - 12$$

d.
$$3x^3 + x^2 - 2x - 24$$

e.
$$3x^3 + x^2 - 2x + 24$$

17. Akar-akar persamaan $x^2 - 10x + 24 = 0$ adalah p dan q, dengan $p \le q$. Nilai

$$\int_{p}^{q} (x-2)\sqrt{x^2 - 4x} \, dx = \dots \text{ (UAN 2003)}$$

a.
$$4\sqrt{3}$$

b.
$$8\sqrt{3}$$

c.
$$16\sqrt{3}$$

d.
$$24\sqrt{3}$$

e.
$$32\sqrt{3}$$

18. Misalkan f'(x) turunan dari f(x). Jika $f'(x) = 6x^2 - 4x + 1$ dan f(2) = 4 maka fungsi $f(x) = \dots$

a.
$$2x^3 - 2x^2 + x - 6$$

b.
$$2x^3 - 2x^2 + x - 3$$

c.
$$2x^3 - 2x^2 + x + 6$$

d.
$$2x^3 - 2x^2 + x - 1$$

e.
$$2x^3 - 2x^2 + x$$

19. Nilai dari $\int_{-1}^{3} (3x^2 - 4x - 1) dx$ adalah

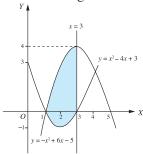
(Ebtanas 1993)

20. Pada tiap titik (x, y) sebuah kurva y = f(x)

berlaku $\frac{dy}{dx} = 8x - 3$. Kurva melalui titik

(-1, 10). Persamaan kurva itu adalah (Ebtanas 1993)

a.
$$y = 4x^2 + 9x + 9$$


b.
$$y = 4x^2 - 2x + 4$$

c.
$$y = 4x^2 - x + 7$$

d.
$$y = 4x^2 + 2x + 8$$

e.
$$y = 4x^2 - 3x + 3$$

21. Perhatikan gambar berikut.

Luas daerah yang diarsir pada gambar di atas adalah satuan luas (UN 2006)

- b.
- c. $5\frac{1}{3}$
- 22. Hasil dari $\int_{1}^{1} x^{2}(x-6) dx =$ (UAN
 - 2002)

- c.
- 23. Luas daerah yang dibatasi parabola y = $8 - x^2$ dan garis y = 2x adalah (UAN 2002)
 - 36 satuan luas a.
 - b. $41\frac{1}{3}$ satuan luas
 - c. $41\frac{2}{3}$ satuan luas
 - d. 46 satuan luas
 - e. $46\frac{2}{3}$ satuan luas
- 24. $\int_{C}^{3\sqrt{2}} x \sqrt{x^2 2} \ dx = \dots \text{ (UAN 2002)}$

- 24 a.
- 18
- $17\frac{1}{2}$ d.
- 17
- 25. Jika $f(x) = (x-2)^2 4$ dan g(x) = -f(x)maka luas daerah yang dibatasi oleh kurva f dan g adalahsatuan luas (UAN 2003)
 - a. $10\frac{2}{3}$ d. $42\frac{2}{3}$ s
 - b. $21\frac{1}{3}$ e. $46\frac{1}{3}$
 - c. $22\frac{2}{3}$
- 26. Gradien garis singgung suatu kurva di sembarang titik P(x, y) dirumuskan dengan

$$\frac{dy}{dx} = 3\sqrt{2x}$$
. Jika kurva melalui titik (2, 3)

maka persamaan kurva adalah (UN

- a. $f(x) = 2x\sqrt{2x} 3$
- b. $f(x) = 2x\sqrt{2x} 5$
- c. $f(x) = 2x\sqrt{2x} 5$
- d. $f(x) = 2x\sqrt{2x} 13$
- e. $f(x) = 2x\sqrt{2x} 29$
- 27. Volume benda putar yang terjadi jika suatu daerah yang dibatasi kurva $y = 2x^2$, sumbu X, x = 0, dan garis x = 5 diputar mengelilingi sumbu Y adalah
- 625π

28. Diketahui
$$\int_{1}^{p} 3x(x+\frac{2}{3}) dx = 78$$
. Nilai

$$(-2p) = \dots (UN 2007/Paket 14)$$

29. Luas daerah tertutup yang dibatasi oleh
$$y = x^2 \text{ dan } y = 5x - 4 \text{ adalah}$$
 (UN 2007/Paket 14)

a.
$$\frac{11}{6}$$
 satuan luas

b.
$$\frac{8}{3}$$
 satuan luas

c.
$$\frac{9}{2}$$
 satuan luas

d.
$$\frac{11}{2}$$
 satuan luas

e.
$$\frac{15}{2}$$
 satuan luas

30. Diketahui
$$\int_{1}^{p} (3t^2 + 6t - 2) dt = 14$$
. Nilai $-4p =$

1. Tentukan integral berikut.

a.
$$\int (2x^2 - (x+2)^3) dx$$

b.
$$\int (-\frac{3}{2}x^3 + 5)(4x^3 - \frac{9}{2}x^2)dx$$

c.
$$\int \frac{x(x^2 - 4x + 4)}{x^2 - 2x} dx$$

$$d. \quad \int \sqrt{x^2 - 2x + 1} (x - 1) dx$$

e.
$$\int \frac{6 - 4x^2}{2x} dx$$

2. Tentukan nilai
$$a$$
 dan b yang memenuhi

$$\frac{df(x)}{dx} = ax + b, f(0) = 3 + f(-1),$$

dan f(1) - f(0) = 5.

Tentukan persamaan kurva
$$y = f(x)$$
 jika

gradiennya
$$m = \frac{dy}{dx} = (x - 1)^3$$
 dan kurva melalui titik $A(3, 0)$.

4. Tentukan luas daerah yang dibatasi oleh kurva
$$y = x^2 - 3x + 2$$
 dari $x = 0$ sampai dengan $x = 2$.

5. Misalkan daerah
$$D$$
 adalah daerah yang dibatasi kurva $y = x^2$, $y = 4x^2$, dan garis $y = 4$. Daerah D terletak di kuadran I. Jika daerah D diputar mengelilingi sumbu Y , tentukan volume benda putar yang terjadi.

$$\frac{dp}{dt} = 10 + \frac{1}{5}\sqrt{t}$$

P dalam ribuan dan t dalam tahun. Jika tahun ini populasinya ada 30 ribu penduduk, tuliskan pola angka pertumbuhan penduduknya.

7. Tentukan volume benda putar yang terjadi jika

- a. daerah yang dibatasi oleh kurva $y = x^2 + 1$ dan garis y = 3 diputar mengelilingi sumbu Y sejauh 360°.
- b. daerah yang dibatasi oleh garis y = 2x dan parabola $y = x^2$ diputar mengelilingi sumbu X sejauh 360°.

- 8. Diketahui garis g melalui titik A(2, a) pada kurva $y = 3 + 2x x^2$ dan memotong sumbu Y di titik B(0, 5). Tentukan luas daerah yang dibatasi oleh kurva dan garis g.
- 9. Diketahui parabola $y = x^2 + 2$. Titik P(-2, 6) dan Q(1, 3) pada parabola. Garis g adalah garis singgung parabola di titik P dan h adalah garis singgung parabola di titik Q.
 - a. Tentukan persamaan garis g dan h.
 - b. Nyatakan luas daerah tertutup yang

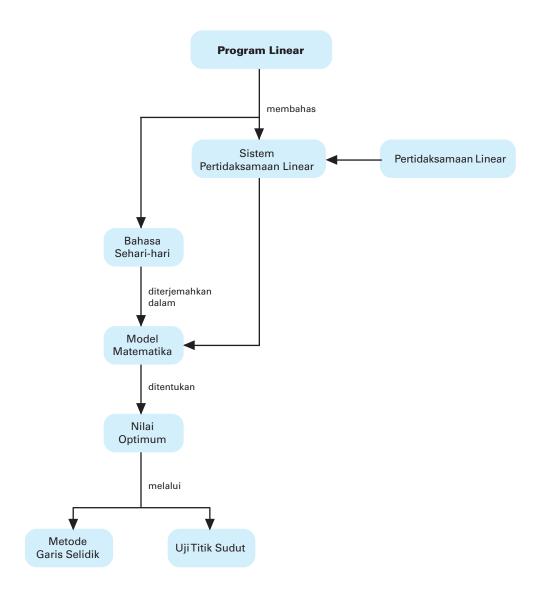
- dibatasi busur PQ pada parabola, garis g, dan garis h dalam bentuk integral, kemudian hitung luas daerah tersebut.
- 10. Garis g menyinggung kurva $y = \sin x$ di titik $(\frac{\pi}{2}, 0)$. Jika daerah yang dibatasi oleh garis g, garis $x \frac{1}{2}\pi$, dan $y = \sin x$ diputar mengelilingi sumbu X, tentukan volume benda putar yang terjadi.

Bab

Tujuan Pembelajaran

Setelah mempelajari bab ini, diharapkan kalian dapat

- menjelaskan sistem pertidaksamaan linear dua variabel dan penyelesaiannya;
- menentukan fungsi tujuan (fungsi objektif) beserta kendala yang harus dipenuhi dalam masalah program linear;
- menggambarkan kendala sebagai daerah pada bidang yang memenuhi sistem pertidaksamaan linear;
- menentukan nilai optimum dari fungsi tujuan sebagai penyelesaian dari program linear;
- menafsirkan nilai optimum yang diperoleh sebagai penyelesaian masalah program linear.


Sumber: Dokumen Penerbit

Program Linear

Motivasi

Para pedagang atau pengusaha tentu ingin memperoleh keuntungan maksimum. Sebelum melakukan transaksi ataupun pengambilan keputusan dalam usahanya, mereka pasti membuat perhitungan yang matang tentang langkah apa yang harus dilakukan. Oleh karena itu, diperlukan metode yang tepat dalam pengambilan keputusan pedagang atau pengusaha tersebut untuk memperoleh keuntungan maksimum dan meminimumkan kerugian yang mungkin terjadi.

Peta Konsep

Kata Kunci

- bahasa matematika
- garis selidik
- kendala
- maksimum
- minimum

- model matematika
- nilai objektif
- optimasi
- optimum
- pembatas

- pertidaksamaan linear
- pertidaksamaan
- program linear
- sistem pertidaksamaan
- uji titik sudut

Pada pokok bahasan kali ini, kita akan membahas suatu metode untuk mengoptimalkan (memaksimumkan/meminimumkan) keuntungan atau biaya, yaitu program linear. Program linear banyak digunakan dalam kehidupan sehari-hari, misalnya dalam bidang ekonomi, perdagangan, dan pertanian.

Untuk mempelajari program linear, mari kita ingat kembali tentang cara menentukan himpunan penyelesaian pertidaksamaan linear dua variabel.

Sebelum kalian mempelajari lebih jauh tentang materi ini, untuk mengingatkan kalian tentang persamaan dan pertidaksamaan linear, jawablah pertanyaan berikut.

Prasyarat Kerjakan di buku

- 1. Apa yang kalian ketahui tentang persamaan linear, sistem persamaan linear, pertidaksamaan linear, dan sistem pertidaksamaan linear?
- 2. Gambarlah grafik fungsi 2x + 3y = 6. Kemudian arsirlah himpunan penyelesaian dari $2x + 3y \ge 6$.

Setelah mempelajari bab ini, diharapkan kalian dapat merumuskan masalah nyata ke dalam model matematika sistem pertidaksamaan linear, menyelesaikan, dan menafsirkan hasil yang diperoleh.

A. Sistem Pertidaksamaan Linear

1. Menyelesaikan Sistem Pertidaksamaan Linear Dua Variabel

Pada pembahasan kali ini, kita akan menentukan penyelesaian sistem pertidaksamaan linear dengan dua variabel menggunakan metode grafik. Metode grafik dimaksudkan untuk melihat secara visual gambaran tentang daerah penyelesaian dari pertidaksamaan linear yang berbentuk aljabar. Karena secara umum grafik pertidaksamaan linear seperti $ax + by \ge c$, ax + by > c, ax + by < c, dan $ax + by \le c$ berupa daerah yang dibatasi oleh garis ax + by = c maka langkah-langkah dalam mengambar grafik pertidaksamaan linear adalah:

- a. menggambar grafik garis ax + by = c sebagai batas daerahnya;
- b. menyelidiki daerah penyelesaian yang dimaksud apakah berada di sebelah kiri, sebelah kanan, di atas, atau di bawah garis batas yang telah dilukis.

Suatu hal yang harus diingat dalam menggambar grafik sebuah garis adalah menentukan dua titik sembarang pada garis itu kemudian menghubungkannya dengan sebuah garis lurus, sedangkan dua titik sembarang yang mudah perhitungannya adalah titik potong garis ax + by = c dengan sumbu X dan titik potong garis dengan sumbu Y. Titik potong dengan sumbu X mempunyai bentuk (..., 0), yakni dicapai saat nilai y = 0, dan titik potong dengan sumbu Y mempunyai bentuk (0, ...), yakni dicapai saat nilai x = 0.

Dari alasan-alasan di atas maka untuk menggambar daerah penyelesaian pertidaksamaan linear adalah sebagai berikut.

a. Gambar grafik garis lurus pembatasnya dengan mengisi format

x	0	
y		0
(x, y)	(0,)	(, 0)

b. Menyelidiki daerah yang merupakan penyelesaian dengan mengambil salah satu titik yang mudah, yaitu (0, 0).

Perhatikan contoh-contoh berikut.

Contoh 1:

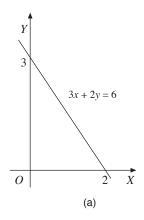
Gambarlah daerah himpunan penyelesaian linear berikut pada bidang Cartesius.

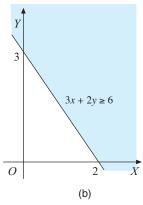
a. $3x + 2y \ge 6$, dengan $x, y \in R$

b. 2x + y > -4, dengan $x, y \in R$

Jawab:

a. $3x + 2y \ge 6$, dengan $x, y \in R$ Untuk menentukan daerah penyelesaian pertidaksamaan linear di atas, langkah-langkah pengerjaannya adalah sebagai berikut.


1) Menggambar grafik garis lurus pembatasnya


a) Titik potong dengan sumbu X, berarti y = 0. Kita ubah pertidaksamaan menjadi persamaan 3x + 2y = 6 sehingga $3x + 2(0) = 6 \Leftrightarrow 3x = 6 \Leftrightarrow x = 2$. Jadi, titik potong grafik dengan sumbu X adalah (2, 0).

Titik potong dengan sumbu Y, berarti x = 0. Kita ubah persamaan menjadi $3x + 2y = 6 \Leftrightarrow 3(0) + 2y = 6 \Leftrightarrow 2y = 6 \Leftrightarrow y = 3$. Jadi, koordinat titik potong grafik dengan sumbu Y adalah (0, 3).

Perhatian

Pada buku ini, kita tetapkan bahwa daerah himpunan penyelesaian pertidaksamaan adalah daerah yang diarsir, sedangkan daerah yang tidak diarsir bukan daerah penyelesaian pertidaksamaan.

Gambar 2.1

x	0	2
y	3	0
(x, y)	(0, 3)	(2, 0)

Hal tersebut dapat disajikan dengan tabel berikut. Grafik 3x + 2y = 6 dapat diperoleh dengan membuat garis yang menghubungkan koordinat (0, 3) dan (2, 0) seperti pada **Gambar 2.1** (a).

2) Menyelidiki daerah penyelesaian

Gambar 2.1 (a) merupakan grafik himpunan penyelesaian untuk persamaan 3x + 2y = 6. Tampak bahwa garis 3x + 2y = 6 membagi bidang Cartesius menjadi dua daerah, yaitu atas (kanan) garis dan bawah (kiri) garis. Untuk menentukan daerah himpunan penyelesaian $3x + 2y \ge 6$, ambil sembarang titik, misalnya (0, 0) dan substitusikan ke dalam pertidaksamaan linear $3x + 2y \ge 6$ sehingga diperoleh

$$3(0) + 2(0) \ge 6$$

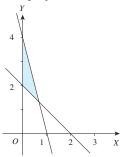
 \Leftrightarrow 0 \geq 6 (pernyataan salah)

Karena titik (0, 0) terletak di bawah (kiri) garis dan setelah kita substitusikan ke pertidaksamaan itu, diperoleh pernyataan yang salah maka titik (0, 0) tidak berada pada daerah penyelesaian. Jadi, daerah penyelesaiannya adalah daerah yang diberi arsiran, seperti pada **Gambar 2.1** (b).

b. $2x + y > -4, x, y \in R$

Langkah-langkah untuk menentukan daerah penyelesaian adalah sebagai berikut.

1) Menggambar grafik garis lurus pembatasnya Dengan cara seperti di atas, diperoleh sebagai berikut. Untuk x = 0 maka $2(0) + y = -4 \Leftrightarrow y = -4$. Untuk y = 0 maka $2x + 0 = -4 \Leftrightarrow x = -2$


x	0	-2
y	-4	0
(x, y)	(0, -4)	(-2,0)

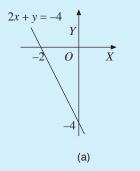
Jadi, titik potong dengan sumbu koordinat adalah (0, -4) dan (-2, 0). Gambarnya terlihat pada **Gambar 2.2** (a).

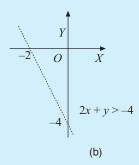
Kuis

• Kerjakan di buku tugas

Daerah yang diarsir pada gambar berikut adalah himpunan penyelesaian dari

- a. $x \ge 0$; $4x + y \ge 4$; $x + y \le 2$
- b. $x \ge 0$; $4x + y \le 4$; $x + y \ge 2$
- c. $x \ge 0$; 4x + y > 4; x + y < 2
- d. $x \ge 0$; x + 4y > 4; x + y < 2
- e. $x \ge 0; x + 4y \le 4;$ $x + y \ge 2$


Ebtanas 1997


2) Menyelidiki daerah penyelesaian

Untuk menentukan daerah himpunan penyelesaian pertidaksamaan, kita ambil titik (0,0). Dengan menyubstitusikan titik (0,0) pada pertidaksamaan maka diperoleh $2(0) + 0 > -4 \Leftrightarrow 0 > -4$.

Terlihat bahwa pernyataan 0 > -4 benar. Berarti, titik (0,0) berada pada daerah penyelesaian, sedangkan garis 2x + y = -4 tidak memenuhi pertidaksamaan sehingga digambar putus-putus. Oleh karena titik (0,0) berada di atas garis 2x + y = -4 maka daerah di atas garis diberi arsiran. Jadi, daerah penyelesaiannya adalah daerah yang diarsir, seperti pada **Gambar 2.2** (b).

Grafiknya dapat ditampilkan sebagai berikut.

Gambar 2.2

Contoh 2:

Tentukan daerah himpunan penyelesaian yang memenuhi sistem pertidaksamaan berikut.

a.
$$x \ge 0; y \ge 0; 2x + y \le 4; x, y \in R$$

b.
$$x \ge 0; y \ge 0; x \le 3; x + y \le 5; x, y \in R$$

Jawab:

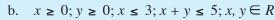
a.
$$x \ge 0; y \ge 0; 2x + y \le 4$$

1) Kita cari titik potong 2x + y = 4 dengan sumbu koordinat Cartesius.

x	0	2
y	4	0
(x, y)	(0, 4)	(2, 0)

Untuk
$$x = 0 \rightarrow 2(0) + y = 4 \Leftrightarrow y = 4$$
.
Untuk $y = 0 \rightarrow 2x + 0 = 4 \Leftrightarrow 2x = 4 \Leftrightarrow x = 2$.

Jadi, diperoleh titik potong (0, 4) dan (2, 0).


Grafik sistem pertidaksamaan linear tersebut tampak pada gambar di samping.

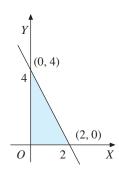
Pada grafik di samping,

- a) penyelesaian $x \ge 0$ tersebut berada di sebelah kanan sumbu Y maka yang kita arsir adalah daerah tersebut;
- b) penyelesaian $y \ge 0$ terletak di sebelah atas sumbu X maka kita arsir daerah tersebut;
- c) untuk menyelidiki daerah himpunan penyelesaian dari pertidaksamaan $2x + y \le 4$ maka ambil titik (0, 0), kemudian substitusikan ke $2x + y \le 4$ sehingga diperoleh $2(0) + 0 \le 4 \Leftrightarrow 0 \le 4$.

Terlihat pernyataan di atas benar. Jadi, titik (0, 0) berada di dalam daerah penyelesaian sehingga daerah di mana titik (0, 0) berada, yaitu di bawah garis 2x + y = 4 kita arsir.

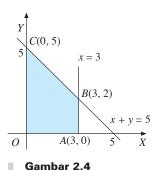
Dari ketiga himpunan penyelesaian yang diperoleh, dapat disimpulkan bahwa daerah penyelesaian dari sistem pertidaksamaan linear itu adalah irisan atau interseksi dari ketiga himpunan penyelesaian pertidaksamaan tersebut. Jadi, daerah yang diarsir adalah daerah penyelesaian dari sistem pertidaksamaan linear, seperti terlihat pada Gambar 2.3.

1) Kita cari titik potong x + y = 5 dengan sumbu koordinat Cartesius.


x	0	5
у	5	0
(x, y)	(0, 5)	(5, 0)

Untuk
$$x = 0 \rightarrow 0 + y = 5 \Leftrightarrow y = 5$$

Untuk $y = 0 \rightarrow x + 0 = 5 \Leftrightarrow x = 5$
Jadi, diperoleh titik potong $(0, 5)$ dan $(5, 0)$


2) Grafik sistem pertidaksamaan linear tersebut adalah sebagai berikut.

Dari **Gambar 2.4**, tampak

- a) penyelesaian $x \ge 0$ adalah daerah di sebelah kanan sumbu Y (daerah arsiran);
- b) penyelesaian $y \ge 0$ terletak di sebelah atas sumbu X (daerah arsiran);

Gambar 2.3

- c) penyelesaian $x \le 3$ adalah daerah di sebelah kiri garis x = 3;
- d) penyelesaian pertidaksamaan $x + y \le 5$ adalah daerah di sebelah kiri (bawah garis x + y = 5);
- e) titik potong garis x = 3 dan x + y = 5 dengan menyubstitusikan x = 3 ke persamaan x + y = 5 sehingga diperoleh y = 2. Jadi, titik potongnya adalah (3, 2).

Dengan demikian, himpunan penyelesaian dari sistem pertidaksamaan $x \ge 0$, $y \ge 0$, $x \le 3$, dan $x + y \le 5$ dengan $x, y \in R$ adalah daerah segi empat *OABC* yang diarsir, seperti terlihat pada **Gambar 2.4**.

2. Model Matematika

Program linear adalah salah satu bagian dari matematika terapan yang berisikan pembuatan program untuk memecahkan berbagai persoalan sehari-hari. Persoalan-persoalan itu mengandung kendala atau batasan yang dapat diterjemahkan ke dalam model matematika. Model matematika adalah suatu hasil penerjemahan dari bahasa sehari-hari menjadi bentuk matematika berupa persamaan, pertidaksamaan, atau fungsi.

Jadi, program linear tersusun atas sistem pertidaksamaan linear. Penyelesaian dari pertidaksamaan linear berupa daerah himpunan penyelesaian. Di antara penyelesaian tersebut, terdapat penyelesaian terbaik yang disebut penyelesaian optimum. Penyelesaian optimum dapat berupa nilai maksimum atau nilai minimum dari suatu fungsi yang dinamakan fungsi objektif, fungsi sasaran atau fungsi tujuan. Untuk memahami lebih lanjut tentang program linear dan model matematika, perhatikan Aktivitas berikut.

Aktivitas

Tujuan : Menentukan model matematika dari

peristiwa kehidupan sehari-hari serta

menyelesaikannya.

Permasalahan: Bagaimana cara merumuskan dalam

bahasa matematika dan menyelesaikannya jika permasalahan disajikan dalam bentuk

peristiwa sehari-hari?

Kegiatan

Simaklah persoalan berikut.

Suatu perusahaan produsen mebel memproduksi dua jenis produk, yaitu meja makan dan lemari. Meja makan dijual dengan harga Rp650.000,00 dan lemari dijual dengan harga Rp1.100.000,00. Perusahaan itu memiliki target sebanyak 500 unit mebel produknya harus terjual dalam periode itu. Untuk memproduksi satu unit meja makan, diperlukan waktu 2 hari, sedangkan untuk memproduksi satu unit lemari, diperlukan waktu 5 hari. Waktu yang disediakan 150 hari. Berapa banyak meja makan dan lemari yang harus diproduksi oleh perusahaan itu agar pendapatannya maksimum?

- 1. Misalkan banyak meja makan dan lemari yang diproduksi dalam suatu variabel. Misalnya, banyak meja makan = x dan banyak lemari = y.
- 2. Susunlah pertidaksamaan-pertidaksamaan yang sesuai dengan kasus di atas.
 - a. Susun pertidaksamaan yang memuat banyak unit mebel yang diproduksi perusahaan itu.
 - b. Susun pertidaksamaan yang memuat waktu dalam proses produksinya.
 - c. Susun syarat bahwa banyak unit adalah bilangan cacah.
- 3. Susunlah suatu fungsi yang akan dimaksimumkan nilainya.
- 4. Dari pertidaksamaan-pertidaksamaan yang kalian peroleh, membentuk sistem pertidaksamaan. Gambarkan dalam bentuk grafik. Arsirlah daerah yang memenuhi sistem pertidaksamaan.
- 5. Bentuk apakah daerah himpunan penyelesaiannya (dalam grafik)?
- 6. Selidiki titik-titik sudutnya, dengan cara menyubstitusikan titik-titik itu ke dalam fungsi yang akan dimaksimumkan.
- 7. Dari langkah 6, berapakah jawaban dari permasalahan ini?

Tantangan

Penalaran

• Kerjakan di buku tugas

Misalkan seorang pedagang sepatu memiliki modal Rp8.000.000,00. Dia akan merencanakan membeli dua jenis sepatu, yaitu sepatu jenis I dan jenis II. Harga beli sepatu jenis I Rp20.000,00 per pasang dan sepatu jenis II Rp16.000,00 per pasang. Keuntungan dari penjualan sepatu jenis I dan jenis II berturut-turut adalah Rp9.000,00 dan Rp8.500,00 per pasang. Mengingat kapasitas kiosnya, ia akan membeli maksimal 450 pasang sepatu saja. Bagaimana model matematika program linear dari kasus ini?

Kesimpulan

Apa yang dapat kalian simpulkan?

Setelah melakukan Aktivitas di atas, tentu kalian dapat membayangkan permasalahan sehari-hari ke dalam bahasa matematika. Agar kalian lebih jelas, pelajari contoh-contoh berikut.

Contoh 1:

Linda membeli 3 kue *A* dan 2 kue *B* di supermarket. Oleh karena itu, Linda harus membayar Rp3.400,00, sedangkan Wati membeli 2 kue *A* dan 3 kue *B* sehingga ia harus membayar Rp3.100,00. Jika harga sebuah kue *A* dan sebuah kue *B* masingmasing *x* rupiah dan *y* rupiah, buatlah model matematika dari masalah tersebut.

Jawab:

Misalkan harga sebuah kue A adalah x dan harga sebuah kue B adalah y.

Untuk memudahkan pembuatan model matematika, kita buat tabel seperti tabel berikut.

Nama	Kue A	Kue B	Harga
Linda	3	2 3	3.400
Wati	2		3.100

Berdasarkan jumlah uang yang dibayarkan Linda maka diperoleh 3x + 2y = 3.400, sedangkan berdasarkan jumlah uang yang dibayarkan Wati, diperoleh 2x + 3y = 3.100. Karena x dan y menunjukkan harga barang maka nilai x dan y harus berupa bilangan real non-negatif sehingga $x \ge 0$, $y \ge 0$; x, $y \in R$.

Jadi, model matematika dari masalah di atas adalah

$$3x + 2y = 3.400$$

$$2x + 3y = 3.100$$

$$x \ge 0, y \ge 0$$

$$x, y \in R$$

Contoh 2:

Luas lahan parkir 360 m². Luas rata-rata untuk sebuah mobil 6 m² dan untuk sebuah bus 24 m². Lahan parkir itu tidak dapat memuat lebih dari 25 kendaraan. Buatlah model matematika dari masalah tersebut.

Jawab:

Misalkan banyak mobil adalah *x* dan banyak bus adalah *y*. Masalah tersebut dapat disajikan dalam tabel berikut.

lugas: Observasi

• Kerjakan di buku tugas

Buatlah suatu himpunan penyelesaian yang dibatasi oleh 7 buah garis. Tentukan sistem pertidaksamaan linear yang membatasi daerah tersebut. Dapatkah kalian membuat daerah himpunan penyelesaian yang yang dibatasi lebih dari 7 buah garis? Jika ya, buatlah contohnya.

Jumlah	Mobil (x)	Bus (y)	Persediaan
Luas Lahan	6	24	360
Daya Tampung	1	1	25

Dari tabel tersebut, diperoleh hubungan sebagai berikut.

$$6x + 24y \le 360$$
$$x + y \le 25$$

Karena x dan y menunjukkan banyaknya mobil dan bus maka x dan y harus berupa bilangan cacah.

Jadi, model matematika dari masalah tersebut adalah

$$\begin{cases} 6x + 24y \le 360 \\ x + y \le 25 \\ x, y \ge 0 \\ x, y \in C \end{cases}$$

Soal Kompetensi 1

• Kerjakan di buku tugas

- Gambarlah himpunan penyelesaian pertidaksamaan berikut.
 - a. $x \le 5$
- d. $3x 4y \le 18$

b. v > 3

- e. $-4x 7y \ge 42$
- c. $x + y \le 4$
- f. 8x 5y < 40
- 2. Gambarlah himpunan penyelesaian sistem pertidaksamaan linear berikut pada bidang Cartesius.
 - a. $x \ge 0$
 - $y \ge 0$

$$5x + 3y < 15$$

- c. $y \ge 0$
 - $x y \ge 0$
 - $x + y \ge 6$

- b. $x, y \ge 0$
 - $x \ge 2$
 - $x \leq 5$ $x - y \ge 0$

- d. $x + y 10 \le 0$ $6x + 3y \le 18$
 - $2 < x \le 7$ $v \ge 0$
- Gambarlah himpunan penyelesaian sistem pertidaksamaan linear berikut pada bidang kartesius.
 - a. $x + 2y 10 \le 10$
 - $x + y 7 \le 0$
 - $x \ge 0, y \ge 0$
 - $x, y \in R$
 - b. $3x + y \ge 9$
 - $5x + 4y \le 20$
 - $x \ge 0$
 - $y \ge 0$
 - $x, y \in R$

- c. $x + y \le 6$
 - $x \ge 2$
 - $y \ge 0$
 - $x, y \in R$
- d. $2x + y \le 2$
 - $x + 2y \ge 2$
 - $x, y \ge 0$
 - $x, y \in R$

Tantangan

Eksplorasi

• Kerjakan di buku tugas

Misalkan P adalah himpunan titik yang dibatasi oleh garis g: 2x + y = 2; h: y = x + 1; dan sumbu Y positif. Tentukan program linear yang memenuhi P.

SPMB 2005

- 4. Togar membeli 3 buku tulis dan 8 pensil. Ia diharuskan membayar Rp8.200,00. Ucok membeli 4 buku tulis dan 5 pensil dan harus membayar Rp7.800,00. Jika *x* dan *y* masing-masing harga sebuah buku tulis dan sebuah pensil, buatlah model matematika dari masalah tersebut.
- 5. Seorang petani ingin menanami lahannya dengan pohon jeruk dan pohon mangga. Luas lahan yang tersedia 160 m². Luas rata-rata untuk sebuah pohon jeruk dan pohon mangga masing-masing 1 m² dan 1,5 m². Lahan itu dapat memuat sebanyak-banyaknya 70 pohon. Buatlah model matematikanya.
- 6. Bu Nina membuat dua jenis kue, yaitu kue jenis *A* yang memerlukan 25 g tepung dan 10 g gula, sedangkan kue jenis *B* memerlukan 20 g tepung dan 15 g gula. Jumlah tepung dan gula yang ia miliki masing-masing 1.000 g dan 800 g. Bu Nina ingin membuat kue sebanyak-banyaknya. Buatlah model matematikanya.
- 7. Seorang penjaja buah-buahan yang menggunakan gerobak menjual mangga dan apel. Harga pembelian mangga dan apel Rp750.000,00. Muatan gerobaknya tidak dapat melebihi 4 kuintal. Jika keuntungan tiap kilogram mangga 3 kali keuntungan tiap 4 kg apel dan penjaja itu ingin mendapat keuntungan sebanyak-banyaknya, buatlah model matematikanya.
- 8. Pak Hendra mempunyai 120 m bahan wol dan 80 m bahan katun. Bahan-bahan itu akan dibuat dua model pakaian. Setiap pakaian model I memerlukan 3 m bahan wol dan 1 m bahan katun. Setiap pakaian model II memerlukan 2 m bahan wol dan 2 m bahan katun. Misalkan banyaknya pakaian model I x buah dan banyakan pakaian model II adalah y buah. Buatlah model matematikanya.
- 9. Seorang pengusaha sepeda ingin membeli sepeda balap dan sepeda gunung sebanyak 30 buah untuk persediaan. Harga sebuah sepeda balap Rp1.500.000,00 dan sepeda gunung Rp1.750.000,00. Tentukan model matematika untuk permasalahan di atas.
- 10. Sebuah pabrik obat berencana membuat 2 jenis obat suplemen, yaitu obat I dan obat II, yang masing-masing mengandung vitamin *A*, *B*, dan *C*. Persediaan vitamin *A*, vitamin *B*, dan vitamin *C* yang dimiliki pabrik tersebut masing-masing 10 gram, 5 gram, dan 15 gram. Jika obat I memerlukan 75 mg vitamin *A*, 150 mg vitamin *B*, dan 200 vitamin *C*, sedangkan obat II memerlukan vitamin *A*, *B*, dan *C* masing-masing 100 mg, 125 mg, dan 225 mg maka tentukan model matematika dari permasalahan di atas.

Jendela Informasi

Informasi lebih laniut

George Bernard Dantzig

Sumber: newsservice.stanford.edu

George Bernard Dantzig

Masalah pengambilan keputusan biasanya mencakup faktor-faktor penting yang tidak berwujud dan tidak dapat diterjemahkan secara langsung ke bentuk model matematis. Dalam hal ini, kehadiran manusia sangat menentukan hampir di setiap lingkungan keputusan. Dari hasil penelitian dilaporkan bahwa perilaku manusia begitu memengaruhi masalah pengambilan keputusan sehingga pemecahan yang diperoleh dari model matematis dipandang tidak praktis. Secara umum, tahap-tahap yang harus dilakukan dalam modelisasi dan optimasi solusi suatu masalah adalah meliputi: (1) pendefinisian masalah, (2) merumuskan model, (3) memecahkan model, (4) pengujian keabsahan model, dan (5) implementasi hasil akhir.

Permasalahan di atas erat hubungannya dengan pemrograman linear. Permasalahan mengenai kasus-kasus pemrograman linear dapat diselesaikan dengan menggunakan metode simpleks, yang merupakan salah satu cara untuk menyelesaikan kasus-kasus pemrograman linear. Kendalanya adalah penyelesaian dengan cara ini jika dikerjakan secara manual, memerlukan waktu yang cukup lama. Sekarang metode ini sudah dikembangkan dalam suatu program, yaitu *QSB*. Metode simpleks ditemukan oleh George Bernard Dantzig. Carilah informasi tentang program ini. Apakah metode simpleks dalam program ini cukup efektif untuk penyelesaian program linear?

Sumber: www.mate-mati-kaku.com

B. Nilai Optimum Suatu Fungsi Objektif

Seperti yang telah disebutkan di depan, suatu permasalahan dapat dituliskan dalam bahasa matematika. Suatu permasalahan tentu mempunyai bentuk penyelesaian yang optimum.

1. Fungsi Objektif z = ax + by

Fungsi tujuan dalam pembuatan model matematika dinyatakan dalam bentuk z = ax + by. Bentuk z = ax + by yang akan dioptimumkan (dimaksimumkan atau diminimumkan) tersebut disebut juga fungsi objektif. Jadi, fungsi objektif dari program linear adalah fungsi z = ax + by yang akan ditentukan nilai optimumnya. Misalnya sebagai berikut.

a. Fungsi objektif: memaksimumkan z = x + y

Kendala: $5x + 4y \le 20$

$$x+2y \le 24$$

$$x, y \ge 0$$
, dengan $x, y \in C$

b. Fungsi objektif: meminimumkan z = 2x + 3y

Kendala: $x + y \le 500$

$$4x + 2y \le 200$$

$$x, y \ge 0$$

$$x, y \in C$$

2. Menentukan Nilai Optimum Fungsi Objektif

Dari uraian yang telah diberikan, kita dapat mengetahui tujuan utama dari program linear, yaitu menentukan nilai optimum (maksimum/minimum) dari suatu fungsi objektif. Untuk menyelesaikan masalah program linear yang berhubungan dengan nilai optimum, langkah-langkah pemecahannya adalah sebagai berikut.

- a. Merumuskan permasalahan ke dalam model matematika.
- b. Membentuk sistem pertidaksamaan linear yang sesuai.
- c. Menggambarkan kendala sebagai daerah di bidang Cartesius yang memenuhi sistem pertidaksamaan linear.
- d. Menentukan nilai optimum (maksimum/minimum) dari fungsi objektif.
- e. Menafsirkan/menjawab permasalahan.

Berkaitan dengan hal tersebut, ada dua metode yang dapat digunakan untuk menentukan nilai optimum dari program linear, yaitu metode uji titik sudut dan metode garis selidik.

a. Metode Uji Titik Sudut

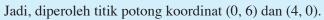
Metode uji titik sudut adalah suatu metode untuk menentukan nilai optimum dari bentuk objektif z = ax + by dengan cara menghitung nilai-nilai z = ax + by pada setiap titik sudut yang terdapat pada daerah himpunan penyelesaian pertidaksamaan linear dua variabel, kemudian membandingkan nilai-nilai yang telah diperoleh. Nilai yang paling besar merupakan nilai maksimum dari z = ax + by, sedangkan nilai yang paling kecil merupakan nilai minimum dari z = ax + by.

Contoh 1:

Tentukan nilai optimum dari model matematika berikut.

Fungsi objektif : memaksimumkan z = x + y

Kendala: $3x + 2y \le 12$


$$x, y \ge 0$$

$$x, y \in R$$

Jawab:

Titik potong garis 3x + 2y = 12 dengan sumbu koordinat disajikan dalam tabel berikut.

x	0	4
у	6	0
(x, y)	(0, 6)	(4, 0)

Kemudian, kita lukis pada bidang koordinat dan kita hubungkan dengan sebuah garis lurus. Setelah itu, tentukan daerah penyelesaian dari kendala-kendala yang tersedia.

Dari **Gambar 2.5**, terlihat daerah penyelesaian dari kendalakendala adalah daerah segitiga OAB, sehingga diperoleh titiktitik sudut dari daerah penyelesaian adalah O(0, 0), A(4, 0), dan B(0, 6).

Selanjutnya, selidiki nilai bentuk objektif z = x + y untuk masing-masing titik sudut tersebut.

Titik	<i>O</i> (0, 0)	A(4,0)	B(0, 6)
x	0	4	0
y	0	0	6
z = x + y	0	4	6
↑ z maks			

Dari tabel di atas, nilai maksimum bentuk objektif z = x + y adalah 6, yaitu untuk x = 0 dan y = 6.

B(0, 6) 3x + 2y = 12 $O \qquad A(4, 0) \qquad X$

Gambar 2.5

Contoh 2:

Diketahui suatu model matematika sebagai berikut.

Fungsi objektif: meminimumkan z = 8x + 10y

Kendala-kendala: $5x + 4y \ge 20$

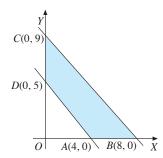
$$9x + 8y \le 72$$

$$x, y \ge 0$$

$$x, y \in C$$

Tentukan nilai minimum dari model matematika tersebut.

Jawab:


Dari kendala-kendala yang ada yaitu $5x + 4y \ge 20$ dan $9x + 8y \le 72$, kita tentukan titik potong garis-garis tersebut dengan sumbu-sumbu koordinat Cartesius.

Tantangan

Penalaran

• Kerjakan di buku tugas

Untuk menghasilkan barang jenis A seharga Rp500.000,00 memerlukan bahan baku 20 kg dan waktu kerja mesin 24 jam. Barang B seharga Rp700.000,00 memerlukan bahan baku 30 kg dan waktu kerja mesin 18 jam. Berapakah nilai maksimum dari masing-masing jenis barang yang dapat dibuat selama 720 jam waktu kerja mesin dan 750 kg bahan baku?

Gambar 2.6

x	0	4
y	5	0
(x, y)	(0, 5)	(4, 0)

x	0	8
y	9	0
(x, y)	(0, 9)	(8, 0)

Dari kedua tabel di atas, tentu kalian memperoleh titik potong dengan sumbu-sumbu koordinat.

Kemudian, kita lukis pada bidang koordinat dan kita hubungkan titik-titik potong tersebut dengan garis lurus. Setelah itu, kita arsir daerah penyelesaiannya, seperti gambar di samping.

Dari gambar di samping, terlihat daerah penyelesaiannya adalah segi empat ABCD. Dengan demikian, diperoleh titiktitik sudut dari daerah penyelesaian adalah A(4,0), B(8,0), C(0,9), dan D(0,5). Selanjutnya, akan diselidiki nilai 8x + 10y untuk masing-masing titik sudut tersebut.

Titik	A(4,0)	B(8,0)	C(0, 9)	D(0, 5)
x	4	8	0	0
y	0	0	9	5
z = 8x + 10y	32	64	90	50
z min z maks		,		

Dari tabel di atas, terlihat bahwa nilai minimum bentuk objektif z = 8x + 10y adalah z = 32, yaitu untuk x = 4 dan y = 0.

Contoh 3:

Diketahui luas lahan parkir 360 m². Untuk sebuah mobil dan sebuah bus, berturut-turut membutuhkan lahan 6 m² dan 24 m². Daerah parkir itu tidak dapat memuat lebih dari 30 kendaraan. Tentukan jumlah maksimum yang diterima tukang parkir jika biaya parkir untuk sebuah mobil Rp1.500,00 dan sebuah bus Rp3.000,00.

Jawab:

Terlebih dahulu kita terjemahkan permasalahan tersebut ke dalam model matematika dengan cara membuat tabel seperti berikut.

	Mobil (x)	Bus (y)	Persediaan
Luas Lahan	6	24	360
Daya Tampung	1	1	30
Biaya Parkir	1.500	3.000	

Tantangan

Penalaran

• Kerjakan di buku tugas

Misalkan seseorang pedagang sepatu memiliki modal Rp8.000.000,00. Dia akan merencanakan membeli dua jenis sepatu, yaitu sepatu jenis I dan sepatu jenis II. Harga beli sepatu jenis I Rp20.000,00 per pasang dan sepatu jenis II Rp16.000,00 per pasang. Keuntungan dari penjualan sepatu jenis I dan sepatu jenis II berturut-turut adalah Rp9.000,00 dan Rp8.500,00 per pasang. Mengingat kapasitas kiosnya, ia akan membeli maksimal 450 pasang sepatu saja. Bagaimana model matematika program linear dari kasus ini?

Misalkan banyak mobil adalah *x* dan banyak bus adalah *y*. Dari tabel di atas dapat dibuat model matematika berikut.

Fungsi objektif: memaksimumkan z = 1.500x + 3.000y

Kendala:
$$6x + 24y \le 360$$
 atau $x + 4y \le 60$

$$x + y \le 30$$

$$x \ge 0$$

$$y \ge 0$$

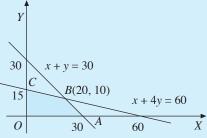
$$x, y \in C$$

Kita tentukan titik potong garis x + 4y = 60 dan x + y = 30 dengan sumbu koordinat Cartesius, seperti terlihat pada kedua tabel berikut.

x	0	60
y	51	0
(x, y)	(0, 15)	(60, 0)

x	0	30
y	30	0
(x, y)	(0, 30)	(30, 0)

Kita buat daerah himpunan penyelesaian kendala-kendala dalam bidang Cartesius.


Kita tentukan titik potong antara dua garis dengan eliminasi.

$$x + 4y = 60$$

$$x + y = 30$$

$$3y = 30 \Leftrightarrow y = 10$$

Dengan menyubstitusikan y = 10 ke salah satu persamaan, diperoleh x = 20. Jadi, titik potong kedua garis tersebut adalah (20, 10).

Gambar 2.7

Dari gambar di atas, terlihat daerah penyelesaiannya mempunyai empat titik sudut, yaitu O(0, 0), A(30, 0), B(20, 10), dan C(0, 15). Selanjutnya, kita selidiki nilai objektif z = 1.500x + 3.000y untuk masing-masing titik sudut. Perhatikan tabel berikut.

Tugas: Inkuiri

• Kerjakan di buku tugas

Selain menggunakan metode eliminasi untuk mencari titik potong antara 2 garis, dapatkah kita menggunakan cara lain? Jika ya, cara apakah itu? Bagaimana cara menyelesaikannya?

Tantangan

Ekplorasi

• Kerjakan di buku tugas

Misalnya seorang pedagang kaki lima menyediakan modal Rp165.000,00 untuk membeli buku. Harga buku jenis I Rp2.000,00 dan harga buku jenis II Rp5.000,00. Banyak buku jenis I yang ia beli tidak lebih dari tiga kali banyak buku jenis II. Ia mengambil keuntungan Rp300,00 untuk setiap buku jenis II. Jika buku-buku yang ia beli dengan cara tersebut terjual habis, berapa keuntungan maksimal yang ia peroleh?

Titik	0(0,0)	A(30, 0)	B(20, 10)	C(0, 15)
X	0	30	20	0
y	0	0	10	15
z = 1.500x + 3.000y	0	45.000	60.000	45.000
z maks				

Dari tabel di atas, terlihat nilai maksimumnya adalah z = 60.000, yaitu untuk x = 20 dan y = 10.

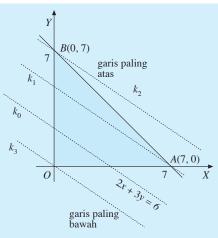
Jadi, tukang parkir itu akan memperoleh penghasilan maksimum, yaitu Rp60.000,00 jika ia dapat menerima parkir mobil sebanyak 20 buah dan parkir bus sebanyak 10 buah.

b. Metode Garis Selidik ax + by = k

Cara lain yang lebih sederhana untuk menentukan nilai maksimum atau minimum dari fungsi objektif z = ax + by adalah dengan menggunakan garis selidik ax + by = k. Langkah-langkah untuk menggunakan metode garis selidik ini adalah sebagai berikut.

- 1) Gambar garis ax + by = ab yang memotong sumbu X di titik (b, 0) dan memotong sumbu Y di titik (0, a).
- 2) Tarik garis yang sejajar dengan ax + by = ab yang melalui titik-titik perpotongan pada batas-batas daerah himpunan penyelesaian.
- 3) Garis selidik yang berada di paling atas atau yang berada di paling kanan menunjukkan nilai maksimum, sedangkan garis selidik yang berada di paling bawah atau di paling kiri pada daerah himpunan penyelesaian menunjukkan nilai minimum.

Contoh 1:


Tentukan nilai maksimum dan nilai minimum dari fungsi objektif z = 2x + 3y yang memenuhi $x + y \le 7, x \ge 0$, dan $y \ge 0, x, y \in R$.

Jawab:

Daerah penyelesaian sistem pertidaksamaan tersebut adalah seperti gambar di samping.

Untuk menggunakan metode garis selidik ax + by = k, ikutilah langkah-langkah berikut.

- a) Gambarlah garis $2x+3y=2(3) \Leftrightarrow 2x+3y=6$. Anggap sebagai garis k_0 .
- b) Tariklah garis k_1 yang sejajar garis k_0 melewati titik A(7,0). Tarik garis k_2 yang sejajar k_1 dan melalui titik B(0,7). Kemudian, tarik garis k_3 yang sejajar k_2 dan melalui titik (0,0).

Gambar 2.8

Terlihat bahwa dari **Gambar 2.8**, garis k_2 letaknya paling atas, berarti nilai maksimum dari z = 2x + 3y dicapai pada titik B(0, 7). Jadi, nilai maksimum dari z = 2z + 3y = 2(0) + 3(7) = 21. Garis k_3 letaknya paling bawah, berarti nilai minimum dicapai pada titik O(0, 0) sehingga nilai minimum dari z = 2x + 3y = 2(0) + 3(0) = 0.

Contoh 2:

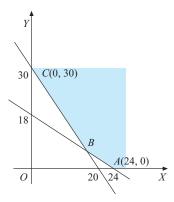
Seorang petani ingin memberikan pupuk pada tanaman padinya. Pupuk yang diberikan harus mengandung sekurangkurangnya 600 g fosfor dan 720 g nitrogen. Pupuk I mengandung 30 g fosfor dan 30 g nitrogen per bungkus. Pupuk II mengandung 20 g fosfor dan 40 g nitrogen per bungkus. Petani itu ingin mencampur kedua pupuk tersebut. Satu bungkus pupuk I harganya Rp17.500,00 dan pupuk II harganya Rp14.500 per bungkus. Tentukan biaya minimum yang harus dikeluarkan oleh petani tersebut.

Jawab:

Untuk menjawab permasalahan di atas, terlebih dahulu kita terjemahkan ke dalam model matematika. Untuk mempermudah, kita buat tabel seperti berikut.

Kandungan	Pupuk I (x)	Pupuk II (y)	Kebutuhan
Fosfor Nitrogen	30 30	20 40	600 g 720 g
Harga	17.500	14.500	720 g

Misalkan banyak pupuk I adalah x dan banyak pupuk II adalah y. Dari tabel di atas, diperoleh model matematika sebagai berikut. Fungsi objektif: meminimumkan z = 17.500x + 14.500y.


Perhatian

Jika variabelnya bilangan cacah, penyelesaian optimum diperoleh dari titik sudut yang absis dan ordinatnya bilangan cacah. Akan tetapi, jika salah satu absis atau ordinatnya bukan bilangan cacah, penyelesaian optimum diperoleh dari titik di dekat (persekitaran) titik tersebut.

Tugas: Eksplorasi

• Kerjakan di buku tugas

Coba kalian kerjakan kedua contoh di atas dengan metode uji titik sudut. Apa kesimpulanmu?

Gambar 2.9

Dari gambar di samping, terlihat bahwa titik B merupakan perpotongan garis 3x + 2y = 60 dan 3x + 4y = 72. Kita tentukan koordinat titik B sebagai berikut.

$$3x + 2y = 60$$

$$3x + 4y = 72$$

$$-2y = -12$$

$$\Rightarrow y = 6$$

Jadi, diperoleh y = 6. Dengan menyubstitusikan y = 6 ke salah satu persamaan garis di atas, diperoleh x = 16. Oleh karena itu, koordinat titik B adalah B(16, 6).

Terlihat dari **Gambar 2.9**, titik B terletak paling kiri dari batasbatas daerah penyelesaian sehingga nilai minimum dicapai pada titik B(16, 6), yaitu

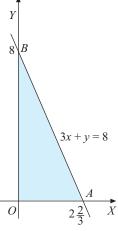
$$z = 17.500(16) + 14.500(6) = 367.000.$$

Jadi, biaya minimum yang dibutuhkan oleh petani tersebut adalah Rp367.000,00 dengan cara membeli 16 bungkus pupuk I dan 6 bungkus pupuk II.

Problem Solving

Tentukan nilai maksimum dari 4x + y yang memenuhi $3x + y \le 8$, $x \ge 0$, $y \ge 0$ dan $x, y \in C$.

Jawab:


Langkah-langkahnya adalah sebagai berikut.

Dari **Gambar 2.10** diperoleh titik sudut O(0,0), $A(2\frac{2}{3},0)$, dan B(0,8). Karena absis dari titik A bukan merupakan bilangan cacah, harus dicari titik pada daerah yang diarsir, dengan absis dan ordinat merupakan bilangan cacah dan letaknya dekat titik $A(2\frac{2}{3},0)$. Titik yang sesuai dengan syarat di atas adalah (2,0) dan (2,1).

Titik	O(0, 0)	$A_1(2,0)$	$A_2(2, 1)$	B(0, 8)
х	0	2	2	0
y	0	0	1	8
z = 4x + y	0	8	9	8
			^	

Dari tabel di atas, diperoleh nilai maksimum fungsi z = 4x + y adalah z = 9, untuk x = 2 dan y = 1.

z maks

Gambar 2.10

• Kerjakan di buku tugas

Soal Kompetensi 2

garis selidik untuk menghitung nilai minimum dan nilai maksimum model matematika berikut.

Untuk nomor 1-5, gunakan metode uji titik sudut dan metode

Fungsi objektif: z = 6x + 5y

Kendala: $2x + y \le 10$

 $y \le 6$

 $x, y \ge 0$

 $x, y \in R$

Fungsi objektif : z = 100x + 50y

Kendala: $2x + 3y \le 16$

 $2x + 6 \le 10$

 $x, y \ge 0$

 $x, y \in C$

Fungsi objektif: z = 7x + 4y

Kendala: $8x + 11y \le 88$

 $x + y \le 10$

 $x, y \ge 0$

 $x, y \in C$

Fungsi objektif: z = 5x + 7y

Kendala: $x + y \le 5$

 $2z + 5y \le 10$

 $x \ge 0$

 $y \ge 0$

 $x, y \in R$.

Fungsi objektif : z = 10x + 25y

Kendala: $3x - 2y \le 6$

 $4x + 2y \le 8$

 $x \ge 0$

 $y \ge 0$

$x, y \in R$ Untuk menghasilkan barang jenis A seharga Rp500.000,00 memerlukan bahan baku 20 kg dan waktu kerja mesin 24 jam. Barang B seharga Rp700.000,00 memerlukan bahan baku 30 kg dan waktu kerja mesin 18 jam. Berapakah nilai maksimum dari masing-masing jenis barang yang dapat dibuat selama 720 jam waktu kerja mesin dan 750 kg bahan baku?

Misalkan seorang pedagang kaki lima menyediakan modal Rp165.000,00 untuk membeli buku dengan buku jenis I dengan harga Rp2.000,00 per buah dan buku jenis II dengan harga Rp5.000,00 per buah. Jumlah buku jenis I yang ia beli tidak lebih dari tiga kali jumlah buku jenis II. Ia mengambil keuntungan Rp300,00 untuk setiap buku

Tantangan

Eksplorasi

• Kerjakan di buku tugas

Seorang pasien diharuskan meminum obat yang mengandung sekurang-kurangnya 75 g kalsium dan 96 g zat besi. Obat I mengandung kalsium dan zat besi masingmasing sebesar 15 g dan 10 g per butir, sedangkan obat II mengandung 10 g kalsium dan 16 g zat besi per butir. Jika harga per butir obat I Rp1.500,00 dan obat II Rp800,00 per butir. Tentukan biaya minimum yang harus dikeluarkan pasien itu untuk memenuhi kebutuhan kalsium dan zat besi.

Tantangan

Penalaran

• Kerjakan di buku tugas

Suatu perusahaan kerajinan tas dan sepatu memerlukan empat unsur A dan enam unsur A per minggu untuk masing-masing hasil produksinya. Setiap tas memerlukan satu unsur A dan dua unsur B, setiap sepatu memerlukan dua unsur A dan dua unsur B. Jika pembuatan setiap tas memberikan keuntungan Rp3.000,00 dan setiap pembatan sepatu memberi keuntungan Rp2.000,00, tentukan banyak tas dan sepatu yang dihasilkan per minggu agar diperoleh keuntungan maksimum.

- jenis II. Jika buku-buku yang ia beli dengan cara tersebut terjual habis, berapa keuntungan maksimum yang ia peroleh?
- 8. Seorang pedagang asongan ingin menjual rokok jenis *A* dan jenis *B* pada suatu kardus. Kardus itu hanya dapat memuat 25 bungkus rokok. Rokok *A* yang harganya Rp3.000,00 per bungkus dijual dengan laba Rp500,00 per bungkus, sedangkan rokok *B* harganya Rp4.000,00 dan dijual dengan laba Rp750,00 per bungkus. Ia hanya mempunyai modal Rp84.000,00. Tentukan berapa banyak rokok masing-masing harus ia beli agar mendapat untung sebesar-besarnya. Tentukan pula besar untungnya.
- 9. Pak Sihombing ingin merenovasi rumahnya. Ia ingin merombak kamar tidur dan kamar mandinya. Ia menyewa seorang pemborong untuk merenovasi kamar tidur dan kamar mandi tersebut. Pemborong itu mengajukan kebutuhan bahan bangunan seperti berikut.

Bahan	Kamar Tidur	Kamar Mandi	Persediaan
Semen Batu Bata Biaya	24 sak 1.800 buah Rp300.000,00	12 sak 1.600 buah Rp275.000,00	288 sak 28.800 buah

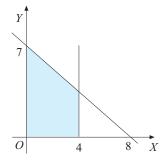
- 10. Pada tanah seluas 10.000 m² akan dibangun tidak lebih dari 125 unit rumah, tipe RS dan tipe RSS. Tipe RS memerlukan tanah 60 m² dan tipe RSS memerlukan 50 m². Rumah-rumah tersebut akan dijual dengan harga per unit Rp20.000.000,00 untuk RS dan Rp15.000.000,00 untuk RSS.
 - a. Misal dibangun rumah tipe RS sebanyak *x* unit dan tipe RSS sebanyak *y* unit, tulislah sistem pertidaksamaannya.
 - b. Gambarlah grafik himpunan penyelesaian sistem pertidaksamaan yang diperoleh pada satu sistem koordinat Cartesius.
 - c. Tentukan bentuk objektif yang menyatakan hasil penjualan rumah.
 - d. Berapakah banyaknya masing-masing tipe rumah yang harus dibangun agar diperoleh hasil penjualan maksimum? Hitunglah hasil penjualan maksimum itu.

Rangkuman

- Program linear merupakan suatu metode untuk memecahkan masalah sehari-hari yang berhubungan dengan optimasi.
- 2. Model matematika adalah suatu hasil penerjemahan bentuk sehari-hari menjadi bentuk persamaan, pertidaksamaan, atau fungsi.

- Untuk memecahkan permasalahan program linear, hal yang utama adalah memisalkan masalah tersebut ke dalam model matematika.
- Penyelesaian optimum dapat berupa nilai maksimum atau nilai minimum dari
- fungsi objektif/fungsi sasaran/fungsi tujuan.
- Nilai optimum fungsi objektif dapat ditentukan, antara lain dengan metode uji titik sudut dan metode garis selidik.

Refleksi


Kalian telah mempelajari program linear. Materi ini sangat dekat dengan kehidupan nyata. Hal-hal yang sifatnya nyata sangat dominan, terutama pada kasus-kasus

yang sifatnya memaksimumkan dan meminimumkan. Apakah program linear hanya menekankan pada kasus-kasus itu? Berikan alasan kalian.

Tes Kemampuan Bab II

• Kerjakan di buku tugas

- A. Pilihlah jawaban yang tepat dengan memberi tanda silang (x) pada huruf a, b, c, d, atau e.
- Daerah yang diarsir pada gambar di bawah memenuhi sistem pertidaksamaan

a.
$$8x + 7y \le 63$$

 $y \le 4$
 $x, y \ge 0$

b.
$$8x + 7y \ge 63$$

$$x \le 4$$

$$x, y \ge 0$$

c.
$$7x + 8y \le 63$$

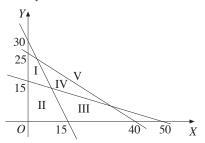
 $x \ge 4$
 $x, y \ge 0$

d.
$$7x + 8y \ge 63$$

$$x \leq 4$$

$$x, y \ge 0$$

e.
$$7x + 8y \le 63$$

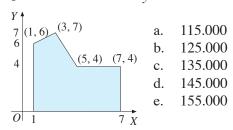

$$x \leq 4$$

$$x, y \ge 0$$

Nilai maksimum fungsi z = 5x + 7y yang memenuhi sistem pertidaksamaan 2x + $3y \le 12$, $x + 2y \le 8$, $x, y \ge 0$ adalah

- 28 a.
- 31
- 29 h.
- 32
- 30 c.
- 3. Nilai minimum dan nilai maksimum fungsi z = 4x + 3y yang memenuhi sistem pertidaksamaan $x + y \le 6, 2x + y \ge 3, x \ge 1$, $x \le 4$, dan $y \ge 0$ adalah
 - 7 dan 22 a.
- 7 dan 24
- 6 dan 22
- 6 dan 20
- 6 dan 24

4. Daerah penyelesaian sistem pertidaksamaan $x \le 0$, $y \ge 0$, $2x + y \ge 30$, $3x + 10y \ge 150$, $5x + 8y \le 200$ adalah



- a. I
- b. II
- c. III
- d. IV
- e. V
- 5. Perhatikan gambar di bawah ini. Jika daerah segi lima berikut merupakan penyelesaian dari sistem pertidaksamaan linear dari program linear, fungsi objektif z = 5x + y mencapai maksimum di titik
 - a. *A*
 - b. *B*
 - c. *C*
 - d. *D*
 - e. *O*

- 6. Suatu pesawat udara mempunyai tempat duduk tidak lebih dari 50 penumpang. Setiap penumpang kelas utama boleh membawa bagasi 70 kg, sedangkan untuk kelas ekonomi 30 kg. Pesawat itu hanya dapat membawa bagasi 2.100 kg. Jika harga untuk kelas utama Rp250.000,00 per orang dan kelas ekonomi Rp175.000,00, keuntungan maksimum yang dapat diperoleh adalah
 - a. Rp7.500.000,00
 - b. Rp8.500.000,00
 - c. Rp8.750.000,00
 - d. Rp9.785.000,00
 - e. Rp9.875.000,00

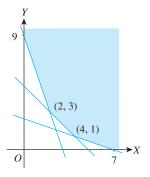
- 7. Seorang pemborong melakukan pemasangan instalasi listrik pada suatu perumahan. Untuk tipe 21, diperlukan 60 m kabel dan 5 lampu. Untuk tipe 36 diperlukan 150 m kabel dan 10 lampu. Jika tersedia 5 km kabel dan 150 lampu, model matematika untuk permasalahan di atas adalah
 - a. $6x + 15y \ge 500, x + y \ge 30,$ $x, y \ge 0, x, y \in C$
 - b. $6x + y \ge 500, x + y \le 30,$ $x, y \ge 0, x, y \in C$
 - c. $6x + 15y \ge 500, 2x + y \le 30,$ $x, y \ge 0, x, y \in C$
 - d. $6x + 15y \le 500, x + 2y \ge 30,$ $x, y \ge 0, x, y \in C$
 - e. $6x + 15y \le 500, x + 2y \le 30,$ $x, y \ge 0, x, y \in C$
- 8. Daerah yang diarsir pada gambar di bawah ini merupakan penyelesaian dari sistem pertidaksamaan linear. Nilai maksimum dari fungsi objektif z = 15.000x + 10.000y adalah

- 9. Jika diketahui bahwa P = x + y dan Q = 5x + y maka nilai maksimum dari P dan Q pada sistem pertidaksamaan $x \ge 0$, $y \ge 0$, $x + 2y \le 12$ dan $2x + y \le 12$ adalah
 - a. 8 dan 30
 - b. 6 dan 6
 - c. 4 dan 6
 - d. 6 dan 24
 - e. 8 dan 24
- 10. Untuk membuat barang A diperlukan 6 jam pada mesin I dan 4 jam pada mesin II, sedangkan membuat barang B memerlukan 2 jam pada mesin I dan 8

jam pada mesin II. Kedua mesin tersebut setiap harinya masing-masing bekerja tidak lebih dari 18 jam. Jika setiap hari dibuat *x* buah barang *A* dan *y* buah barang *B* maka model matematika dari uraian di atas adalah

a.
$$2x + 3y \le 9, 4x + y \le 9, x \ge 0, y \ge 0$$

b.
$$3x + 2y \le 9, 2x + 4y \le 9, x \ge 0, y \ge 0$$


c.
$$3x + y \le 9, 2x + 4y \le 9, x \ge 0, y \ge 0$$

d.
$$3x + y \le 9, 4x + 2y \le 9, x \ge 0, y \ge 0$$

e.
$$4x + 3y \le 9, x + 2y \le 9, x \ge 0, y \ge 0$$

- 11. Luas area parkir adalah 176 m². Luas rata-rata mobil sedan dan bus masingmasing 4 m² dan 20 m². Area parkir tersebut hanya mampu menampung 20 kendaraan, dengan biaya parkir untuk mobil dan bus masing-masing Rp1.000,00 per jam dan Rp2.000,00 per jam. Jika dalam waktu 1 jam tidak ada kendaraan yang pergi atau datang, hasil maksimum area parkir tersebut adalah
 - a. Rp20.000,00
 - b. Rp34.000,00
 - c. Rp44.000,00
 - d. Rp26.000,00
 - e. Rp30.000,00
- 12. Seorang pemilik toko sepatu ingin mengisi tokonya dengan sepatu laki-laki paling sedikit 100 pasang dan sepatu wanita paling sedikit 150 pasang. Toko tersebut dapat memuat 400 pasang sepatu. Keuntungan setiap pasang sepatu laki-laki adalah Rp1.000,00 dan setiap pasang sepatu wanita adalah Rp500,00. Jika banyak sepatu laki-laki tidak boleh melebihi 150 pasang, maka keuntungan terbesar yang dapat diperoleh adalah
 - a. Rp275.000,00
 - b. Rp300.000,00
 - c. Rp325.000,00
 - d. Rp350.000,00
 - e. Rp375.000,00

13. Perhatikan gambar berikut.

Daerah yang diarsir pada gambar di atas menya-takan daerah penyelesaian suatu sistem pertidaksamaan. Nilai minimum dari x + y pada daerah penyelesaian tersebut adalah (UN SMK 2006)

a. 9

7

d. 3

- b.
- e. 1
- c. 5
- 14. Untuk membuat roti jenis *A* diperlukan 400 gram tepung dan 50 gram mentega. Untuk membuat roti jenis *B* diperlukan 200 gram tepung dan 100 gram mentega. Roti akan dibuat sebanyak-banyaknya. Persediaan tepung 9 kg dan mentega 2,4 kg, bahan-bahan lain dianggap cukup. Jika *x* menyatakan banyak roti jenis *A* dan *y* menyatakan banyak roti jenis *B* yang akan dibuat maka model matematika yang memenuhi pernyataan tersebut adalah (UN SMK 2007/Paket 14)

a.
$$2x - y \le 45, x + 2y \ge 48, x \ge 0, y \ge 0$$

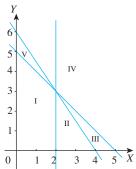
b.
$$2x + y \le 45, x + 2y \le 48, x \ge 0, y \ge 0$$

c.
$$2x + y \ge 45, x + 2y \ge 48, x \ge 0, y \ge 0$$

d.
$$2x + y \le 45, x - 2y \le 48, x \ge 0, y \ge 0$$

e. $2x + y \le 45, x + 2y \le 48, x \le 0, y \le 0$

15. Perhatikan gambar grafik di bawah. Daerah penyelesaian yang memenuhi sistem pertidaksamaan


$$x + y \le 5$$

$$3x + 2y \le 12$$

$$x \ge 2$$

$$y \ge 0$$

adalah daerah (UN SMK 2007/Paket 14)

- Ι a.
- d. IV
- II b.
- V
- Ш c.
- 16. Nilai maksimum 4x + 5y dengan syarat $x \ge 0$; $y \ge 0$; $x + 2y \le 10$; $x + y \le 7$ adalah (UMPTN 1999)
 - 34 a.
- d. 31
- 33 b.
- 30 e.
- 32 c.
- 17. Dalam himpunan penyelesaian pertidaksamaan $x \ge 1$; $y \ge 2$; $x + y \le 6$; $2x + 3y \le 15$. Nilai minimum dari 3x + ysama dengan (UMPTN 1998)
 - 9 a.
- 12 d.
- b. 10
- 13 e.
- 11 c.
- 18. Nilai minimum dari 2x + 3y untuk x, ydi daerah yang diarsir adalah (UMPTN 1999)

Y

- 25 a.
- b. 15
- 12 c.
- 10 d.
- 5 e.
- 5 4
- 19. Seorang pedagang menjual mangga dan pisang dengan menggunakan gerobak. Pedagang tersebut membeli mangga dengan harga Rp8.000,00/kg dan pisang

- Rp6.000,00/kg. Modal yang tersedia Rp1.200.000,00, sedangkan gerobaknya hanya dapat memuat mangga dan pisang sebanyak 180 kg. Jika harga jual mangga Rp9.200,00/kg dan pisang Rp7.000,00/ kg maka laba maksimum yang diperoleh adalah (UN 2006)
- Rp150.000,00 a.
- Rp180.000,00 b.
- Rp192.000,00 c.
- d. Rp240.000,00
- Rp216.000,00
- 20. Mobil pick up dan mobil truk akan digunakan untuk mengangkut 1.000 m³ pasir. Satu kali jalan, pick up dapat mengangkut 2 m³ pasir dan truk 5 m³ pasir. Untuk mengangkut pasir tersebut diperlukan jumlah truk dan pick up paling sedikit 350 buah dengan biaya angkut pick up satu kali jalan Rp15.000,00 dan truk Rp30.000,00. Biaya minimum untuk mengangkut pasir tersebut adalah (UN 2005)
 - Rp10.500.000,00
 - Rp7.500.000,00 b.
 - Rp6.750.000,00 c.
 - Rp5.500.000,00 d.
 - Rp5.000.000,00
- 21. Nilai maksimum fungsi sasaran z = 6x+ 8y dari sistem pertidaksamaan

$$4x + 2y \le 60$$

$$2x + 4y \le 48$$

$$x \ge 0, y \ge 0$$

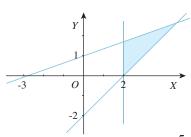
adalah (UAN 2003)

- 120 a.
- d. 114
- b. 118
- e. 112
- 116 c.
- 22. Nilai maksimum bentuk objektif (4x +10y) yang memenuhi himpunan penyelesaian sistem per-tidaksamaan linear $x \ge 0$, $y \ge 0$, $x + y \le 12$, dan $x + y \le 1$ $2y \le 16 \text{ adalah (UAN 2003)}$
 - a. 104
- d. 48
- b. 80
- 24 e.
- 72 c.

- 23. Sebuah pabrik menggunakan bahan *A*, *B*, dan *C* untuk memproduksi 2 jenis barang, yaitu barang jenis I dan barang jenis II. Sebuah barang jenis I memerlukan 1 kg bahan *A*, 3 kg bahan *B*, dan 2 kg bahan *C*, sedangkan barang jenis II memerlukan 3 kg bahan *A*, 4 kg bahan *B*, dan 1 kg bahan *C*. Bahan baku yang tersedia 480 kg bahan *A*, 720 kg bahan *B*, dan 360 kg bahan *C*. Harga barang jenis I adalah Rp40.000,00 dan harga barang jenis II adalah Rp60.000,00. Pendapatan maksimum yang diperoleh adalah (UN 2007/Paket 14)
 - a. Rp7.200.000,00
 - b. Rp9.600.000,00
 - c. Rp10.080.000,00
 - d. Rp10.560.000,00
 - e. Rp12.000.000,00
- 24. Perusahaan tas dan sepatu mendapat pasokan 8 unsur *P* dan 12 unsur *K* setiap minggu untuk produksinya. Setiap tas memerlukan 1 unsur *P* dan 2 unsur *K*, sedangkan setiap sepatu memerlukan 2 unsur *P* dan 2 unsur *K*. Laba untuk setiap tas adalah Rp18.000,00 dan setiap sepatu adalah Rp12.000,00. Keuntungan maksimum perusahaan yang diperoleh adalah (UN 2007/Paket 47)
 - a. Rp120.000,00
 - b. Rp108.000,00
 - c. Rp96.000,00
 - d. Rp84.000,00
 - e. Rp72.000,00
- 25. Seorang penjahit membuat 2 model pakaian. Model pertama memerlukan 1 m kain polos dan 1,5 m kain bercorak. Model kedua memerlukan 2 m kain polos dan 0,5 m kain bercorak. Dia hanya mempunyai persediaan 20 m kain polos dan 10 m kain bercorak. Jumlah

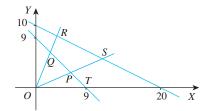
- maksimum pakaian yang dapat dibuat adalah (UN 2004)
- a. 10 potong
- d. 14 potong
- b. 11 potong
- e. 16 potong
- c. 12 potong
- 26. Untuk menambah penghasilan keluarga, seorang ibu berjualan 2 jenis roti. Roti jenis I dibeli dengan harga Rp500,00 per buah dan roti jenis II dengan harga Rp300,00 per buah. Keranjang ibu itu hanya dapat memuat 100 buah roti. Jika ibu itu mengharap keuntungan Rp100,00 dari roti jenis I dan Rp50,00 dari roti jenis II maka dengan modal Rp45.000,00, keuntungan maksimal yang diterima adalah UN 2004)
 - a. Rp5.000,00
 - b. Rp7.500,00
 - c. Rp8.750,00
 - d. Rp9.000,00
 - e. Rp10.000,00
- 27. Nilai maksimum dari f(x, y) = 500x + 300y yang memenuhi sistem pertidaksamaan $2x + y \le 1.500$

$$x + y \le 1.000$$


 $x \ge 0$

 $y \ge 0$

adalah (UAN 2003)


- a. 300.000
- d. 450.000
- b. 375.000
- e. 500.000
- c. 400.000
- 28. Agar fungsi z = px + 5y dengan syarat $2x + y \ge 6$, $x + y \ge 5$, $x \ge 0$, $y \ge 0$ mencapai minimum di titik (1, 4) maka konstanta p memenuhi (SPMB 2007)
 - a. 2
 - b. $2 \le p \le 6$
 - c. 5
 - d. $5 \le p \le 10$
 - e. p < 5 atau p > 10

29. Jika daerah yang diarsir pada diagram di bawah merupakan daerah penyelesaian untuk soal program linear dengan fungsi sasaran f(x, y) = x - y maka nilai maksimum f(x, y) adalah

- a. f(3, 1)
- d. $f(2, \frac{5}{3})$
- b. *f*(4, 1)
- e. $f(4, \frac{5}{2})$
- c. f(3, 2)

30. Dalam sistem pertidaksamaan $2y \ge x$, $y \le 2x$, $x + 2y \le 20$, $x + y \ge 9$, nilai maksimum untuk 3y - x dicapai di titik

- a. *P*
- b. *Q*
- c. \tilde{R}
- d. S
- e. 7
- B. Jawablah pertanyaan-pertanyaan berikut dengan benar.
- 1. Tentukan nilai minimum fungsi objektif z = 2x + y yang memenuhi sistem pertidaksamaan $2x + 3y \ge 6$, $2x + y \ge 4$, $x \ge 0$, $y \ge 0$, $x, y \in C$.
- 2. Tentukan nilai maksimum fungsi z = 3x + 2y dari sistem pertidaksamaan $2x + y \ge 3, x + y \le 6, x \ge 1, y \ge 0$.
- 3. Seorang tukang listrik membuat 2 jenis bel listrik. Tersedia 12 m kawat untuk kumparan dan baterai 30 buah. Untuk bel listrik kecil butuh 3 m kawat dan 5 baterai. Bel listrik besar butuh 2 m kawat dan 6 baterai. Bel listrik dijual dengan harga Rp5.000,00 dan Rp7.500,00 untuk masing-masing bel listrik kecil dan besar. Berapa buah bel listrik kecil dan besar yang harus dibuat agar mendapat uang sebanyak-banyaknya? Berapa uang yang diperoleh?
- 4. Seorang pemborong pengecatan rumah mempunyai persediaan 80 kaleng cat putih dan 60 kaleng abu-abu. Pemborong tersebut mendapat tawaran mengecat ruang tamu dan ruang tidur. Setelah dihitung ternyata 1 ruang tamu menghabiskan 2 kaleng cat putih dan 1 kaleng cat abu-abu, sedangkan 1 ruang tidur menghabiskan cat masing-masing sebanyak 1 kaleng.
 - a. Tulislah model matematikanya.
 - b. Berapa banyak maksimum ruang tamu dan ruang tidur yang dapat dicat?
- 5. Dari soal nomor 4, jika biaya untuk 1 ruang tamu Rp75.000,00 dan untuk 1 ruang tidur Rp50.000,00. Tentukan banyaknya uang maksimum yang diterima oleh pemborong itu.

Kata Bijak

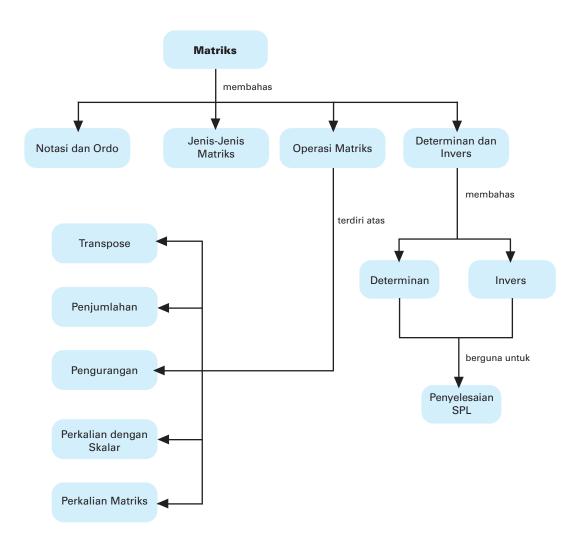
Memercayai diri sendiri adalah rahasia pertama untuk berhasil. Oleh karena itu, yakinkan diri Anda untuk percaya pada potensi Anda.

Bab

Tujuan Pembelajaran

Setelah mempelajari bab ini, diharapkan kalian dapat

- menjelaskan ciri suatu matriks;
- menuliskan informasi dalam bentuk matriks;
- melakukan operasi aljabar atas dua matriks;
- menentukan determinan matriks persegi ordo 2;
- 5. menentukan invers matriks persegi ordo 2;
- menentukan penyelesaian sistem persamaan linear dua variabel dengan invers matriks;
- menentukan penyelesaian sistem persamaan linear dua variabel dengan determinan;
- menentukan determinan matriks persegi ordo 3;
- 9. menentukan penyelesaian sistem persamaan linear tiga variabel.


Sumber: upload.wikimedia.org

Matriks

Motivasi

Apa yang kalian amati ketika melihat daftar harga, daftar nilai UN, atau daftar gaji? Apakah kalian memerhatikan susunan penulisannya? Jika susunan tersebut dituliskan untuk per hari atau per bulan atau bahkan per tahun pasti akan menjadi sangat panjang. Perhatikan juga posisi tempat duduk peserta ujian. Apa yang kalian bayangkan tentang posisi berderet dari depan ke belakang dan dari kiri ke kanan? Kasus-kasus di atas dapat disajikan dengan mudah menggunakan matriks.

Peta Konsep

Kata Kunci

- adjoin
- aturan Sarrus
- baris
- determinan
- entry
- kesamaan matriks
- kofaktor
- kolom
- lawan matriks

- matriks
- matriks baris
- matriks diagonal
- matriks identitas
- matriks kolom
- matriks persegi
- minor
- nonsingular
- notasi matriks

- ordo
- perkalian matriks
- persamaan matriks
- singular
- skalar
- transformasi baris elementer
- transpose

Materi tentang matriks merupakan materi baru bagi kalian. Pembahasan tentang matriks ini sangat diperlukan untuk mempelajari materi lain dalam matematika, antara lain determinan, vektor, dan transformasi geometri. Matriks merupakan salah satu cara untuk mempermudah penyelesaian sistem persamaan linear. Dalam kehidupan sehari-hari, matriks sangat membantu dalam mencatat hal-hal yang berhubungan dengan jajaran bilangan.

Sebelum lebih jauh mempelajari tentang matriks, kerjakanlah latihan berikut agar kalian lebih mudah mempelajari matriks.

Prasyarat Kerjakan di buku tugas

Cobalah kalian mencari informasi tentang harga-harga kebutuhan pokok di beberapa pasar di sekitarmu, kemudian isikan dalam kolom berikut.

Nama Pasar Nama Barang	Pasar A	Pasar B
Beras (per kg) Gula pasir (per kg) Cabe merah (per kg)		

Jelaskan tentang isi tabel tersebut. Apa arti dari elemen atau angka dalam tabel tersebut?

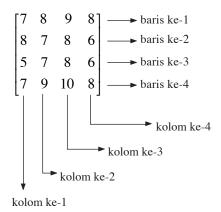
A. Pengertian, Notasi, dan Ordo Matriks

1. Pengertian Matriks

Untuk memahami pengertian tentang matriks, perhatikan contoh berikut. Seorang siswa mencatat hasil ulangan hariannya untuk pelajaran Matematika, Sejarah, TIK, dan Bahasa Inggris dalam tabel berikut.

Mata Pelajaran	Ulangan I	Ulangan II	Ulangan III	Ulangan IV
Matematika	7	8	9	8
Sejarah	8	7	8	6
TIK	5	7	8	6
B. Inggris	7	9	10	8

Tabel di atas dapat disajikan dalam bentuk yang lebih sederhana.


Tugas: Observasi

Kerjakan di buku tugas

Ambillah sebuah surat kabar. Carilah daftar harga dasar kebutuhan bahan pokok, daftar hasil skor pertandingan sepak bola, atau daftar nilai tukar mata uang. Buatlah daftar tersebut menjadi bentuk matriks. Bagaimanakah hasilnya, apakah bentuknya lebih ringkas?

Dalam membaca tabel di atas, siswa tidak mengalami kesulitan karena dia sudah tahu bahwa baris ke-1 adalah nilai Matematika, baris ke-2 nilai Sejarah, baris ke-3 nilai TIK, dan baris ke-4 nilai Bahasa Inggris. Untuk kolom pertama menyatakan nilai ulangan I, kolom ke-2 adalah nilai ulangan II, dan seterusnya.

Dalam matematika, susunan bilangan yang ditulis menurut baris dan kolom serta ditandai dengan tanda kurung di sebelah kiri dan sebelah kanannya disebut *matriks*. Nama baris dan kolom disesuaikan dengan urutannya. Masing-masing bilangan yang ada di dalam tanda kurung tersebut disebut *elemen matriks*. Pada matriks di atas, elemen matriks baris ke-2 kolom ke-4 adalah 6 dan elemen matriks baris ke-3 kolom ke-1 adalah 5. Hal ini dapat dilihat dengan mudah pada matriks berikut.

Pada matriks di atas, elemen matriks baris ke-3 kolom ke-4 adalah 6. Elemen matriks baris ke-2 kolom ke-3 adalah 8.

Notasi dan Ordo Matriks

Untuk menyatakan matriks, biasanya digunakan huruf kapital, seperti A, B, C, ..., sedangkan untuk menyatakan elemen matriks ditulis dengan huruf kecil. Misalnya, a_{ij} untuk menyatakan tiap elemen matriks A, b_{ij} untuk menyatakan tiap elemen B, dan seterusnya.

Dari uraian yang telah disampaikan di atas, kita dapat mendefinisikan pengertian matriks sebagai berikut.

Suatu matriks A berukuran $m \times n$ adalah susunan berbentuk persegi panjang yang terdiri atas m baris dan n kolom.

Matriks A biasanya dinotasikan sebagai berikut.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

 a_{ii} menyatakan elemen matriks pada baris ke-i dan kolom ke-j.

Untuk ukuran $m \times n$, sering kali disebut *ordo* suatu matriks sehingga matriks A dapat ditulis $A_{m \times n}$.

Kadang-kadang, bentuk umum matriks A dapat dituliskan secara singkat ke dalam notasi $A = (a_{ij}), B = (b_{ij})$, dan seterusnya. Dari uraian di atas dapat diberikan definisi yang jelas tentang ordo matriks dan notasi matriks sebagai berikut.

Ordo suatu matriks adalah ukuran matriks yang menyatakan banyak baris diikuti dengan banyak kolom. Notasi dari matriks A dinyatakan dengan $A = (a_{ij})$.

Contoh 1:

Hasil penelitian tentang keadaan harga-harga pokok selama tahun 2004, 2005, 2006, dan 2007 di suatu daerah adalah sebagai berikut.

Harga Per Kilogram dalam Rupiah							
Beras	Gula	Minyak Goreng					
1.900	3.750	4.500					
2.300	3.900	4.700					
2.400	3.800	5.000					
2.600	4.000	5.600					
	Beras 1.900 2.300 2.400	Beras Gula 1.900 3.750 2.300 3.900 2.400 3.800					

- a. Susunlah data di atas ke dalam bentuk matriks dengan notasi *A*.
- b. Berapa banyak baris dan kolom dari matriks *A*?
- c. Sebutkan elemen-elemen pada baris kedua.
- d. Sebutkan elemen-elemen pada kolom ketiga.

Jawab:

a.
$$A = \begin{bmatrix} 1.900 & 3.750 & 4.500 \\ 2.300 & 3.900 & 4.700 \\ 2.400 & 3.800 & 5.000 \\ 2.600 & 4.000 & 5.600 \end{bmatrix}$$

- b. Banyak baris pada matriks *A* adalah 4 dan banyak kolom pada matriks *A* adalah 3.
- c. Elemen-elemen pada baris kedua adalah $a_{21}=2.300$, $a_{22}=3.900$, dan $a_{23}=4.700$.
- d. Elemen-elemen pada kolom ketiga adalah $a_{13} = 4.500$, $a_{23} = 4.700$, $a_{33} = 5.000$, dan $a_{43} = 5.600$.

Contoh 2:

Diketahui matriks
$$B = \begin{bmatrix} 7 & -5 & 1 & 8 \\ 6 & 4 & 2 & 9 \\ 0 & 3 & 6 & 7 \end{bmatrix}$$
.

Tentukan

- a. ordo matriks B;
- b. elemen-elemen baris pertama;
- c. elemen pada baris ke-3 dan kolom ke-2;
- d. elemen pada baris ke-2 dan kolom ke-4.

Jawab:

- a. Matriks *B* mempunyai 3 baris dan 4 kolom sehingga ordo matriks *B* adalah 3×4 atau dinotasikan $B_{3 \times 4}$.
- b. Elemen-elemen baris pertama adalah 7, -5, 1, dan 8.
- c. Elemen pada baris ke-3 kolom ke-2 adalah 3, ditulis $b_{32} = 3$.
- d. Elemen pada baris ke-2 kolom ke-4 adalah 9, ditulis $b_{24}^{32} = 9$.

Problem Solving

Diketahui sistem persamaan linear berikut.

$$3x + 5y - x = 4$$

$$5x + 2y - 3z = 8$$

$$2x - 4y + 2z = 6$$

- a. Susunlah sistem persamaan linear di atas ke dalam matriks A.
- b. Tentukan ordo matriks A.
- c. Hitunglah $a_{32} + a_{21} + a_{13}$.

Jawab:

	Koefisien x	Koefisien y	Koefisien z
Persamaan 1	3	5	-1
Persamaan 2	5	2	-3
Persamaan 3	2	-4	2

 Sistem persamaan linear di atas dapat disusun dalam tabel berikut.

Dengan demikian, matriks yang bersesuaian dengan tabel

di atas adalah
$$A = \begin{bmatrix} 3 & 5 & -1 \\ 5 & 2 & -3 \\ 2 & -4 & 2 \end{bmatrix}$$
.

- b. Ordo matriks A adalah 3×3 atau ditulis $A_{3\times 3}$.
- c. a_{32} adalah elemen baris ke-3 kolom ke-2, yaitu -4. a_{21} adalah elemen baris ke-2 kolom ke-1, yaitu 5. a_{13} adalah elemen baris ke-1 kolom ke-3, yaitu -1. Jadi, $a_{32} + a_{21} + a_{13} = -4 + 5 + (-1) = 0$.

3. Matriks-Matriks Khusus

Beberapa macam matriks khusus yang perlu kalian kenal adalah sebagai berikut.

a. Matriks Baris

Matriks baris adalah matriks yang hanya terdiri atas satu baris.

Misalnya:

$$P = [3 \quad 2 \quad 1]$$

 $Q = [4 \quad 5 \quad -2 \quad 5]$

b. Matriks Kolom

Matriks kolom adalah matriks yang hanya terdiri atas satu kolom

Misalnya:

$$R = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \qquad S = \begin{bmatrix} -2 \\ 3 \\ 4 \end{bmatrix} \qquad T = \begin{bmatrix} 5 \\ -7 \\ -2 \\ 1 \end{bmatrix}$$

c. Matriks Persegi

 $Matriks\ persegi$ adalah matriks yang banyak baris sama dengan banyak kolom. Jika banyak baris matriks persegi A adalah n maka banyaknya kolom juga n, sehingga ordo matriks A adalah $n\times n$. Seringkali matriks A yang berordo $n\times n$ disebut dengan matriks persegi ordo n. Elemen-elemen $a_{11},\ a_{22},\ a_{33},\ ...,\ a_{nn}$ merupakan elemen-elemen pada $diagonal\ utama$.

Misalnya:

$$A = \begin{bmatrix} 1 & 8 \\ 2 & 10 \end{bmatrix}$$
 merupakan matriks persegi ordo 2.

$$B = \begin{bmatrix} 4 & 5 & 9 & 2 \\ -2 & 6 & 11 & 1 \\ 3 & 7 & 13 & 3 \\ 2 & 1 & 0 & 2 \end{bmatrix}$$
 merupakan matriks persegi ordo 4.

Elemen-elemen diagonal utama matriks *A* adalah 1 dan 10, sedangkan pada matriks *B* adalah 4, 6, 13, dan 2.

d. Matriks Diagonal

Matriks diagonal adalah matriks persegi dengan setiap elemen yang bukan elemen-elemen diagonal utamanya adalah 0 (nol), sedangkan elemen pada diagonal utamanya tidak semuanya nol.

Misalnya:

$$C = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

e. Matriks Identitas

Matriks identitas adalah matriks persegi dengan semua elemen pada diagonal utama adalah 1 (satu) dan elemen lainnya semuanya 0 (nol). Pada umumnya matriks identitas dinotasikan dengan I dan disertai dengan ordonya.

Misalnya:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

f. Matriks Nol

 $Matriks\ nol\$ adalah suatu matriks yang semua elemennya adalah 0 (nol). Matriks nol biasanya dinotasikan dengan huruf O diikuti ordonya, $O_{m\times n}$.

Misalnya:

$$O_{2\times 1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $O_{3\times 2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ $O_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

4. Transpose Suatu Matriks

Transpose dari matriks A berordo $m \times n$ adalah matriks yang diperoleh dari matriks A dengan menukar elemen baris menjadi elemen kolom dan sebaliknya, sehingga berordo $n \times m$. Notasi transpose matriks $A_{m \times n}$ adalah $A_{n \times m}^T$.

Contoh:

Jika
$$A = \begin{bmatrix} 4 & 2 & -1 \\ 3 & 5 & 6 \end{bmatrix}$$
, tentukan A^T dan ordonya.

Tugas: Inkuiri

• Kerjakan di buku tugas

Buatlah contoh-contoh matriks dengan ordo yang berbeda-beda. Transposekan matriks-matriks tersebut. Amatilah hasilnya. Kemudian, buatlah bentuk umum matriks berordo $m \times n$ dan matriks transposenya.

Jawab:

Terlihat dari matriks A bahwa elemen baris ke-1 adalah 4, 2, dan -1, sedangkan elemen baris ke-2 adalah 3, 5, dan 6. Untuk mengubah matriks A menjadi A^T , posisikan elemen baris ke-1 menjadi kolom ke-1 dan elemen baris ke-2 menjadi elemen

kolom ke-2 sehingga diperoleh
$$A^T = \begin{bmatrix} 4 & 3 \\ 2 & 5 \\ -1 & 6 \end{bmatrix}$$

Ordo matriks A adalah 2×3 , sedangkan ordo A^T adalah 3×2 .

Soal Kompetensi 1

• Kerjakan di buku tugas

- 1. Diketahui matriks $A = \begin{bmatrix} 5 & -6 & 8 & -4 \\ 4 & 10 & 12 & 6 \\ -3 & 9 & 3 & 7 \end{bmatrix}$.
 - a. Sebutkan elemen matriks yang terletak pada
 - 1) baris ke-1;
 - 2) baris ke-3;
 - 3) baris ke-2;
 - 4) baris ke-3 dan kolom ke-4;
 - 5) baris ke-1 dan kolom ke-3;
 - 6) baris ke-2 dan kolom ke-1.

- b. Sebutkan nomor baris dan nomor kolom yang merupakan posisi dari masing-masing elemen berikut.
 - 1) 5
- 3) -3
- 5) 8

- 2) 6
- 4) 12
- 6) 10
- c. Tentukan ordo matriks A.
- d. Tentukan transpose matriks A dan ordonya.
- 2. Tulislah koefisien-koefisien sistem persamaan linear berikut ke dalam bentuk matriks.

a.
$$2x + y = 5$$
$$6x - 4y = 7$$

c.
$$2x + 5y - 3z = 6$$

 $3x - 7y - z = 10$
 $5x - 9y + 6z = 12$

b.
$$-5 = 7x + 8y$$

 $-6 = 3x - 4y$

d.
$$4x = 8$$

 $5y - 6 = 0$
 $y = 0$

- 3. Diketahui matriks $P = [p_{ij}]$ ditentukan oleh $P = \begin{bmatrix} 6 & 3 & 2 \\ -4 & 1 & 5 \end{bmatrix}$.
 - a. Tentukan ordo matriks *P*.
 - b. Tentukan p_{22} , p_{13} , p_{23} , p_{11} , dan p_{21} .
 - c. Hitunglah $p_{13} + p_{11}$, $p_{23} p_{13}$, $p_{22} \times p_{21}$, dan $p_{11} : p_{12}$.
 - d. Jika $n = p_{13}$, hitunglah $\frac{n^2 + n 2}{n 1}$.
 - e. Tentukan transpose matriks P.
- 4. Diketahui matriks $B = \begin{bmatrix} 5 & q \\ p & 2 \end{bmatrix}$.
 - a. Tentukan nilai p dan q jika $p = 2a_{11} + a_{22} 4$ dan $2q = 3a_{21}$.
 - b. Hitunglah nilai dari $p^2 + q^2$.
- 5. Diketahui matriks $A = \begin{bmatrix} u & 5 & 3 \\ 2 & v & 8 \end{bmatrix}$.
 - a. Tentukan A^T .
 - b. Dari hasil yang diperoleh pada soal a, tentukan u dan v jika $2u = 3a_{31} 15$ dan $4v a_{12}^3 8 = 0$.
- 6. Tentukan transpose dari masing-masing matriks berikut.

a.
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 5 & 6 & 7 \end{bmatrix}$$

b.
$$B = \begin{bmatrix} -3 & -2 \\ -5 & 6 \\ 11 & 14 \end{bmatrix}$$

c.
$$C = \begin{bmatrix} -5 & 2 & 3 & 4 \end{bmatrix}$$

d.
$$D = \begin{bmatrix} -6 & 0 & 3 & 5 \\ -4 & 1 & 2 & 17 \\ -5 & 4 & -1 & 5 \end{bmatrix}$$

e.
$$E = \begin{bmatrix} 3 \\ 5 \\ -1 \\ 0 \end{bmatrix}$$

f.
$$F = \begin{bmatrix} -5 & 6 & -3 & 0 & 5 \\ 4 & -1 & 1 & -5 & 14 \end{bmatrix}$$

Diketahui matriks A berordo 2×3 . Tentukan matriks A jika

a.
$$a_{ij} = 2i + 3j$$
;

d.
$$a_{ii} = 2i^2 - j^2$$

a.
$$a_{ij} = 2i + 3j$$
;
b. $a_{ij} = 8i - 5j$;
c. $a_{ij} = i^2 + j^2$;

d.
$$a_{ij} = 2i^2 - j^2$$
;
e. $a_{ij} = 6i^2 + 2j - 3$;
f. $a_{ij} = 4j - 4$.

c.
$$a_{ii}^{g} = i^2 + j^2$$
;

f.
$$a_{ij}^{3} = 4j - 4$$
.

Diketahui matriks Q adalah transpose dari matriks

$$\begin{bmatrix} 5 & 4 & 3 \\ 2 & -6 & 0 \\ 8 & -9 & 13 \end{bmatrix}.$$

Tentukan nilai dari

a.
$$q_{23} + q_{12} - 2q_{31}$$

d.
$$5q_{22} + 4q_{12} - 2q_{22}$$

a.
$$q_{23} + q_{12} - 2q_{31}$$
; d. $5q_{32} + 4q_{13} - 2q_{22}$;
b. $4q_{13} - 5q_{21} + 2$; e. $q_{11} \times q_{33}$
c. $q_{23}^2 + q_{11}^2 - 3$; f. $q_{22} : q_{12} + 4q_{32}$.

e.
$$q_{11} \times q_{33}$$

c.
$$q_{23}^2 + q_{11}^2 - 3$$

f.
$$q_{22}$$
: $q_{12} + 4q_{32}$

9. Jika matriks
$$\begin{bmatrix} a & a+2b-3 \\ b+4c & a+b+c+d \\ 2a+e & b+e+f \\ a+b+g & h-g+2e \end{bmatrix}$$
 adalah matriks nol,

tentukan nilai a, b, c, d, e, f, g, dan h.

10. Diketahui transpose matrik P adalah $\begin{bmatrix} 3 & 4 & -4 & 10 \\ -1 & 0 & 6 & -11 \\ 5 & 2 & 7 & 3 \end{bmatrix}$.

Tentukan

- matriks P;
- nilai x dan y jika $x = p_{23} + 3p_{32} 5$ dan $y = p_{11}^{3} + 2p_{12}^{2}$.

B. Kesamaan Dua Matriks

Coba perhatikan bahwa

4 = 4;

5 = 3 + 2;

 $9 = 3^3$.

Perhatikan juga dengan matriks berikut.

$$\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

Matriks tersebut adalah dua matriks yang sama. Demikian juga dengan matriks berikut.

$$\begin{bmatrix} 1 & 3+1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2^2 \\ 2 & 2+1 \end{bmatrix}$$

Tampak bahwa elemen-elemen seletak dari kedua matriks mempunyai nilai yang sama. Sekarang, apakah matriks

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} dan \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

merupakan dua matriks yang sama? Coba selidiki, apakah elemen-elemen seletak dari kedua matriks mempunyai nilai yang sama?

Jika kalian telah memahami kasus di atas, tentu kalian dapat memahami definisi berikut.

Dua matriks A dan B dikatakan sama, ditulis A = B jika matriks A dan B mempunyai ordo yang sama dan semua elemen yang seletak bernilai sama.

Elemen yang seletak adalah elemen yang terletak pada baris dan kolom yang sama.

Kuis

• Kerjakan di buku tugas

Diketahui

$$B = \begin{bmatrix} x + y & x \\ -1 & x - y \end{bmatrix} dan$$

$$C = \begin{bmatrix} 1 & \frac{-x}{2} \\ -2y & 3 \end{bmatrix}$$
. Matriks

 $A = B^T$. Jika A = C maka

$$x - 2xy + y = \dots$$

a. 2

b. .

c. 4

d. 5 e. 6

UMPTN 1996

Contoh 1:

Diketahui
$$A = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2^2 & \sqrt{9} \\ \frac{1}{2}\sqrt{16} & 1 \end{bmatrix}$, $C = \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$,

$$dan D = \begin{bmatrix} 3 & 4 & 5 \\ 2 & 1 & 6 \end{bmatrix}.$$

Apakah A = B? Apakah A = C? Apakah A = D?

Jawab:

Dari keempat matriks tersebut, tampak bahwa matriks A = B karena ordonya sama dan elemen-elemen yang seletak nilainya sama. Matriks $A \neq C$ karena meskipun ordonya sama, tetapi elemen-elemen seletak ada yang nilainya tidak sama, sedangkan $A \neq D$ karena ordonya tidak sama.

Contoh 2:

Tentukan nilai
$$x$$
, y , dan z jika $\begin{bmatrix} x & 12 \\ 1 & 2-y \end{bmatrix} = \begin{bmatrix} 2 & 3y \\ 1 & z \end{bmatrix}$.

Jawab:

Karena kedua matriks di atas sama dan elemen-elemen yang seletak bernilai sama, diperoleh x = 2, 12 = 3y atau y = 4, dan 2 - y = z atau z = -2.

Jadi,
$$x = 2$$
, $y = 4$, dan $z = -2$.

Soal Kompetensi 2

• Kerjakan di buku tugas

 Tulislah pasangan matriks yang sama dari matriks-matriks berikut

$$A = \begin{bmatrix} 3 & 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 4 \\ 0 & -1 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & 4 \\ 0 & -1 \end{bmatrix}$$

$$D = \begin{bmatrix} 4 & 2 \\ -1 & 0 \end{bmatrix} \qquad E = \begin{bmatrix} 3 & 2 & -1 \end{bmatrix} \qquad F = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$

$$G = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} \qquad H = \begin{bmatrix} 4 & 2 & -1 \end{bmatrix} \qquad K = \begin{bmatrix} 6 & 3 \\ 1 & 2 \end{bmatrix}$$

2. Carilah nilai *x* dan *y* yang memenuhi persamaan matriks berikut.

a.
$$\begin{bmatrix} x & y \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 3 & 2 \end{bmatrix}$$

b.
$$\begin{bmatrix} 4x & 10 \\ -2 & \frac{1}{2}y \end{bmatrix} = \begin{bmatrix} -6 & 10 \\ -2 & 1 \end{bmatrix}$$

Tantangan

Eksplorasi

• Kerjakan di buku tugas

Diketahui matriks

$$A = \begin{bmatrix} 4^{x+2y} & 0\\ 2 & 3x-2 \end{bmatrix} dan$$

$$B = \begin{bmatrix} 8 & 0 \\ 2 & 7 \end{bmatrix}$$
. Tentukan nilai
$$2x + 2y + 1$$
.

c.
$$\begin{bmatrix} 4x - 1 \\ 5 - y \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$$

d.
$$\begin{bmatrix} 5x+6\\10-3y \end{bmatrix} = \begin{bmatrix} -4\\x \end{bmatrix}$$

3. Hitunglah nilai *a* dan *b* yang memenuhi persamaan matriks berikut.

a.
$$\begin{bmatrix} a+2b \\ 3a-b \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 4a - b \\ 3a + b \end{bmatrix} = \begin{bmatrix} -11 \\ -3 \end{bmatrix}$$

4. Tentukan nilai x, y, z, a, b, c, d, e, dan f jika matriks A = B.

$$A = \begin{bmatrix} 6 & 2 & 6 \\ 3 & 8 & -3 \\ 13 & -2 & 10 \end{bmatrix} \qquad B = \begin{bmatrix} x & x - y & y + z \\ 2z - a & 5 + b & b + 3x \\ x + d & 2y - c & e + 2f \end{bmatrix}$$

5. Tentukan nilai s dan t jika matriks $P^T = Q$.

a.
$$P = \begin{bmatrix} 2 & -1 \\ 4 & 8 \end{bmatrix} \operatorname{dan} Q = \begin{bmatrix} 2 & 25 \\ s+t & 8 \end{bmatrix}$$

b.
$$P = \begin{bmatrix} 3 & 6 & 2s - 1 \\ 9 & 7 & 10 \\ -4 & 5 & 0 \end{bmatrix} \operatorname{dan} Q = \begin{bmatrix} 3 & 2s + 1 & -4 \\ 6 & 7 & 5 \\ s + 3t & 10 & 0 \end{bmatrix}$$

6. Diketahui matriks $A = \begin{bmatrix} -3 & 2x - y \\ x + 2y & 0 \end{bmatrix} \operatorname{dan} B = \begin{bmatrix} -3 & 4 \\ 3 & 0 \end{bmatrix}$.

Tentukan nilai x dan y jika diketahui bahwa $A^T = B$.

7. Diketahui matriks $A = \begin{bmatrix} 2 & 3 & -2 \\ 4 & -1 & 5 \\ -3 & 8 & -1 \end{bmatrix}$. Tentukan nilai p dan

q jika $a_{22} p + a_{13} q = 1$ dan $a_{33} p + a_{32} q = 6$.

8. Tentukan nilai *x* yang mungkin dari kesamaan matriks berikut.

$$\begin{bmatrix} 2 & x^2 + 14 \\ -4 & 5 \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ 3(x+4) & 6 \end{bmatrix}$$

Kuis

• Kerjakan di buku tugas

Diketahui matriks A =

$$\begin{bmatrix} 4 & 2 \\ 5a+b & 5 \end{bmatrix}$$
 dan matriks B

$$= \begin{bmatrix} 4 & 2 \\ 7 & 3+b \end{bmatrix}. \text{ Jika } A = B,$$

nilai a dan b berturut-turut adalah

- a. –2 dan 1
- b. -1 dan 2
- c. -1 dan -2
- d. 1 dan 2
- e. 3 dan 5

UN 2007

9. Diketahui
$$K = \begin{bmatrix} a & 3 & -2 \\ 4 & 0 & b \\ 8 & 3c & 10 \end{bmatrix}$$
 dan $L = \begin{bmatrix} 6 & 3 & -2 \\ 4 & 0 & 2a \\ 8 & 4b & 10 \end{bmatrix}$.

Tentukan nilai a, b, dan c apabila K = L.

10. Diketahui
$$M = \begin{bmatrix} 4a+b & 5\\ \frac{1}{6}c & 2c \end{bmatrix}$$
 dan $N = \begin{bmatrix} 7c & 5\\ 12 & 2a-b \end{bmatrix}$. Tentukan $a, b,$ dan c jika $M = N$.

C. Penjumlahan dan Pengurangan Matriks

1. Penjumlahan Matriks

Jumlah matriks A dan B, ditulis matriks A + B, adalah suatu matriks yang diperoleh dengan menjumlahkan elemen-elemen yang seletak dari matriks A dan B.

Misalnya:

$$\text{Matriks} \begin{bmatrix} a & c \\ b & d \end{bmatrix} \text{dapat dijumlahkan dengan matriks} \begin{bmatrix} e & f \\ g & h \end{bmatrix};$$

Matriks
$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$
 dapat dijumlahkan dengan matriks $\begin{bmatrix} g & h & i \\ j & k & l \end{bmatrix}$;

dan seterusnya.

Secara umum, jika matriks $A = [a_{ij}]$ dan $B = [b_{ij}]$ maka matriks $A + B = [a_{ii}] + [b_{ii}] = [a_{ii} + b_{ii}].$

Mari Berdiskusi

Bagaimana jika kedua matriks mempunyai ordo yang tidak sama?

Misalnya:

matriks
$$\begin{bmatrix} a & c \\ b & d \end{bmatrix}$$
 dengan matriks $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$. Dapatkah

kedua matriks itu dijumlahkan?

Coba kalian diskusikan dengan teman-temanmu.

Setelah melakukan diskusi tentang permasalahan di atas, tentu kalian dapat menyimpulkan sebagai berikut.

Syarat agar dua matriks atau lebih dapat dijumlahkan adalah mempunyai ordo yang sama.

Contoh:

Diketahui
$$A = \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 2 \\ 5 & -6 \end{bmatrix}$, dan $C = \begin{bmatrix} 3 & 1 & -2 \\ 2 & 5 & -3 \end{bmatrix}$.

Tentukan

a. A+B;

b. A + C.

Jawab:

a.
$$A + B = \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 2 \\ 5 & -6 \end{bmatrix}$$
$$= \begin{bmatrix} 5 + 4 & -2 + 2 \\ 3 + 5 & 1 + (-6) \end{bmatrix}$$
$$= \begin{bmatrix} 9 & 0 \\ 8 & -5 \end{bmatrix}$$

b.
$$A+C=\begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}+\begin{bmatrix} 3 & 1 & -2 \\ 2 & 5 & -3 \end{bmatrix}$$
 tidak dapat dijumlahkan karena ordonya tidak sama.

Problem Solving

Carilah nilai x dan y yang memenuhi $\begin{bmatrix} 2x+1\\3y \end{bmatrix} + \begin{bmatrix} 4x\\y \end{bmatrix} = \begin{bmatrix} 4\\8 \end{bmatrix}$.

Jawab:

$$\begin{bmatrix} 2x+1\\3y \end{bmatrix} + \begin{bmatrix} 4x\\y \end{bmatrix} = \begin{bmatrix} 4\\8 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 2x+1+4x \\ 3y+y \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 6x+1\\4y \end{bmatrix} = \begin{bmatrix} 3\\8 \end{bmatrix}$$

Terlihat dari persamaan matriks ini, diperoleh 6x + 1 = 3

$$\Leftrightarrow x = \frac{1}{3} \operatorname{dan} 4y = 8 \Leftrightarrow y = 2$$
. Jadi, diperoleh nilai $x = \frac{1}{3} \operatorname{dan} y = 2$.

2. Pengurangan Matriks

a. Lawan Suatu Matriks

Sebelum kita membahas tentang pengurangan matriks, terlebih dahulu akan kita bicarakan mengenai lawan suatu matriks.

Lawan suatu matriks A adalah suatu matriks yang elemenelemennya merupakan lawan dari elemen-elemen matriks A. Secara lebih jelas, dari suatu matriks $A = [a_{ij}]$ dapat ditentukan lawan matriks yang ditulis dengan -A sehingga $-A = [-a_{ij}]$. Misalnya sebagai berikut.

Jika
$$A = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$$
, lawan matriks A adalah $-A = \begin{bmatrix} -4 & -3 \\ -2 & -1 \end{bmatrix}$.

Jika
$$B = \begin{bmatrix} -3 & 0 \\ 2 & -1 \\ -1 & 4 \end{bmatrix}$$
, lawan matriks B adalah $-B = \begin{bmatrix} 3 & 0 \\ -2 & 1 \\ 1 & -4 \end{bmatrix}$.

b. Pengurangan terhadap Matriks

Pengurangan matriks A dan B, ditulis A - B, adalah suatu matriks yang diperoleh dengan mengurangkan elemen-elemen yang bersesuaian letak dari matriks A dan B. Atau, matriks A - B adalah matriks yang diperoleh dengan cara menjumlahkan matriks A dengan lawan dari matriks B, yaitu

$$A - B = A + (-B)$$

dengan -B adalah lawan matriks B. Seperti halnya dengan penjumlahan matriks, syarat agar dua matriks atau lebih dapat dikurangkan adalah mempunyai ordo yang sama. Secara umum, jika $A = [a_{ii}]$ dan $B = [b_{ii}]$ maka $A - B = [a_{ii}] - [b_{ii}] = [a_{ij}] - [b_{ij}]$

Contoh 1:

Diketahui
$$A = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix}$$
 dan $B = \begin{bmatrix} 2 & -1 \\ 0 & -3 \end{bmatrix}$. Tentukan $A - B$.

Jawab:

Cara 1:

Karena
$$-B = -\begin{bmatrix} 2 & -1 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 0 & 3 \end{bmatrix}$$
 maka

$$A - B = A + (-B) = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix} + \begin{bmatrix} -2 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 + (-2) & 3 + 1 \\ 2 + 0 & 6 + 3 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 4 \\ 2 & 9 \end{bmatrix}$$

Cara 2:

$$A - B = \begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 5 - 2 & 3 - (-1) \\ 2 - 0 & 6 - (-3) \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 9 \end{bmatrix}$$

Contoh 2:

Hitunglah X jika diketahui
$$\begin{bmatrix} 6 & -5 \\ 4 & 3 \end{bmatrix} + X = \begin{bmatrix} 2 & 3 \\ 10 & 0 \end{bmatrix}$$
.

Jawab:

$$X = \begin{bmatrix} 2 & 3 \\ 10 & 0 \end{bmatrix} - \begin{bmatrix} 6 & -5 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} -4 & 8 \\ 6 & -3 \end{bmatrix}$$

3. Sifat-Sifat Penjumlahan Matriks

Agar kalian dapat menemukan sendiri sifat-sifat penjumlahan matriks, lakukan Aktivitas berikut.

Aktivitas

Tujuan : Menemukan sifat-sifat penjumlahan

matriks

Permasalahan: Sifat-sifat apakah yang berlaku pada

penjumlahan matriks?

Kegiatan : Kerjakan soal-soal berikut di buku tugas.

1. Diketahui matriks $A = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix}$,

$$B = \begin{bmatrix} 4 & 2 \\ -1 & 5 \end{bmatrix}, \, \operatorname{dan} C = \begin{bmatrix} 6 & -5 \\ 7 & 8 \end{bmatrix}.$$

Tentukan hasil penjumlahan berikut, kemudian tentukan sifat apa yang berlaku.

a.
$$A + B$$

a.
$$A + B$$
 c. $(A + B) + C$
b. $B + A$ d. $A + (B + C)$

$$h R + A$$

d.
$$A + (B + C)$$

2. Untuk matriks
$$A = \begin{bmatrix} 3 & -1 & 5 \\ 2 & -2 & 7 \end{bmatrix}$$
 dan O

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, dengan ordo A adalah 2 \times 3$$

dan ordo O adalah 2×3 , apakah A + O= O + A? Apakah A + O = O + A berlaku untuk semua matriks yang dapat dijumlahkan?

3. Diketahui matriks
$$A = \begin{bmatrix} -2 & 6 & 8 \\ 5 & -7 & -4 \end{bmatrix}$$
.

Tentukan $A + (-A) \operatorname{dan} (-A) + A$. Matriks apakah yang kalian peroleh?

Kesimpulan

Berdasarkan kegiatan di atas, sifat apa saja yang kalian peroleh?

Perhatian

Untuk pengurangan matriks tidak berlaku sifat komutatif, sifat asosiatif, dan tidak mempunyai unsur identitas.

Berdasarkan Aktivitas di atas dapat ditemukan sifat-sifat penjumlahan dan pengurangan matriks sebagai berikut.

Jika A, B, dan C matriks-matriks yang berordo sama maka pada penjumlahan matriks berlaku sifat-sifat berikut.

a.
$$A + B = B + A$$
 (sifat komutatif)

b.
$$(A + B) + C = A + (B + C)$$
 (sifat assistif)

c. Unsur identitas penjumlahan, yaitu matriks
$$O$$
 sehingga $A + O = O + A = A$.

d. Invers penjumlahan A adalah -A sehingga A + (-A) = (-A) + A = O.

Mari Berdiskusi

Coba kalian buktikan sifat-sifat penjumlahan matriks di atas, dengan memisalkan matriks $A = [a_{ii}], B = [b_{ii}], C = [c_{ii}], dan O = [o_{ij}],$

untuk $o_{ij} = 0$. Ingat matriks $A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{vmatrix}$ dapat

ditulis $[a_{ii}]$; $i = 1, 2, 3 \dots m$ $i = 1, 2, 3 \dots n$

Soal Kompetensi 3

Kerjakan di buku tugas

1. Diketahui matriks
$$A = \begin{bmatrix} -3 & 5 \\ 2 & -4 \\ 1 & 6 \end{bmatrix}$$
 dan $B = \begin{bmatrix} -2 & 1 \\ 5 & 0 \\ 7 & 3 \end{bmatrix}$.

Tentukan

a.
$$A + B$$
;

b.
$$A-B$$
;

e.
$$B-A$$
:

c.
$$A^T + B^T$$
;

f.
$$B^T - A^T$$

2. Diketahui matriks
$$P = \begin{bmatrix} 5 & -7 \\ 6 & 8 \end{bmatrix}$$
, $Q = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix}$, dan

$$R = \begin{bmatrix} 0 & 4 \\ -3 & -5 \end{bmatrix}.$$

Tentukan

a.
$$P+Q$$
;

e
$$P - (O + R)$$

b.
$$Q - \tilde{P}$$
;

f.
$$(P+Q)-(P+R)$$

c.
$$P-R$$
;

g.
$$(P + Q + R)^T$$
;

d.
$$(P + Q) - R$$
;

h.
$$(P + Q)^T + R^T$$
.

Tentukan lawan dari matriks-matriks berikut.

a.
$$A = \begin{bmatrix} 3 & -4 & 5 \end{bmatrix}$$

a.
$$A = \begin{bmatrix} 3 & -4 & 5 \end{bmatrix}$$
 d. $D = \begin{bmatrix} -2 & -5 & 8 \\ -3 & -6 & 9 \\ -4 & -7 & 10 \end{bmatrix}$

b.
$$B = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}$$

b.
$$B = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}$$
 e. $E = \begin{bmatrix} -3 & 1 & 7 \\ 2 & 5 & 8 \\ 0 & 6 & 1 \end{bmatrix}$

c.
$$C = \begin{bmatrix} 4 & 1 & 0 & -4 \\ -2 & 5 & -3 & -1 \end{bmatrix}$$

Carilah nilai a, b, c, dan/atau d yang memenuhi persamaan berikut.

a.
$$\begin{bmatrix} a & b & c \end{bmatrix} + \begin{bmatrix} -5 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 3 & 2 & -1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 3a \\ b \\ 2c \end{bmatrix} + \begin{bmatrix} -10 \\ 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 6 \end{bmatrix}$$

c.
$$\begin{bmatrix} a & 3b \\ -c & 2d \end{bmatrix} - \begin{bmatrix} 16 & 10 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} -12 & 4 \\ -6 & 3 \end{bmatrix}$$

d.
$$\begin{bmatrix} 3a & -4 \\ 2c+1 & 5 \end{bmatrix} - \begin{bmatrix} 2 & -b \\ 2a & 3d \end{bmatrix} = \begin{bmatrix} 7 & -5 \\ 5 & -16 \end{bmatrix}$$

5. Tentukan matriks *X* yang memenuhi persamaan berikut.

a.
$$X = \begin{bmatrix} 5 & -1 \\ 2 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} - \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$

b.
$$\begin{bmatrix} -5 & 7 \\ 4 & 10 \end{bmatrix} + X = \begin{bmatrix} -6 & 12 \\ 8 & -4 \end{bmatrix}$$

c.
$$\begin{bmatrix} 4a & -5a \\ 7a & 9a \end{bmatrix} - X = \begin{bmatrix} 2a & 3a \\ 6a & -4a \end{bmatrix}$$

d.
$$X^T - \begin{bmatrix} -7 & 8 \\ 9 & -10 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 0 & -1 \end{bmatrix}$$

6. Tentukan nilai *x* dan *y* dari persamaan berikut.

a.
$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -2y \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2x+1 \\ x-4 \end{bmatrix} - \begin{bmatrix} 3y \\ -y \end{bmatrix} = \begin{bmatrix} 9 \\ -2 \end{bmatrix}$$

c.
$$\begin{bmatrix} x+4 & 5 \\ 10 & 2x+1 \end{bmatrix} + \begin{bmatrix} y & 3 \\ 6 & 3y \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 16 & -1 \end{bmatrix}$$

d.
$$\begin{bmatrix} 6 & 2x-3 \\ 3x+1 & 2 \end{bmatrix} - \begin{bmatrix} 2 & -4y+2 \\ 2y-1 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ -7 & -2 \end{bmatrix}$$

7. Diketahui
$$\begin{bmatrix} 5 & -5 \\ -3 & b \end{bmatrix} + \begin{bmatrix} -1 & d \\ -b & 3 \end{bmatrix} = \begin{bmatrix} 2c & 1 \\ c & a+1 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}$$
.

Tentukan nilai

$$d.$$
 $d;$

e.
$$a + b + c$$
;

f.
$$3a + 4b - d$$
;

g.
$$5a - 4b^2$$
;

h.
$$a^2 + 2b - c$$
.

8. Tabel berikut menunjukkan nilai ujian yang diperoleh Nia dan Doni untuk mata pelajaran Matematika, Sejarah, TIK, dan Bahasa Inggris.

Mata Pelajaran	Ujian	Ke-1	Ujian	Ke-2	Ujian Ke-3		
	Nia	Doni	Nia	Doni	Nia	Doni	
Matematika	96	75	80	83	95	93	
Sejarah	67	73	81	87	68	75	
TIK	76	79	82	81	85	86	
Bahasa Inggris	84	81	94	97	93	88	

- a. Misalkan matriks *A* menyatakan ujian ke-1, matriks *B* menyatakan ujian ke-2, dan matriks *C* menyatakan ujian ke-3. Nyatakan nilai-nilai tersebut dalam bentuk matriks.
- b. Tentukan hasil A + B + C.
- c. Untuk mata pelajaran apakah jumlah nilai Doni lebih tinggi dari nilai Nia?
- 9. Vina dan Adi belanja barang-barang keperluan sekolah di toko yang sama. Vina membeli 2 buku dan 3 pena dengan membayar Rp6.000,00. Adi membeli 4 buku dan 3 pena dengan membayar Rp9.000,00. Nyatakan jumlah barangbarang yang dibeli kedua anak tersebut dalam matriks. Nyatakan pula harga-harga barang itu dalam suatu matriks. Dapatkah matriks jumlah barang dan matriks harga-harga barang di atas dijumlahkan? Mengapa?
- 10. Berikut diberikan daftar harga barang kebutuhan pokok (per kg) dalam 4 hari di 3 toko yang berbeda dalam rupiah.
 - a. Nyatakan daftar harga barang kebutuhan pokok di atas dalam bentuk matriks.
 - b. Tentukan jumlah harga barang selama 4 hari berturut-
 - c. Dari hasil b, harga barang apakah dan di toko manakah yang paling murah dan paling mahal?

Nama	Minggu			Senin		Selasa			Rabu			
Barang	Toko A	Toko B	Toko C	Toko A	Toko B	Toko C	Toko A	Toko B	Toko C	Toko A	Toko B	Toko C
Gandum	4.100	4.100	4.000	4.200	4.200	4.000	4.100	4.000	4.000	4.300	4.250	4.100
Beras	5.200	5.050	5.100	5.400	5.100	5.200	5.300	5.400	5.150	5.000	5.100	5.050
Minyak goreng	7.700	7.300	7.400	7.600	7.400	7.100	7.500	7.500	7.300	7.400	7.100	7.200

D. Perkalian Suatu Skalar dengan Matriks

1. Pengertian Perkalian Suatu Skalar dengan Matriks

Misalkan A suatu matriks berordo $m \times n$ dan k suatu skalar bilangan real. Matriks B = kA dapat diperoleh dengan cara mengalikan semua elemen A dengan bilangan k, ditulis

$$B = k \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} ka_{11} & ka_{12} & \dots & ka_{1n} \\ ka_{21} & ka_{22} & \dots & ka_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ ka_{m1} & ka_{m2} & \dots & ka_{mn} \end{bmatrix}$$

Contoh:

Diketahui
$$A = \begin{bmatrix} 5 & 1 \\ -3 & 2 \end{bmatrix} \operatorname{dan} B = \begin{bmatrix} 4 & 6 \\ -2 & 8 \end{bmatrix}$$
.

Tentukan

a. 3A;

b. 6*B*;

c. -3A + 2B.

Jawab:

a.
$$3A = 3\begin{bmatrix} 5 & 1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 3(5) & 3(1) \\ 3(-3) & 3(2) \end{bmatrix} = \begin{bmatrix} 15 & 3 \\ -9 & 6 \end{bmatrix}$$

b.
$$6B = 6\begin{bmatrix} 4 & 6 \\ -2 & 8 \end{bmatrix} = \begin{bmatrix} 6(4) & 6(6) \\ 6(-2) & 6(8) \end{bmatrix} = \begin{bmatrix} 24 & 36 \\ -12 & 48 \end{bmatrix}$$

c.
$$-3A + 2B = -3\begin{bmatrix} 5 & 1 \\ -3 & 2 \end{bmatrix} + 2\begin{bmatrix} 4 & 6 \\ -2 & 8 \end{bmatrix}$$

$$= \begin{bmatrix} -3(5) & -3(1) \\ -3(-3) & -3(2) \end{bmatrix} + \begin{bmatrix} 2(4) & 2(6) \\ 2(-2) & 2(8) \end{bmatrix}$$

$$= \begin{bmatrix} -15 & -3 \\ 9 & -6 \end{bmatrix} + \begin{bmatrix} 8 & 12 \\ -4 & 16 \end{bmatrix} = \begin{bmatrix} -7 & 9 \\ 5 & 10 \end{bmatrix}$$

2. Sifat-Sifat Perkalian Bilangan Real (Skalar) dengan Matriks

Perkalian bilangan real (skalar) dengan suatu matriks dapat dilakukan tanpa syarat tertentu. Artinya, semua matriks dengan ordo sembarang dapat dikalikan dengan bilangan real (skalar).

Misalkan A dan B matriks-matriks berordo $m \times n$ serta k_1 dan k_2 bilangan real (skalar), berlaku sifat-sifat berikut.

a.
$$k_1(A + B) = k_1A + k_1B$$

b.
$$(k_1 + k_2)A = k_1A + k_2A$$

c.
$$k_1(k_2A) = (k_1k_2) A$$

Bukti

Di buku ini, hanya akan dibuktikan sifat a. Misalkan k_1 skalar, A dan B matriks berordo $m \times n$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \text{ dan } B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \dots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

$$k_{1}(A+B) = k_{1} \begin{bmatrix} \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \dots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

Kuis

• Kerjakan di buku tugas

Diketahui persamaan matriks berikut.

$$x \begin{bmatrix} 2 \\ 5 \\ -2 \end{bmatrix} + y \begin{bmatrix} -1 \\ -6 \\ 5 \end{bmatrix} = \begin{bmatrix} -7 \\ -21 \\ 2z - 1 \end{bmatrix}$$

Nilai z =

- a. -2
- b. 0
- C. 3
- d. 6 e. 30
- UMPTN 1999

$$= k_1 \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1m} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$

$$=\begin{pmatrix} k_{1}(a_{11}+b_{11}) & k_{1}(a_{12}+b_{12}) & \cdots & k_{1}(a_{1n}+b_{1m}) \\ k_{1}(a_{21}+b_{21}) & k_{1}(a_{22}+b_{22}) & \cdots & k_{1}(a_{2n}+b_{2n}) \\ \vdots & \vdots & & \vdots \\ k_{1}(a_{m1}+b_{m1}) & k_{1}(a_{m2}+b_{m2}) & \cdots & k_{1}(a_{mn}+b_{mn}) \end{pmatrix}$$

$$=\begin{pmatrix} k_{1}a_{11} + k_{1}b_{11} & k_{1}a_{12} + k_{1}b_{12} & \cdots & k_{1}a_{1n} + k_{1}b_{1m} \\ k_{1}a_{21} + k_{1}b_{21} & k_{1}a_{22} + k_{1}b_{22} & \cdots & k_{1}a_{2n} + k_{1}b_{2n} \\ \vdots & \vdots & & \vdots \\ k_{1}a_{m1} + k_{1}b_{m1} & k_{1}a_{m2} + k_{1}b_{m2} & \cdots & k_{1}a_{mn} + k_{1}b_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} k_1 a_{11} & k_1 a_{12} & \dots & k_1 a_{1n} \\ k_1 a_{22} & k_1 a_{21} & \dots & k_1 a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ k_1 a_{m1} & k_1 a_{m2} & \dots & k_1 a_{mn} \end{pmatrix} + \begin{pmatrix} k_1 b_{11} & k_1 b_{12} & \dots & k_1 b_{1n} \\ k_1 b_{21} & k_1 b_{22} & \dots & k_1 b_{2n} \\ \vdots & \vdots & \dots & \vdots \\ k_1 b_{m1} & k_1 b_{m2} & \dots & k_1 b_{mn} \end{pmatrix}$$

$$= k_{1} \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{22} & a_{21} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} + k_{1} \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \dots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

$$= k_1 A + k_1 B$$
 (terbukti)

lugas: Eksplorasi

Kerjakan di buku tugas

Buktikan kebenaran sifatsifat perkalian skalar dengan matriks poin b dan c.

Cara membuktikan sifat ini dapat juga dilakukan sebagai berikut. Misalkan matriks $A = [a_{ij}]$ dan $B = [b_{ij}]$, dengan i = 1, 2, ..., mdan j = 1, 2, ..., n

$$\begin{array}{lll} k_{1}(A+B) & = & k_{1}([a_{ij}]+[b_{ij}]) \\ & = & k_{1}([a_{ij}+b_{ij}]) \\ & = & [k_{1}(a_{ij}+b_{ij})] \\ & = & [k_{1}a_{ij}+k_{1}b_{ij}] \\ & = & [k_{1}a_{ij}]+[k_{1}b_{ij}] \\ & = & k_{1}[a_{ij}]+k_{1}[b_{ij}] \\ & = & k_{1}A+k_{1}B \dots \end{array} \tag{terbukti}$$

Soal Kompetensi 4

• Kerjakan di buku tugas

- Diketahui $A = \begin{bmatrix} 5 & -8 & 3 \\ -6 & 7 & -2 \end{bmatrix}$. Tentukan hasil operasi
 - a. 3A

matriks berikut.

b. A^T

- d. 5A + 2A
- Diketahui $A = \begin{bmatrix} 4 & 8 \\ -2 & -10 \end{bmatrix}$ dan $B = \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix}$. Tentukan

hasil operasi matriks berikut.

a.
$$2A + B$$

b.
$$\frac{1}{2}A - B$$

c.
$$3A^T + B^T$$

d.
$$4A^T + A - B$$

e.
$$A^T + B$$

f.
$$(A^T + 2B^T)$$

Tentukan *X* jika diketahui

a.
$$2X - \begin{bmatrix} 2 & 1 \\ 5 & -6 \end{bmatrix} = \begin{bmatrix} 6 & -7 \\ -11 & 8 \end{bmatrix}$$
;

b.
$$2X^T + \begin{bmatrix} 6 & -1 & 5 \\ 2 & 3 & 7 \\ 8 & 2 & -8 \end{bmatrix} = \begin{bmatrix} 10 & 3 & -7 \\ 0 & -1 & 5 \\ -2 & 4 & 6 \end{bmatrix};$$

c.
$$\frac{1}{3}\begin{bmatrix} 6 & 9 & -6 \\ -3 & 12 & 0 \end{bmatrix} = X^T;$$

d.
$$\frac{1}{3}X = \frac{2}{3} \begin{bmatrix} 6 & 15 \\ -9 & -3 \\ 12 & 3 \end{bmatrix}$$
.

Tentukan nilai p, q, r, dan s yang memenuhi persamaan berikut.

a.
$$5\begin{bmatrix} p & 2q \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 10 & -20 \\ 25 & 5 \end{bmatrix}$$

b.
$$\frac{1}{2} \begin{bmatrix} 3q & 2p \\ r & -5 \end{bmatrix} = \begin{bmatrix} 9 & 1 \\ -4 & 2s \end{bmatrix}$$

c.
$$4\begin{bmatrix} p & 6r \\ -3 & p \end{bmatrix} = 3\begin{bmatrix} -4 & -8 \\ 3+r & 2q \end{bmatrix}$$

d.
$$2\begin{bmatrix} 2p & -q \\ -r & s+r \end{bmatrix} = \begin{bmatrix} 4q & 4 \\ -p & -\frac{1}{2}q \end{bmatrix}$$

Tentukan nilai p, q, r, dan s jika diketahui persamaan

$$3\begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} p & 6 \\ -1 & 25 \end{bmatrix} + \begin{bmatrix} 4 & p+q \\ r+s & 3 \end{bmatrix}$$

- Diketahui $x \begin{bmatrix} 2 \\ 5 \\ -2 \end{bmatrix} + y \begin{bmatrix} -1 \\ -6 \\ 5 \end{bmatrix} = \begin{bmatrix} -7 \\ -21 \\ 27 1 \end{bmatrix}$. Tentukan nilai z.
- Diketahui $x^2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + x \begin{bmatrix} 12 \\ -2 \end{bmatrix} = \begin{bmatrix} -12 \\ y^3 \end{bmatrix}$. Tentukan nilai y.
- Diketahui matriks $A = \begin{bmatrix} 6 \\ 1 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, dan C = \begin{bmatrix} 18 \\ 5 \end{bmatrix}.$

Jika Ax + By = C, tentukan titik potong koordinat yang terjadi antara dua buah persamaan garis yang terbentuk.

Diketahui persamaan $\begin{bmatrix} 2 \\ 5 \\ -y \end{bmatrix} = \begin{bmatrix} -7 \\ -21 \\ 5 \end{bmatrix}$. Tentukan

nilai x, y, dan z.

10. Jika x_0 dan y_0 memenuhi persamaan $\begin{cases} 4x - y + 16 = 0 \\ 3x + 4y - 7 = 0 \end{cases}$ dan

 $x_0 = \frac{p}{3x_0 - y_0}$ maka tentukanlah nilai-nilai berikut.

- a. $x_0, y_0, \text{dan } p$ b. $4y_0 + x_0$

- c. $3y_0 + p$ d. $6x_0 2y_0 + p$

F. Perkalian Matriks

1. Pengertian Perkalian Matriks

Untuk memahami pengertian perkalian matriks, perhatikan ilustrasi berikut ini. Rina membeli bolpoin dan buku di dua tempat yang berbeda. Di toko I, ia membeli 3 bolpoin dan 2 buku, sedangkan di toko II, ia membeli 4 bolpoin dan 3 buku. Harga bolpoin dan buku di kedua toko tersebut sama, yaitu Rp2.500,00 dan Rp4.000,00 per buah. Berapa uang yang dikeluarkan Rina?

Tempat	Bolpoin	Buku
Toko I	3	2
Toko II	4	3

Barang	Harga
Bolpoin	Rp2.500,00
Buku	Rp4.000,00

Untuk menghitung jumlah uang yang dibayar oleh Rina dapat langsung kita hitung dengan cara mengalikan banyaknya barang dengan harga masing-masing sebagai berikut.

Toko I : $(3 \times \text{Rp2.500,00}) + (2 \times \text{Rp4.000,00}) = \text{Rp15.500,00}$ Toko II : $(4 \times \text{Rp2.500,00}) + (3 \times \text{Rp4.000,00}) = \text{Rp22.000,00}$ Di samping itu, pernyataan di atas dapat disajikan dalam bentuk matriks sebagai berikut.

$$P = \begin{bmatrix} 3 & 2 \\ 4 & 3 \end{bmatrix}$$
 menyatakan banyak bolpoin dan buku yang dibeli

Rina. Baris 1 menyatakan toko I dan baris 2 untuk toko II.

$$Q = \begin{bmatrix} 2.500 \\ 4.000 \end{bmatrix}$$
 menyatakan harga masing-masing bolpoin dan buku.

Daftar jumlah uang yang dikeluarkan Rina dapat dilihat pada tabel berikut.

Tempat	Harga Pembelian						
Toko I	$3 \times \text{Rp2.500,00} + 2 \times \text{Rp4.000,00} = \text{Rp15.500,00}$						
Toko II	$4 \times \text{Rp2.500,00} + 3 \times \text{Rp4.000,00} = \text{Rp22.000,00}$						

Tabel pengeluaran di atas bersesuaian dengan perkalian matriks $P \times Q$, yaitu

$$P \times Q = \begin{bmatrix} 3 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 2.500 \\ 4.000 \end{bmatrix} = \begin{bmatrix} 3 \times 2.500 + 2 \times 4.000 \\ 4 \times 2.500 + 3 \times 4.000 \end{bmatrix}$$
$$= \begin{bmatrix} 15.500 \\ 22.000 \end{bmatrix}.$$

Kuis

• Kerjakan di buku tugas

Jika diketahui

$$\begin{bmatrix} m & n \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 24 & 23 \\ 14 & 13 \end{bmatrix}$$
maka nilai m dan n masing-

a. 4 dan 6

masing adalah

b. 5 dan 4

c. 5 dan 3

d. 4 dan 5

e. 3 dan 7

UMPTN 1998

Dari uraian di atas, matriks P berordo 2×2 dan matriks Q berordo 2×1 , sedangkan $P \times Q$ berordo 2×1 sehingga bagan perkalian dan hasil kalinya mempunyai hubungan sebagai berikut.

ordo hasil kali
$$(2 \times 2) (2 \times 1) = (2 \times 1)$$
sama

Secara umum, perkalian matriks didefinisikan sebagai berikut.

Misalkan A matriks berordo $m \times p$ dan B matriks berordo $p \times n$ maka $A \times B$ adalah suatu matriks $C = [c_{ij}]$ berordo $m \times n$ yang elemen-elemennya pada baris ke-i, yaitu kolom ke-j (c_{ij}) diperoleh dari penjumlahan hasil kali elemen-elemen yang bersesuaian pada baris ke-i matriks A dan kolom ke-j matriks B.

Contoh:

Diketahui matriks $A = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $B = \begin{bmatrix} -3 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}$, dan

$$D = \begin{bmatrix} 4 & -5 & -1 \\ 2 & 6 & 1 \end{bmatrix}.$$

Tentukan

a.
$$A \times B$$
;

c.
$$C \times D$$
;

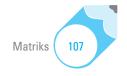
b.
$$B \times C$$
:

d.
$$A \times C$$
.

Jawab:

a.
$$A \times B = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} -3 & 2 \end{bmatrix} = \begin{bmatrix} 2(-3) & 2(2) \\ -1(-3) & -1(2) \end{bmatrix} = \begin{bmatrix} -6 & 4 \\ 3 & -2 \end{bmatrix}$$

Bagaimana hasil perkalian dari $B \times A$?


b.
$$B \times C = \begin{bmatrix} -3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}$$

= $\begin{bmatrix} (-3 \times 2) + (2 \times (-1)) & (-3 \times 3) + (2 \times 4) \end{bmatrix}$
= $\begin{bmatrix} -8 & -1 \end{bmatrix}$

Bagaimana hasil perkalian dari $C \times B$?

c.
$$C \times D$$

$$= \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 4 & -5 & -1 \\ 2 & 6 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} (2 \times 4) + (3 \times 2) & (2 \times (-5) + 3 \times 6 & (2 \times (-1) + 3 \times 1) \\ (-1 \times 4) + (4 \times 2) & (-1 \times (-5) + 4 \times 6) & (-1 \times (-1) + 4 \times 1) \end{bmatrix}$$

d.
$$A \times C = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}$$
 tidak dapat dikalikan karena

banyak kolom matriks A tidak sama dengan banyak baris matriks C.

2. Pengertian Dikalikan dari Kiri dan Dikalikan dari Kanan

Syarat dua matriks dapat dikalikan adalah jika banyak kolom matriks kiri sama dengan banyak baris matriks kanan. Jika perkalian $A \times B$ ada (dapat dikalikan) maka dikatakan bahwa

- a. matriks B dikali dari kiri oleh matriks A;
- b. matriks A dikali dari kanan oleh matriks B.

Contoh:

Diketahui matriks
$$A = \begin{bmatrix} 4 & -2 \\ 1 & 3 \end{bmatrix}$$
 dan $B = \begin{bmatrix} 2 & 3 \\ 4 & -2 \end{bmatrix}$

Tentukan hasil perkalian

- a. matriks A dikali dari kiri oleh matriks B;
- b. matriks *A* dikali dari kanan oleh matriks *B*.

Jawab:

a. Matriks A dikalikan dari kiri oleh matriks B, berarti

$$B \times A = \begin{bmatrix} 2 & 3 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 4 & -2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 5 \\ 14 & -14 \end{bmatrix}.$$

b. Matriks A dikalikan dari kanan oleh matriks B, berarti

$$A \times B = \begin{bmatrix} 4 & -2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 16 \\ 14 & -3 \end{bmatrix}.$$

Tampak dari hasil di atas bahwa $A \times B \neq B \times A$, artinya perkalian matriks tidak bersifat komutatif.

3. Sifat-Sifat Perkalian Matriks

Misalkan matriks A, B, dan C dapat dikalikan atau dijumlahkan. Untuk memahami sifat-sifat perkalian matriks, lakukan Aktivitas berikut.

Aktivitas

Tujuan : Menemukan sifat-sifat perkalian matriks.

Permasalahan: Sifat-sifat apakah yang berlaku pada

perkalian matriks?

Kuis

• Kerjakan di buku tugas

Diketahui matriks A =

$$\begin{bmatrix} x & 1 \\ -1 & y \end{bmatrix}; B = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix};$$

$$C = \begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}$$

Nilai x + y yang memenuhi persamaan AB - 2B = C adalah

- a. 0
- b. 2
- c. 6
- d. 8
- e. 10

UMPTN 1998

Kuis

• Kerjakan di buku tugas

Jika diketahui

$$\begin{bmatrix} 4 & x-2 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} -6 & 8 \\ -11 & -6 \end{bmatrix} =$$

$$2\begin{bmatrix} 3 & 1 \\ -2 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 3 \\ -1 & 1 \end{bmatrix}$$
 maka

nilai x adalah

- a. 0
- b. 10
- c. 13
- d. 14
- e. 25

UMPTN 1998

Kegiatan

Kerjakan (selidiki) soal berikut di buku tugas.

Diketahui matriks $A = \begin{bmatrix} 1 & 2 \\ -2 & 0 \end{bmatrix}$, B =

$$\begin{bmatrix} -2 & 3 \\ 4 & 5 \end{bmatrix}, \text{ dan } C = \begin{bmatrix} 2 & -3 \\ 1 & 0 \end{bmatrix}. \text{ Jika } k = 2,$$

tentukan hasil perhitungan berikut.

- a. $A \times B \operatorname{dan} B \times A$. Apakah $A \times B = B \times A$? Apa kesimpulanmu?
- b. $(A \times B) \times C \operatorname{dan} A \times (B \times C)$. Apakah hasilnya sama? Apa kesimpulanmu?
- c. $A \times (B + C)$, $(C \times B) + (A \times C)$, dan $(A \times C) + (A \times B)$. Bagaimana hubungan ketiga operasi perkalian matriks tersebut?
- d. A × I dan I × A dengan I matriks identitas.
 Hubungan apa yang terbentuk?
- e. $A \times O$ dan $O \times A$ dengan O matriks nol ordo 2×2 .

Apakah
$$A \times O = O \times A = O$$
?

f. $(kA) \times B \operatorname{dan} k(A \times B)$. Apakah $(kA) \times B = k(A \times B)$?

Kesimpulan

Sifat-sifat apakah yang kalian temukan dari kegiatan di atas?

Berdasarkan Aktivitas di atas ditentukan sifat-sifat perkalian matriks sebagai berikut.

Jika k bilangan real (skalar); A, B, dan C matriks yang dapat dikalikan; serta B dan C dapat dijumlahkan maka berlaku sifat-sifat perkalian matriks sebagai berikut.

- a. Tidak komutatif, yaitu $A \times B \neq B \times A$.
- b. Asosiatif, yaitu $(A \times B) \times C = A \times (B \times C)$.
- c. *Distributif*, yaitu:
 - 1) distributif kiri: $A \times (B + C) = (A \times B) + (A \times C)$;
 - 2) distributif kanan: $(A + B) \times C = (A \times C) + (B \times C)$.
- d. Perkalian matriks-matriks persegi dengan matriks identitas *I*, yaitu
 - $A \times I = I \times A = A$ (ordo *I* sama dengan ordo matriks *A*).
- e. Perkalian dengan matriks O, yaitu $A \times O = O \times A = O$.
- f. Perkalian dengan skalar, yaitu $(k A) \times B = k(A \times B)$.

Aktivitas

Tujuan : Menentukan hasil perkalian matriks

dengan bantuan software komputer.

Permasalahan: Bagaimana cara menentukan hasil

perkalian matriks dengan menggunakan

software komputer?

Kegiatan: Kita akan menentukan matriks invers dengan *Microsoft Excel*. Fungsi yang

dengan *Microsoft Excel*. Fungsi yang digunakan adalah MMULT. Misalnya, akan ditentukan hasil perkalian matriks

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 5 & 6 \end{bmatrix}.$$

Untuk itu lakukan langkah-langkah berikut.

1. Masukkan elemen-elemen matriks pada sel-sel *Microsoft Excel*.

Tantangan

Eksplorasi

• Kerjakan di buku tugas

Misalkan diberikan matriks

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -3 & 2 & -1 \\ -2 & 1 & 0 \end{bmatrix} dan$$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 2 & 3 \end{bmatrix}.$$

Tunjukkan bahwa hasil perkalian *AB* adalah matriks nol.

™ Microsoft Excel - Book1											
	<u>File E</u> dit	⊻iew <u>I</u> ns	ert F <u>o</u> rmat	<u>T</u> ools <u>D</u>	ata <u>W</u> indo	w <u>H</u> elp					
		8 8 8		11 %	B • 🐠	10 - 01 -	🧶 Σ 🔻				
	l12	•	fx								
	Α	В	С	D	Е	F	G				
1	Matriks A			Mati	riks B						
2	1	2		1	4						
3	3	4		5	6						

2. Tentukan hasil kali matriks A dengan B. Caranya adalah sebagai berikut. Blok sel-sel yang akan ditempati elemen-elemen matriks hasil kali dari matriks A dan B. Ketik "=MMULT(", kemudian sorot sel-sel yang mengandung matriks A tadi. Kemudian, ketik ";". Sorot sel-sel yang mengandung elemen-elemen matriks B diikuti dengan mengetik ")". Tekan CTRL + SHIFT + ENTER maka matriks hasil kali dari A dan B akan muncul.

Kesimpulan

Jika kalian melakukan langkah-langkah yang diinstruksikan dengan benar, kalian akan memperoleh hasil berikut.

M	Microsoft Excel - Book1										
: 1	Eile Edit	⊻iew <u>I</u> ns	ert Format	Tools	<u>D</u> ata <u>W</u> indo	w <u>H</u> elp					
	3 .	100	Q 1 45° 10	. % 🗓	18-3	10 + (11	- 👰 Σ -	2 ↓ X ↓ <u>U</u>	100%	· 0 -	
	G2	•	fx {=MMUL	Γ(A2:B3;	D2:E3)}						
	Α	В	С	D	E	F	G	Н	1	J	
1	Mat	riks A		Ma	triks B		Matri	ks AB			
2	1	2		1	4		11	16			
3	3	4		5	6		23	36			
4											
5											
6											

4. Perpangkatan Matriks Persegi

Jika *n* adalah sebuah bilangan bulat positif dan *A* suatu matriks persegi, maka $A^n = A \times A \times A \times ... \times A$ (sebanyak n faktor) atau dapat juga dituliskan $A^n = A \times A^{n-1}$ atau $A^n = A^{n-1} \times A$.

Contoh:

Diketahui matriks $A = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$. Tentukan b. A^{3} ;

a.
$$A^2$$
:

$2A^{4}$. c.

Jawab:

a.
$$A^2 = A \times A = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -8 \\ -4 & 11 \end{bmatrix}$$

b.
$$A^3 = A \times A^2 = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 3 & -8 \\ -4 & 11 \end{bmatrix} = \begin{bmatrix} 11 & -30 \\ -15 & 41 \end{bmatrix}$$

Dengan cara lain, yaitu $A^3 = A^2 \times A$, diperoleh

$$A^{3} = A^{2} \times A = \begin{bmatrix} 3 & -8 \\ -4 & 11 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 11 & -30 \\ -15 & 41 \end{bmatrix}$$

Ternyata, $A^2 \times A = A \times A^2 = A^3$.

c.
$$2A^4 = 2A \times A^3 = 2\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 11 & -30 \\ -15 & 41 \end{bmatrix}$$
$$= 2\begin{bmatrix} 41 & -112 \\ -56 & 153 \end{bmatrix} = \begin{bmatrix} 82 & -224 \\ -112 & 306 \end{bmatrix}$$

Tantangan

Eksplorasi

• Kerjakan di buku tugas

Selidiki, manakah pernyataan berikut yang benar. Misalkan A dan B matriks persegi.

a. $AB^2 = BAB$

b. $A^2 - B^2 = (A + B)(A - B)$

c. $(A^2)^2 = A^4$

uqas: Observasi

· Kerjakan di buku tugas

Dari soal pada contoh di atas, coba selidiki, apakah $2A^3 \times A = 2A^2 \times A^2 = 2A \times A^3$?

Soal Kompetensi 5

• Kerjakan di buku tugas

Hitunglah perkalian matriks-matriks berikut.

a.
$$\begin{bmatrix} 1 & -2 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ -6 \\ -4 \end{bmatrix}$$

b.
$$\begin{bmatrix} 5 & -4 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 6 & -2 \end{bmatrix}$$

c.
$$\begin{bmatrix} 10 & -1 & 5 \\ -2 & 3 & 6 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 4 & 0 \\ 7 & -5 \end{bmatrix}$$

d.
$$\begin{bmatrix} -3\\4\\2 \end{bmatrix} \begin{bmatrix} 5 & -4 & 1 \end{bmatrix}$$

Diketahui matriks $A = \begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}$ dan I matriks identitas.

Tentukan

Tantangan

• Kerjakan di buku tugas

Diberikan $A = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$

dengan $i = \sqrt{-1}$. Tunjukkan

Inkuiri

bahwa a. $A^4 = I$ b. $A^5 = A$

c. $A^6 = -I$

d. $A^7 = -A$

untuk $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

a.
$$A^2$$
;

b.
$$3A^2 + I$$
;

d.
$$A^3 + I$$
;
e. $A^2 - 2A + I$.

c.
$$A \times A^T$$
:

3. Diketahui matriks
$$U = \begin{bmatrix} -2 & 1 \\ 3 & -1 \end{bmatrix}$$
, $V = \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix}$, dan

$$W = \begin{bmatrix} 5 & -3 \\ 4 & 2 \end{bmatrix}.$$

Tentukan

a.
$$(U \times V) \times W$$

d
$$II^T \times V^T \times W$$

b.
$$U^T \times (V \times W)$$
;

a.
$$(U \times V) \times W$$
; d. $U^T \times V^T \times W$;
b. $U^T \times (V \times W)$; e. $U^T \times (V \times W)^T$;

c.
$$(U \times V)^T \times W$$
;

f.
$$W \times U \times V^T$$
.

Tentukan nilai dari a dan b yang memenuhi persamaan matriks berikut.

a.
$$\begin{bmatrix} a & -2 \\ 3 & b \end{bmatrix} \begin{bmatrix} -3 \\ 4 \end{bmatrix} = \begin{bmatrix} -14 \\ 5 \end{bmatrix}$$

b.
$$\begin{bmatrix} 3a & -2 \\ b & 4 \end{bmatrix} \begin{bmatrix} 6 \\ a \end{bmatrix} = \begin{bmatrix} 16 \\ -8 \end{bmatrix}$$

c.
$$\begin{bmatrix} 2a+1 & a \\ 3b & -3a \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -4 \\ 20 \end{bmatrix}$$

d.
$$\begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 16 \\ -9 \end{bmatrix}$$

e.
$$\begin{bmatrix} -2 & 4 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 16 \\ -9 \end{bmatrix}$$

f.
$$\begin{bmatrix} 2a & 1 \\ a & 0 \end{bmatrix} \begin{bmatrix} a & b \\ 5 & 2b \end{bmatrix} = \begin{bmatrix} 13 & -4 \\ 4 & -4 \end{bmatrix}$$

Kuis

• Kerjakan di buku tugas

Nilai *p* yang memenuhi persamaan matriks

$$2\begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} + \begin{bmatrix} -6 & 2p \\ 4 & 1 - \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix} \text{ adalah}$$

- a. –2
- b. -1
- c. 0
- d. I
- e. 2

SPMB 2004

- 5. Misalkan A dan B matriks-matriks yang dapat dikalikan serta A dan C juga dapat dikalikan. Apakah berlaku jika $A \times B = A \times C$ maka B = C? Tunjukkan dengan contoh dan berikan alasanmu.
- 6. Jika diketahui $\begin{bmatrix} a & b \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 5 & -2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 13 \\ -7 & 12 \end{bmatrix}$, tentukan nilai $a^2 + b^2$
- 7. Jika titik *A* merupakan perpotongan dua garis yang disajikan oleh persamaan matriks $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, tentukan koordinat titik *A*.
- 3. Jika titik *B* merupakan perpotongan dua garis yang disajikan oleh persamaan matriks $\begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$ dan garis *k* (*k* dan *l*) adalah garis yang melalui titik *B* dan titik asal *O*, tentukan persamaan garis *k* yang melalui C(-2, 3) dan sejajar garis *l*.
- 9. Diketahui matriks $P = \begin{bmatrix} -2 & 4 & 1 \\ 1 & 3 & 0 \\ 5 & 2 & 1 \end{bmatrix} \operatorname{dan} Q = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & -2 \\ 0 & -1 & 4 \end{bmatrix}.$

Tentukan hasil perkalian matriks berikut.

- a. $P \times Q$
- b. P^2
- c. $(P+Q) \times (P-Q)$
- d. $Q^T \times (P + Q)^T$
- e. $(P \times O)^T \times P$
- f. $P^T \times (P Q)^T$
- 10. Diketahui sistem persamaan linear tiga variabel berikut.

$$2x + 3y + z = 6$$

$$4x - 3y + z = 2$$

$$x - y - z = -1$$

Susunlah sistem persamaan itu dalam bentuk persamaan matriks. (Ingat aturan perkalian matriks)

F. Invers Suatu Matriks

Dua hal penting yang diperlukan dalam mencari invers matriks adalah transpose dan determinan suatu matriks. Pada subbab sebelumnya, kalian telah mempelajari transpose matriks. Sekarang, kita akan mempelajari determinan matriks.

1. Determinan Suatu Matriks

Perhatian

Determinan matriks ditulis dengan tanda garis lurus, bukan tanda kurung siku.

a. Determinan Matriks Ordo 2 x 2

Misalkan
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 adalah matriks yang berordo 2×2

dengan elemen a dan d terletak pada diagonal utama pertama, sedangkan b dan c terletak pada diagonal kedua. Determinan matriks A dinotasikan "det A" atau |A| adalah suatu bilangan yang diperoleh dengan mengurangi hasil kali elemen-elemen pada diagonal utama dengan hasil kali elemen-elemen diagonal kedua. Dengan demikian, dapat diperoleh rumus det A sebagai berikut.

$$\det A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Contoh:

Tentukan determinan matriks-matriks berikut.

a.
$$A = \begin{bmatrix} 5 & 2 \\ 4 & 3 \end{bmatrix}$$

b.
$$B = \begin{bmatrix} -4 & -1 \\ 3 & 2 \end{bmatrix}$$

Jawab:

a.
$$\det A = \begin{vmatrix} 5 & 2 \\ 4 & 3 \end{vmatrix} = (5 \times 3) - (2 \times 4) = 7$$

b.
$$\det B = \begin{vmatrix} -4 & -1 \\ 3 & 2 \end{vmatrix} = ((-4) \times 2) - (3 \times (-1)) = -5$$

b. Determinan Matriks Ordo 3 x 3 (Pengayaan)

Jika
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 adalah matriks persegi berordo

$$3 \times 3$$
, determinan A dinyatakan dengan det $A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$.

Ada 2 cara yang dapat digunakan untuk menentukan determinan matriks berordo 3 × 3, yaitu aturan *Sarrus* dan metode minor-kofaktor.

Aturan Sarrus

Untuk menentukan determinan dengan aturan Sarrus, perhatikan alur berikut. Misalnya, kita akan menghitung determinan matriks $A_{3\times 3}$. Gambaran perhitungannya adalah sebagai berikut.

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \\ & - & - & + & + \\ & = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} \\ & - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} \end{vmatrix}$$

Metode Minor-Kofaktor

Misalkan matriks A dituliskan dengan $[a_{ij}]$. Minor elemen a_{ij} yang dinotasikan dengan M_{ij} adalah determinan setelah elemen-elemen baris ke-i dan kolom ke-j dihilangkan. Misalnya, dari matriks $A_{3\times3}$ kita hilangkan baris ke-2 kolom ke-1 sehingga

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Akan diperoleh $M_{21} = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$. M_{21} adalah minor dari elemen

matriks A baris ke-2 kolom ke-1 atau M_{21} = minor a_{21} . Sejalan dengan itu, kita dapat memperoleh minor yang lain, misalnya

$$M_{13} = \begin{vmatrix} a_{21} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}$$

Kofaktor elemen a_{ij} , dinotasikan K_{ij} adalah hasil kali $(-1)^{i+j}$ dengan minor elemen tersebut. Dengan demikian, kofaktor suatu matriks dirumuskan dengan

$$K_{ij} = (-1)^{i+j} M_{ij}$$

Dari matriks A di atas, kita peroleh misalnya kofaktor $a_{\rm 21}$ dan $a_{\rm 13}$ berturut-turut adalah

$$K_{21} = (-1)^{2+1} M_{21} = -M_{21} = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$$

Tugas: Inkuiri

• Kerjakan di buku tugas

Coba kalian tentukan determinan matriks A menurut baris kedua dan ketiga. Kemudian, tentukan pula determinan menurut kolom ke-1, ke-2, dan ke-3. Apakah hasilnya sama?

$$K_{13} = (-1)^{1+3} M_{13} = M_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Kofaktor dari matriks
$$A_{3x3}$$
 adalah kof $(A) = \begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix}$

Nilai dari suatu determinan merupakan hasil penjumlahan dari perkalian elemen-elemen suatu baris (atau kolom) dengan kofaktornya. Untuk menghitung determinan, kita dapat memilih dahulu sebuah baris (atau kolom) kemudian kita gunakan aturan di atas. Perhatikan cara menentukan determinan berikut.

Misalkan diketahui matriks
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
.

Determinan matriks *A* dapat dihitung dengan cara berikut. Kita pilih baris pertama sehingga

$$\det A = a_{11} K_{11} + a_{12} K_{12} + a_{13} K_{13}$$

$$= a_{11} (-1)^{1+1} M_{11} + a_{12} (-1)^{1+2} M_{12} + a_{13} (-1)^{1+3} M_{13}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11} (a_{22} a_{33} - a_{32} a_{23}) - a_{12} (a_{21} a_{33} - a_{31} a_{23}) + a_{13} (a_{21} a_{32} - a_{31} a_{22})$$

$$= a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32}$$

$$- a_{13} a_{22} a_{31}$$

$$= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32}$$

$$- a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32}$$

Tampak bahwa det A matriks ordo 3×3 yang diselesaikan dengan cara minor kofaktor hasilnya sama dengan det A menggunakan cara Sarrus.

Contoh:

Tentukan determinan dari matriks $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 1 & 2 \end{bmatrix}$ dengan

aturan Sarrus dan minor-kofaktor.

Jawab:

Cara 1: (Aturan Sarrus)

$$\det A = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 1 & 2 \end{vmatrix}$$

$$= (1 \times 1 \times 2) + (2 \times 4 \times 3) + (3 \times 2 \times 1) - (3 \times 1 \times 3)$$

$$- (1 \times 4 \times 1) - (2 \times 2 \times 2)$$

$$= 2 + 24 + 6 - 9 - 4 - 8$$

$$= 11$$

Cara 2: (Minor-kofaktor)

Misalnya kita pilih perhitungan menurut baris pertama sehingga diperoleh

$$\det A = 1 \begin{vmatrix} 1 & 4 \\ 1 & 2 \end{vmatrix} - 2 \begin{vmatrix} 2 & 4 \\ 3 & 2 \end{vmatrix} + 3 \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix}$$
$$= -2 - 2(-8) + 3(-1)$$
$$= -2 + 16 - 3 = 11$$

Coba kalian selidiki nilai determinan ini dengan cara lain. Apakah hasilnya sama?

c. Sifat-Sifat Determinan Matriks

Berikut disajikan beberapa sifat determinan matriks

1. Jika semua elemen dari salah satu baris/kolom sama dengan nol maka determinan matriks itu nol.

Misal
$$A = \begin{bmatrix} 0 & 0 \\ 2 & 3 \end{bmatrix} \rightarrow |A| = 0; B = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 0 & 0 \\ 5 & 4 & 2 \end{bmatrix} \rightarrow |B| = 0.$$

 Jika semua elemen dari salah satu baris/kolom sama dengan elemen-elemen baris/kolom lain maka determinan matriks itu nol.

Misal
$$B = \begin{bmatrix} 4 & 3 & 2 \\ 5 & 7 & 8 \\ 4 & 3 & 2 \end{bmatrix} \rightarrow B = 0$$
 (Karena elemen-elemen baris

ke-1 dan ke-3 sama).

3. Jika elemen-elemen salah satu baris/kolom merupakan kelipatan dari elemen-elemen baris/kolom lain maka determinan matriks itu nol.

Misal
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 7 & 0 \\ 2 & 4 & 6 \end{bmatrix} \rightarrow |A| = 0$$
 (Karena elemen-elemen

baris ke-3 sama dengan kelipatan elemen-elemen baris ke-1).

- 4. $|AB| = |A| \times |B|$
- 5. $|A^T| = |A|$, untuk A^T adalah transpose dari matriks A.
- 6. $|A^{-1}| = \frac{1}{|A|}$, untuk A^{-1} adalah invers dari matriks A. (Materi invers akan kalian pelajari pada subbab berikutnya).
- 7. $|kA| = k^n |A|$, untuk A ordo $n \times n$ dan k suatu konstanta. Sifat-sifat di atas tidak dibuktikan di sini. Pembuktian sifat-sifat ini akan kalian pelajari di jenjang yang lebih tinggi.

2. Pengertian Invers Matriks

Misalkan dua matriks A dan B adalah matriks berordo $n \times n$ dan I_n adalah matriks identitas berordo $n \times n$. Jika $A \times B = B \times A = I_n$ maka matriks A disebut *invers* matriks B, sebaliknya B disebut *invers* matriks A. Dalam keadaan seperti ini maka dikatakan bahwa A dan B saling invers.

Jika matriks A mempunyai invers, dikatakan bahwa matriks A adalah matriks nonsingular, sedangkan jika A tidak mempunyai invers, matriks A disebut matriks singular. Invers matriks A ditulis A^{-1} .

Contoh:

Diketahui
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$
 dan $B = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$.

Selidiki, apakah *A* dan *B* saling invers?

Jawab:

Matriks A dan B saling invers jika berlaku $A \times B = B \times A = I$.

$$A \times B = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$B \times A = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Karena $A \times B = B \times A$ maka A dan B saling invers, dengan $A^{-1} = B$ dan $B^{-1} = A$.

3. Menentukan Invers Matriks Berordo 2 x 2

Misalkan diketahui matriks $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, dengan $ad - bc \neq 0$.

Suatu matriks lain, misalnya B dikatakan sebagai invers matriks A jika AB = I. Matriks invers dari A ditulis A^{-1} . Dengan demikian, berlaku

$AA^{-1} = A^{-1}A = I$

Matriks A mempunyai invers jika A adalah matriks nonsingular, yaitu det $A \neq 0$. Sebaliknya, jika A matriks singular (det A = 0) maka matriks ini tidak memiliki invers.

Misalkan matriks $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ dan matriks $B = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$ sehingga

berlaku $A \times B = B \times A = I$. Kita akan mencari elemen-elemen matriks B, yaitu p, q, r, dan s.

Dari persamaan $A \times B = I$, diperoleh

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} ap + br & aq + bs \\ cp + dr & cq + ds \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Jadi, diperoleh sistem persamaan

$$ap + br = 1$$

$$aq + bs = 0$$

$$cp + dr = 0$$

$$aq + bs = 0$$

$$cq + ds = 1$$

Dengan menyelesaikan sistem persamaan tersebut, kalian peroleh

$$p = \frac{d}{ad - bc}$$
, $r = \frac{-c}{ad - bc}$, $q = \frac{-b}{ad - bc}$, dan $s = \frac{a}{ad - bc}$.

Dengan demikian,

$$B = \begin{bmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ \frac{-c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Matriks *B* memenuhi $A \times B = I$.

Sekarang, akan kita buktikan apakah matriks $B \times A = I$?

$$B \times A = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

lugas: Berpikir Kritis

• Kerjakan di buku tugas

Di depan, kalian telah menemukan bahwa pada perkalian matriks tidak berlaku sifat komutatif. Bagaimana dengan hasil kali dari $A \times A^{-1}$ dan $A^{-1} \times A$? Jelaskan pendapat kalian.

Kuis

• Kerjakan di buku tugas

Matriks X yang memenuhi persamaan

$$\begin{bmatrix} 2 & 7 \\ 5 & 3 \end{bmatrix} X = \begin{bmatrix} -3 & 8 \\ 7 & -9 \end{bmatrix}$$

a.
$$\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$$

c.
$$\begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$$

d.
$$\begin{bmatrix} -1 & 2 \\ 3 & -2 \end{bmatrix}$$

e.
$$\begin{bmatrix} 2 & 3 \\ -2 & 2 \end{bmatrix}$$

UN 2007

$$=\frac{1}{ad-bc}\begin{bmatrix} ad-bc & bd-bd \\ ac-ac & ad-bc \end{bmatrix}$$

Karena $ad - bc \neq 0$, berlaku $B \times A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$.

Karena $A \times B = B \times A = I$ maka $B = A^{-1}$.

Jadi, jika $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ maka inversnya adalah

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

untuk $ad - bc \neq 0$.

Contoh:

Tentukan invers matriks-matriks berikut.

a.
$$A = \begin{bmatrix} 4 & 1 \\ 7 & 2 \end{bmatrix}$$

b.
$$B = \begin{bmatrix} 3 & -2 \\ 5 & -4 \end{bmatrix}$$

Jawab:

a.
$$A^{-1} = \frac{1}{8-7} \begin{bmatrix} 2 & -1 \\ -7 & 4 \end{bmatrix}$$
$$= \frac{1}{1} \begin{bmatrix} 2 & -1 \\ -7 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -1 \\ -7 & 4 \end{bmatrix}$$

b.
$$B^{-1} = \frac{1}{-12 - (-10)} \begin{bmatrix} -4 & 2 \\ -5 & 3 \end{bmatrix}$$
$$= \frac{1}{-2} \begin{bmatrix} -4 & 2 \\ -5 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -1 \\ \frac{5}{2} & \frac{-3}{2} \end{bmatrix}$$

Aktivitas

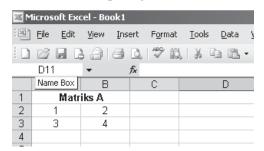
Tujuan : Menentukan invers matriks persegi

dengan bantuan software komputer.

Permasalahan: Bagaimana cara menentukan inver

matriks dengan menggunakan software

komputer?


Kegiatan: Kita akan menentukan matriks invers

dengan *Microsoft Excel*. Fungsi yang digunakan adalah MINVERSE. Misalnya,

akan ditentukan invers matriks $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

Untuk itu lakukan langkah-langkah berikut.

1. Masukkan elemen-elemen matriks pada sel-sel *Microsoft Excel* yang membentuk persegi.

2. Tentukan invers matriks A dengan cara berikut. Blok empat sel yang akan ditempati elemen-elemen matriks invers dari A. Ketik "=MINVERSE(", kemudian sorot sel-sel yang mengandung matriks A tadi. Diikuti dengan mengetik ")". Tekan CTRL + SHIFT + ENTER maka matriks invers dari A akan muncul.

Kesimpulan

Jika kalian melakukan langkah-langkah yang diinstruksikan dengan benar, kalian akan memperoleh hasil berikut.

™ Microsoft Excel - Book1										
	<u>File</u> <u>E</u> dit	<u>V</u> iew <u>I</u> ns	ert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata	<u>W</u> indow	<u>H</u> elp				
		8 8 1 8		. % = 6	- 3 10	- (4 - 6	<u>Σ</u> τ			
D2 ▼ f _* {=MINVERSE(A2:B3)}										
	Α	В	С	D		Е	F			
1	Matriks A			M	atriks A-1					
2	1	2		-2		1	1			
3	3	4		1,5		-0,5	Ī			
4										

4. Menentukan Invers Matriks Berordo 3 x 3 (Pengayaan)

Invers matriks berordo 3×3 dapat dicari dengan beberapa cara. Pada pembahasan kali ini kita akan menggunakan cara adjoin dan transformasi baris elementer.

a. Dengan Adjoin

Pada subbab sebelumnya, telah dijelaskan mengenai determinan matriks. Selanjutnya, adjoin A dinotasikan adj(A), yaitu transpose dari matriks yang elemen-elemennya merupakan kofaktor-kofaktor dari elemen-elemen matriks A, yaitu

$$adj(A) = (kof(A))^T$$

Adjoin A dirumuskan sebagai berikut.

$$adj(A) = (kof(A))^T$$

$$= \begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix}^{T}$$

$$= \begin{bmatrix} K_{11} & K_{21} & K_{31} \\ K_{12} & K_{22} & K_{32} \\ K_{13} & K_{23} & K_{33} \end{bmatrix}$$

$$= \begin{bmatrix} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \\ - \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} - \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

Invers matriks persegi berordo 3 × 3 dirumuskan sebagai berikut.

$$A^{-1} = \frac{1}{\det A} \operatorname{adj}(A)$$

Adapun bukti tentang rumus ini akan kalian pelajari lebih mendalam dijenjang pendidikan yang lebih tinggi.

Kuis

• Kerjakan di buku tugas

Diketahui matriks B adalah invers matriks A, matriks D adalah invers matriks C, dan $A \times B \times C = D$. Berikut ini yang menghasilkan matriks identitas (I) adalah

a. A^2

b. B^2

c. C^2 d. D^2

e. $A \times C^2$

Kompetisi Matematika DKI, 2000

Contoh:

Diketahui matriks $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 4 \\ 1 & 2 & 3 \end{bmatrix}$. Tentukan invers matriks A,

misalnya kita gunakan perhitungan menurut baris pertama.

Kuis

• Kerjakan di buku tugas

 B^{-1} adalah invers matriks B.

Jika
$$B = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
 dan

$$AB^{-1} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & -2 \end{bmatrix}, \text{ de-}$$

terminan matriks A adalah

••••

a. 1

b. 8c. 27

d. 32

e. 64

Kompetisi Matematika DKI, 2000

Jawab:

Terlebih dahulu kita hitung determinan A.

$$\det A = 1 \begin{vmatrix} 3 & 4 \\ 2 & 3 \end{vmatrix} - 2 \begin{vmatrix} 2 & 4 \\ 1 & 3 \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix}$$
$$= 1(1) - 2(2) + 1(1) = -2$$

Dengan menggunakan rumus adjoin A, diperoleh

$$adj(A) = \begin{bmatrix} 1 & -4 & 5 \\ -2 & 2 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

Jadi, A^{-1} dapat dihitung sebagai berikut.

$$A^{-1} = \frac{1}{\det A} \operatorname{adj}(A)$$

$$= \frac{1}{-2} \begin{bmatrix} 1 & -4 & 5 \\ -2 & 2 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{2} & 2 & -\frac{5}{2} \\ 1 & -1 & 1 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$

b. Dengan Transformasi Baris Elementer

Untuk menentukan invers matriks A_n dengan cara transformasi baris elementer, dapat dilakukan dengan langkahlangkah berikut berikut.

- 1) Bentuklah matriks $(A_n | I_n)$, dengan I_n adalah matriks identitas ordo n.
- 2) Transformasikan matriks $(A_n | I_n)$ ke bentuk $(I_n | B_n)$, dengan transformasi elemen baris.
- 3) Hasil dari Langkah 2, diperoleh invers matriks A_n adalah B_n .

Notasi yang sering digunakan dalam transformasi baris elementer adalah

a) $B_i \leftrightarrow B_j$: menukar elemen-elemen baris ke-i dengan elemen-elemen baris ke-j;

b) $k.B_i$: mengalikan elemen-elemen baris ke-i dengan skalar k;

c) $B_i + kB_j$: jumlahkan elemen-elemen baris ke-*i* dengan k kali elemen-elemen baris ke-*j*.

Contoh 1:

Tugas: Inkuiri

• Kerjakan di buku tugas

Ujilah hasil perhitungan di samping dengan rumus

 $A \times A^{-1} = I$ atau dengan rumus invers matriks ordo 2. Apa yang kalian peroleh? Tentukan invers matriks $A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$ dengan transformasi baris elementer.

Jawab:

 $\begin{aligned} (A_2 \mid I_2) &= \begin{bmatrix} 2 & 1 & 1 & 0 \\ 5 & 3 & 0 & 1 \end{bmatrix} & \frac{1}{2} B_1 & \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & 0 \\ 5 & 3 & 0 & 1 \end{bmatrix} \\ B_2 - 5B_1 & \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{-5}{2} & 1 \end{bmatrix} B_1 - B_2 & \begin{bmatrix} 1 & 0 & 3 & -1 \\ 0 & \frac{1}{2} & \frac{-5}{2} & 1 \end{bmatrix} 2B_2 \\ & \begin{bmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & -5 & 2 \end{bmatrix} \end{aligned}$

Jadi, diperoleh $A^{-1} = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$.

Keterangan:

 $\frac{1}{2}B_1$: Kalikan elemen-elemen baris ke-1 dengan $\frac{1}{2}$.

 $B_2 - 5B_1$: Kurangkan baris ke-2 dengan 5 kali elemen-elemen baris ke-1.

 $B_1 - B_2$: Kurangi elemen-elemen baris ke-1 dengan elemen-elemen baris ke-2.

 $2B_2$: Kalikan elemen-elemen baris ke-2 dengan 2.

Contoh 2:

Tentukan invers matriks $A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 2 \\ 2 & 1 & 3 \end{bmatrix}$ dengan transformasi

baris elementer.

Jawab:

$$(A_3 \mid I_3) \ = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 2 & 3 & 2 & 0 & 1 & 0 \\ 2 & 1 & 3 & 0 & 0 & 1 \end{bmatrix} \quad \underbrace{B_2 - 2B_1}_{B_3 - B_1} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & 1 & 0 \\ 0 & -1 & 3 & -2 & 0 & 1 \end{bmatrix}$$

$$B_3 + B_2 \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & 1 & 0 \\ 0 & 0 & 5 & -4 & 1 & 1 \end{bmatrix} \underbrace{\frac{1}{5}B_3}_{5} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & 1 & 0 \\ 0 & 0 & 1 & \frac{-4}{5} & \frac{1}{5} & \frac{1}{5} \end{bmatrix}$$

$$\underbrace{B_2 - 2B_3}_{2} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{-2}{5} & \frac{3}{5} & \frac{-2}{5} \\ 0 & 0 & 1 & \frac{-4}{5} & \frac{1}{5} & \frac{1}{5} \end{bmatrix}$$

$$B_{1} - B_{2} = \begin{bmatrix} 1 & 0 & 0 & \frac{7}{5} & \frac{-3}{5} & \frac{2}{5} \\ 0 & 1 & 0 & \frac{-2}{5} & \frac{3}{5} & \frac{-2}{5} \\ 0 & 0 & 1 & \frac{-4}{5} & \frac{1}{5} & \frac{1}{5} \end{bmatrix}$$

Jadi, diperoleh
$$A^{-1} = \begin{bmatrix} \frac{7}{5} & \frac{-3}{5} & \frac{2}{5} \\ \frac{-2}{5} & \frac{3}{5} & \frac{-2}{5} \\ \frac{-4}{5} & \frac{1}{5} & \frac{1}{5} \end{bmatrix}$$
.

Mari Berdiskusi

Mungkinkah sembarang matriks berukuran $m \times n$ dapat ditentukan inversnya? Berikan alasanmu. Untuk memperkuat alasan kalian, coba berikan contohnya.

5. Persamaan Matriks Bentuk AX = B dan XA = B

Misalkan A, B, dan X adalah matriks-matriks berordo 2×2 , dengan matriks A dan B sudah diketahui elemennya, sedangkan matriks X belum diketahui elemen-elemennya. Matriks X dapat ditentukan jika A mempunyai invers (matriks nonsingular).

Untuk menyelesaikan persamaan matriks berbentuk AX = B dapat dilakukan dengan langkah berikut.

$$AX = B$$

$$\Leftrightarrow A^{-1}(AX) = A^{-1}B$$

$$\Leftrightarrow (A^{-1}A)X = A^{-1}B$$

$$\Leftrightarrow IX = A^{-1}B$$

$$\Leftrightarrow X = A^{-1}B$$

Dari persamaan terakhir tampak bahwa kedua ruas dikalikan dari kiri oleh A^{-1} sehingga diperoleh bentuk penyelesaian $X = A^{-1}B$.

Untuk menyelesaikan persamaan matriks berbentuk XA = B dapat ditentukan dengan cara mengalikan kedua ruas dari kanan dengan A^{-1} sehingga diperoleh penyelesaian $X = BA^{-1}$ seperti berikut.

$$XA = B$$

$$\Leftrightarrow (XA)A^{-1} = BA^{-1}$$

$$\Leftrightarrow X(AA^{-1}) = BA^{-1}$$

$$\Leftrightarrow XI = BA^{-1}$$

$$\Leftrightarrow X = BA^{-1}$$

Oleh karena itu, diperoleh penyelesaian $X = BA^{-1}$. Dengan demikian, dapat disimpulkan sebagai berikut.

Penyelesaian persamaan matriks AX = B adalah $X = A^{-1}B$. Penyelesaian persamaan matriks XA = B adalah $X = BA^{-1}$.

Untuk lebih jelasnya, perhatikan contoh berikut.

Contoh:

Diketahui
$$A = \begin{bmatrix} 8 & 3 \\ 5 & 2 \end{bmatrix}$$
 dan $B = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}$.

Tentukan matriks X yang memenuhi

a.
$$AX = B$$
;

b.
$$XA = B$$
.

Jawab:

Karena det
$$A = \begin{vmatrix} 8 & 3 \\ 5 & 2 \end{vmatrix} = 16 - 15 = 1 \neq 0$$
 maka matriks A

mempunyai invers.

Jika dicari inversnya, kalian akan memperoleh

$$A^{-1} = \begin{bmatrix} 2 & -3 \\ -5 & 8 \end{bmatrix}.$$

(Coba kalian tunjukkan).

Dengan demikian, dapat kita tentukan sebagai berikut.

a.
$$AX = B \Leftrightarrow X = A^{-1}B = \begin{bmatrix} 2 & -3 \\ -5 & 8 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -5 \\ -10 & 13 \end{bmatrix}$$

Tugas: Eksplorasi

• Kerjakan di buku tugas

Misalkan diberikan sistem persamaan linear berikut.

$$2x + 4y = 6$$

$$x + 2y = 4$$

Susunlah sistem persamaan itu dalam bentuk matriks. Kemudian, dapatkah kalian menentukan penyelesaian persamaan matriks yang terbentuk? Berapa banyak penyelesaiannya? Mengapa?

b.
$$XA = B \Leftrightarrow X = BA^{-1} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -5 & 8 \end{bmatrix}$$
$$= \begin{bmatrix} 9 & -14 \\ -5 & 8 \end{bmatrix}$$

Mari Berdiskusi

Misalnya diberikan persamaan dalam bentuk matriks AX = B dan XA = B.

Matriks *A* dan *B* adalah matriks-matriks yang sudah ditentukan, sedangkan *X* adalah matriks yang harus dicari.

- a. Jika A dan B matriks ordo 2×2 , syarat apakah yang harus dipenuhi agar X dapat dicari? Berapakah ordo matriks X?
- b. Jika A ordo 2×2 dan B ordo 2×1 , syarat apakah yang harus dipenuhi agar matriks X dapat dicari? Berapakah ordo matriks X?

Soal Kompetensi 6

• Kerjakan di buku tugas

1. Tentukan determinan dari matriks-matriks berikut.

a.
$$\begin{bmatrix} 3 & -2 \\ -4 & 5 \end{bmatrix}$$

d.
$$\begin{bmatrix} x^2 & 2x \\ x^2 & 2x + 3 \end{bmatrix}$$

b.
$$\begin{bmatrix} 8 & -1 \\ 2 & 0 \end{bmatrix}$$

e.
$$\begin{bmatrix} 2 & 4 & 3 \\ -1 & 5 & -2 \\ 3 & 6 & 1 \end{bmatrix}$$

c.
$$\begin{bmatrix} x & 3 \\ -x & 5 \end{bmatrix}$$

f.
$$\begin{bmatrix} 5 & 2 & 3 \\ 1 & 2 & 6 \\ 2 & -3 & 4 \end{bmatrix}$$

2. Manakah di antara matriks-matriks berikut yang merupakan matriks nonsingular?

a.
$$\begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix}$$

d.
$$\begin{bmatrix} -3 & 5 \\ 3 & -5 \end{bmatrix}$$

b.
$$\begin{bmatrix} -4 & 3 \\ 2 & 1 \end{bmatrix}$$

e.
$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & -2 & 5 \\ -1 & 2 & 3 \end{bmatrix}$$

c.
$$\begin{bmatrix} 6 & 3 \\ 2 & 1 \end{bmatrix}$$

f.
$$\begin{bmatrix} 1 & -1 & 2 \\ 4 & 1 & 3 \\ 7 & 2 & 5 \end{bmatrix}$$

Kuis

• Kerjakan di buku tugas

Diketahui
$$A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$$
 dan

$$B = \begin{bmatrix} -3 & -1 \\ 2 & 1 \end{bmatrix}$$
. Jika matriks

C = 3A - 2B maka determinan matriks C sama dengan

- a. 50
- b. 44
- c. 40
- d. 36

e. 32

Kompetisi Matematika DKI, 2000 Tentukan nilai a dari persamaan di bawah ini.

a.
$$\begin{vmatrix} 5 & 2 \\ 4 & a \end{vmatrix} = 7$$

d.
$$\begin{vmatrix} -4 & a \\ 5 & a \end{vmatrix} = \begin{vmatrix} 9 & 6 \\ 9 & 4 \end{vmatrix}$$

b.
$$\begin{vmatrix} -2 & 2 \\ 3 & a \end{vmatrix} = -8$$

b.
$$\begin{vmatrix} -2 & 2 \\ 3 & a \end{vmatrix} = -8$$
 e. $\begin{vmatrix} 2 & -4 \\ 3a & a \end{vmatrix} = \begin{vmatrix} 4 & -2 \\ 8 & 3 \end{vmatrix}$

c.
$$\begin{vmatrix} 3 & -2 & 4 \\ -3 & a & 1 \\ 0 & 0 & -1 \end{vmatrix} = 2$$

c.
$$\begin{vmatrix} 3 & -2 & 4 \\ -3 & a & 1 \\ 0 & 0 & -1 \end{vmatrix} = 2$$
 f. $\begin{vmatrix} 3 & -2 & -1 \\ 10 & 2 & 2a + 4 \\ 0 & 3 & a \end{vmatrix} = 10$

Tentukan invers dari matriks-matriks berikut ini.

a.
$$A = \begin{bmatrix} 6 & -3 \\ -3 & 2 \end{bmatrix}$$
 d. $D = \begin{bmatrix} 2 & -1 \\ -4 & 3 \end{bmatrix}$

$$d. \quad D = \begin{bmatrix} 2 & -1 \\ -4 & 3 \end{bmatrix}$$

b.
$$B = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$$

b.
$$B = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$$
 e. $E = \begin{bmatrix} -9 & 4 \\ 6 & -3 \end{bmatrix}$

$$C = \begin{bmatrix} 4 & -2 \\ -6 & -4 \end{bmatrix}$$

5. Diketahui matriks $A = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \operatorname{dan} B = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$. Misalkan

A⁻¹ menyatakan invers dari A dan |A| menyatakan determinan dari A, tentukan

a.
$$AB$$
;

f.
$$(BA)^{-1}$$
;

g.
$$A^{-1}B^{-1}$$
;

c.
$$A^{-1}$$
;

h.
$$B^{-1}A^{-1}$$
;

d.
$$|B^{-1}|$$
; $|A^T|$; $|2A|$

i. hubungan
$$(AB)^{-1}$$
 dan $B^{-1}A^{-1}$;

e.
$$|(AB)^{-1}|$$
;

j. hubungan
$$(BA)^{-1}$$
 dan $A^{-1}B^{-1}$.

Dengan metode adjoin dan transformasi baris elementer, tentukan invers dari matriks-matriks berikut.

a.
$$\begin{bmatrix} 2 & -1 & 1 \\ 4 & 3 & -2 \\ -3 & 1 & -1 \end{bmatrix}$$
 c.
$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 8 & 7 \\ 1 & 5 & 6 \end{bmatrix}$$

c.
$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 8 & 7 \\ 1 & 5 & 6 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & 2 & -3 \\ 0 & 4 & -2 \\ 1 & -1 & 3 \end{bmatrix}$$
 d.
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{d.} \quad \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Tantangan

Penalaran

• Kerjakan di buku tugas

Harga sebuah buku tulis Rp2.700,00 dan harga sebuah bolpoin Rp3.500,00. Heny membeli 4 buku tulis dan 2 bolpoin, sedangkan Ari membeli 5 buku tulis dan sebuah bolpoin. Bagaimana bentuk perkalian matriks dari kasus ini? Tentukan pula harga yang harus dibayarkan masingmasing anak.

Tantangan

Penalaran

• Kerjakan di buku tugas

Diketahui matriks

$$A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}.$$

Jika a_1 merupakan penyelesaian persamaan 4(x-2) = 3(x-4), a_2 dan a_3 merupakan akar-akar dari $x^2 - 4x + 3 = 0$ dengan $a_2 > a_3$, dan a_4 nilanya dua kali a_3 , tentukan determinan matriks A.

7. Tentukan nilai x agar matriks-matriks berikut singular.

a.
$$\begin{bmatrix} x+6 & 4 \\ x+2 & x \end{bmatrix}$$

c.
$$\begin{bmatrix} x^2 & 4x \\ 1 & x \end{bmatrix}$$

b.
$$\begin{bmatrix} -x & 2x+4 \\ 2 & -10 \end{bmatrix}$$

d.
$$\begin{bmatrix} (x-2)^2 & 1 \\ 4(x-2) & (x-2) \end{bmatrix}$$

8. Tentukan matriks *X* jika diketahui persamaan berikut.

a.
$$\begin{bmatrix} 4 & 2 \\ -3 & -2 \end{bmatrix} X = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$$

b.
$$X \begin{bmatrix} 4 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 16 & -20 \\ 8 & -4 \end{bmatrix}$$

$$c \qquad \begin{bmatrix} 8 & 3 \\ 5 & 2 \end{bmatrix} - \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix} X = \begin{bmatrix} -3 & 6 \\ -2 & 1 \end{bmatrix}$$

$$d \quad X \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix} + \begin{bmatrix} 4 & -3 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 6 & -5 \\ 7 & 3 \end{bmatrix}$$

9. Misal jumlah uang Lira dan uang Virna Rp10.000,00. Jika Lira memberikan uangnya sebanyak Rp1.500,00 kepada Virna maka banyak uang mereka akan menjadi sama. Dengan menggunakan matriks, tentukan banyak uang mereka (semula) masing-masing.

10. Diketahui $K = \begin{bmatrix} 3 & 1 \\ 2 & 0 \end{bmatrix} \operatorname{dan} L = \begin{bmatrix} 0 & 2 \\ 3 & -6 \end{bmatrix}$. Determinan matriks

 KL adalah m . Jika sistem persamaan yang dinyatakan dengan

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
 memiliki penyelesaian (x_1, y_1) , tentukan

persamaan garis yang melalui (x_1, y_1) dan bergradien m.

G. Penyelesaian Sistem Persamaan Linear dengan Matriks

Matriks dapat digunakan untuk mempermudah dalam menentukan penyelesaian sistem persamaan linear. Pada pembahasan kali ini, kita akan menggunakannya untuk menyelesaikan sistem persamaan linear dua variabel dan tiga variabel.

Sistem Persamaan Linear Dua Variabel

Bentuk umum sistem persamaan linear dua variabel adalah

$$ax + by = p \dots (1)$$

$$cx + dy = q$$
(2)

Persamaan (1) dan (2) di atas dapat kita susun ke dalam bentuk matriks seperti di bawah ini.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix}$$

Tujuan penyelesaian sistem persamaan linear dua variabel adalah menentukan nilai x dan y yang memenuhi sistem persamaan itu. Oleh karena itu, berdasarkan penyelesaian matriks bentuk AX = B dapat dirumuskan sebagai berikut.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix},$$

asalkan $ad - bc \neq 0$.

Contoh:

Tentukan penyelesaian dari sistem persamaan linear berikut dengan cara matriks.

$$2x + y = 7$$

$$x + 3y = 7$$

Jawab:

Dari persamaan di atas dapat kita susun menjadi bentuk matriks sebagai berikut.

$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$

Dengan menggunakan rumus penjelasan persamaan matriks di atas, diperoleh sebagai berikut.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{(2 \times 3) - (1 \times 1)} \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} 5 \\ 10 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Jadi, diperoleh penyelesaian x = 1 dan y = 2.

Kuis

• Kerjakan di buku tugas

Jika
$$\begin{bmatrix} 2 & -3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \end{bmatrix}$$

maka 4x + 5y =a. -8

UMPTN 1994

2. Sistem Persamaan Linear Tiga Variabel

Kalian tentu tahu bahwa untuk menyelesaikan sistem persamaan linear tiga variabel dapat dilakukan dengan beberapa cara, misalnya eliminasi, substitusi, gabungan antara eliminasi dan substitusi, operasi baris elementer, serta menggunakan invers matriks. Kalian dapat menggunakan cara-cara tersebut dengan bebas yang menurut kalian paling efisien dan paling mudah.

Misalkan diberikan sistem persamaan linear tiga variabel berikut.

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

Sistem persamaan linear di atas dapat kita susun ke dalam bentuk matriks seperti berikut.

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

$$\text{Misalkan } A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}, \, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \, \text{dan } B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}.$$

Bentuk di atas dapat kita tuliskan sebagai AX = B. Penyelesaian sistem persamaan AX = B adalah $X = A^{-1}B$. Dalam

hal ini,
$$A^{-1} = \frac{1}{\det A} \operatorname{adj}(A)$$
.

Oleh karena itu, diperoleh

$$X = \left(\frac{1}{\det A} \cdot \operatorname{adj}(A)\right) B = \frac{1}{\det A} \cdot \operatorname{adj}(A) B$$

asalkan det $A \neq 0$.

Contoh:

Tentukan himpunan penyelesaian dari sistem persamaan berikut.

$$2x + y - z = 1$$
$$x + y + z = 6$$

$$x - 2y + z = 0$$

Jawab:

Cara 1:

Operasi elemen baris, selain dapat digunakan untuk mencari invers matriks, dapat pula digunakan untuk menyelesaikan sistem persamaan linear.

Dengan menggunakan operasi baris elementer.

$$2x + y - z = 1 x + y + z = 6 x - 2y + z = 0$$

$$x + y + z = 6 x - 2y + z = 0$$

$$x + y + z = 6 x - 2y + z = 0$$

$$x + y + z = 6 x - 2y + z = 0$$

$$x + y + z = 6 x - 2y + z = 0$$

$$x - 2y + z = 0$$

$$x + y + z = 6 x - 2y + z = 0$$

$$x - 2y + z = 0$$

$$\begin{array}{l}
-B_2 \\
-\frac{1}{3}B_3 \\
\end{array}
\begin{cases}
x + y + z = 6 \\
y + 3z = 11 \\
y = 2
\end{cases}$$

Dengan demikian, diperoleh y = 2. Kita substitusikan nilai y = 2 ke persamaan (2) sehingga

$$y + 3z = 11 \Leftrightarrow 2 + 3z = 11$$

 $\Leftrightarrow 3z = 11 - 2$
 $\Leftrightarrow 3z = 9$
 $\Leftrightarrow z = 3$

Substitusikan $y = 2 \operatorname{dan} z = 3 \operatorname{ke} \operatorname{persamaan} (1) \operatorname{sehingga} \operatorname{diperoleh}$

$$x + y + z = 6 \Leftrightarrow x + 2 + 3 = 6$$
$$\Leftrightarrow x + 5 = 6$$
$$\Leftrightarrow x = 6 - 5$$
$$\Leftrightarrow x = 1$$

Jadi, penyelesaiannya adalah x = 1, y = 2, dan z = 3.

Dengan demikian, himpunan penyelesaiannya adalah $\{(1, 2, 3)\}$.

Cara 2:

Sistem persamaan linear di atas dapat kita susun ke dalam bentuk matriks sebagai berikut.

Misalkan
$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -2 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \operatorname{dan} B = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}.$$

$$\det A = 2 \begin{vmatrix} 1 & 1 \\ -2 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} + (-1) \begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} = 2(3) - 1(0) + (-1)(-3) = 9$$

Dengan menggunakan minor-kofaktor, diperoleh

$$K_{11} = (-1)^{1+1} M_{11} = \begin{vmatrix} 1 & 1 \\ -2 & 1 \end{vmatrix} = 1 - (-2) = 3$$

$$K_{12} = (-1)^{1+2} M_{12} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = -(1-1) = 0$$

$$K_{13} = (-1)^{1+3} M_{13} = \begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} = -2 - 1 = -3$$

$$K_{21} = (-1)^{2+1} M_{21} = \begin{vmatrix} 1 & -1 \\ -2 & 1 \end{vmatrix} = -(1-2) = 1$$

$$K_{22} = (-1)^{2+2} M_{22} = \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = 2 - (-1) = 3$$

$$K_{23} = (-1)^{2+3} M_{23} = -\begin{vmatrix} 2 & 1 \\ 1 & -2 \end{vmatrix} = -(-4-1) = 5$$

Dengan cara yang sama, kalian akan memperoleh $K_{31}=2$, $K_{32}=-3$, dan $K_{33}=1$ (coba tunjukkan).

Dengan demikian, diperoleh

$$kof(A) = \begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} = \begin{bmatrix} 3 & 0 & -3 \\ 1 & 3 & 5 \\ 2 & -3 & 1 \end{bmatrix}$$

Oleh karena itu, $adj(A) = (kof(A))^T$.

$$Adj(A) = \begin{bmatrix} 3 & 0 & -3 \\ 1 & 3 & 5 \\ 2 & -3 & 1 \end{bmatrix}^{T} = \begin{bmatrix} 3 & 1 & 2 \\ 0 & 3 & -3 \\ -3 & 5 & 1 \end{bmatrix}$$

$$Jadi, X = \frac{1}{\det A} adj(A)B$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 3 & 1 & 2 \\ 0 & 3 & -3 \\ -3 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 9 \\ 18 \\ 27 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Jadi, diperoleh x = 1, y = 2, dan z = 3. Dengan demikian, himpunan penyelesaian sistem persamaan di atas adalah $\{(1, 2, 3)\}$.

Soal Kompetensi 7

• Kerjakan di buku tugas

- Tentukan himpunan penyelesaian dari sistem persamaan linear berikut.
 - a. 2x y = 3

c.
$$6x + 2y = -1$$

$$2x + y = 1$$

$$2x - 4y = -7$$

b.
$$-x + 2y = 4$$

d.
$$2x - 3y = 7$$

$$4x + 3y = 17$$

$$3x - 6y = 10$$

Kuis

• Kerjakan di buku tugas

Jika x: y = 5: 4 maka x dan y yang memenuhi persamaan matriks ABC = [1.360], untuk $A = \begin{bmatrix} 2 & 10 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

$$\begin{bmatrix} x & y \\ 4 & 5 \\ 30 & 25 \end{bmatrix}, \text{ dan } C = \begin{bmatrix} 5 \\ 10 \end{bmatrix}$$

adalah

a.
$$x = 1; y = \frac{4}{5}$$

b.
$$x = \frac{4}{5}$$
; $y = 1$

c.
$$x = 5$$
; $y = 4$

d.
$$x = -10$$
; $y = -8$

e.
$$x = 10$$
; $y = 8$

UMPTN 1994

2. Tentukan himpunan penyelesaian dari sistem persamaan linear berikut.

a.
$$x + y + z = 2$$

 $x - 2y + z = 1$
 $2x + y - 2z = -1$

c.
$$-2x + y - 2z = -1$$

 $9x + z = 2$
 $2x - 2y = -2$

b.
$$3x + y - z = 6$$

 $5x + 3y + z = 14$

d.
$$4x - y + 4z = 8$$

 $6x - 8z = 2$

$$5x + 3y + z = 14$$
$$6x - 2y + 2z = 12$$

$$x + 3y - 6z = -8$$

3. Dengan memisalkan bentuk variabel yang sesuai, tentukan himpunan penyelesaian dari sistem persamaan berikut dengan metode matriks.

$$a. \quad \frac{2}{x} - \frac{3}{y} = -1$$

$$b. \quad \frac{1}{x} - \frac{4}{y} = -3$$

$$\frac{4}{9} + \frac{9}{y} = 5$$

$$\frac{8}{v} + \frac{2}{z} = 8$$

$$\frac{2}{x} + \frac{3}{z} = 4$$

- 4. Jumlah dua bilangan sama dengan 105. Selisih kedua bilangan itu 15. Buatlah sistem persamaannya, kemudian dengan cara matriks tentukan bilangan-bilangan tersebut.
- 5. Jika harga 5 buah buku tulis dan sebuah pensil Rp7.000,00 dan harga 4 buah buku tulis dan 3 buah pensil adalah Rp7.250,00. Tentukan harga 2 buah buku tulis dan 4 buah pensil.
- 6. Diketahui dua buah bilangan. Jumlah dua kali bilangan pertama dengan tiga kali bilangan kedua sama dengan 41. Empat kali bilangan pertama dikurangi tiga kali bilangan kedua sama dengan 19. Susunlah kasus di atas dalam sistem persamaan linear. Kemudian, dengan cara matriks, carilah bilangan-bilangan itu.
- 7. Sebuah pabrik memproduksi dua jenis barang, yaitu *X* dan *Y*. Jumlah penerimaan dari 150 unit barang *X* dan 100 unit barang *Y* sebesar Rp450.000,00. Jumlah penerimaan dari 150 unit barang *X* dan 75 unit barang *Y* sebesar Rp406.250,00. Nyatakan kasus di atas dalam sistem persamaan linear. Kemudian, dengan cara matriks, tentukan besar penerimaan 200 unit barang *X* dan 150 unit barang *Y*.
- 8. Dalam suatu gedung bioskop terdapat 200 orang penonton. Harga tiap lembar karcis adalah Rp15.000,00 dan Rp20.000,00. Hasil penjualan karcis seluruhnya adalah

- Rp3.475.000,00. Berapakah banyak karcis harga Rp15.000,00 dan harga Rp20.000,00 yang terjual? Selesaikan dengan cara matriks.
- 9. Perbandingan umur Titi dan Dewi 8 tahun yang lalu adalah 4:7. Perbandingan umur mereka 6 tahun yang akan datang adalah 6 : 7. Dengan cara matriks, tentukan perbandingan umur Titi dan Dewi sekarang.
- 10. Pak Rudi dan Pak Maman berjualan jenis barang yang sama. Modal Pak Rudi Rp4.000.000,00 lebih banyak dari modal Pak Maman. Jika keuntungan yang di dapat Pak Rudi 15%, sedangkan keuntungan Pak Maman 30% maka uang mereka menjadi sama banyak. Hitunglah modal Pak Rudi dan Pak Maman masing-masing.

3. Menyelesaikan Sistem Persamaan Linear dengan Determinan

Sistem persamaan linear yang disusun dalam bentuk matriks juga dapat ditentukan himpunan penyelesaiannya dengan metode determinan. Misalnya, sistem persamaan linear untuk dua variabel dan tiga variabel adalah sebagai berikut.

a.
$$ax + by = p$$

 $cx + dy = q$

b.
$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

Pada sistem persaman linear dua variabel, bentuk tersebut dapat diubah ke bentuk matriks berikut.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix}, \operatorname{dengan} A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix}, \operatorname{dan} B = \begin{bmatrix} p \\ q \end{bmatrix}.$$

Untuk menentukan penyelesaian persamaan matriks tersebut, terlebih dahulu kita tentukan determinannya sebagai berikut.

$$D = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \quad \text{(Determinan koefisien } x \text{ dan } y, \text{ dengan elemen-elemen matriks } A\text{)}$$

$$D_{x} = \begin{vmatrix} p & b \\ q & d \end{vmatrix} = pd - bq \text{ (Ganti kolom ke-1, dengan elemen-elemen matriks } B)}$$

$$D_y = \begin{vmatrix} a & p \\ c & q \end{vmatrix} = aq - cp$$
 (Ganti kolom ke-2, dengan elemenelemen matriks *B*)

Kuis

• Kerjakan di buku tugas

Nilai x + y yang memenuhi

$$\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \end{bmatrix} \text{ adalah } \dots$$

b. −3 c. −2

Kompetisi Matematika DKI, 2000 Nilai x dan y dapat ditentukan dengan rumus berikut.

$$x = \frac{D_x}{D}; y = \frac{D_y}{D}$$

Dengan cara yang sama dapat ditentukan D, D_x , D_y , dan D_z untuk sistem persamaan linear tiga variabel sebagai berikut.

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \qquad D_y = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}$$

$$D_{x} = \begin{vmatrix} d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3} \end{vmatrix} \qquad D_{z} = \begin{vmatrix} a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3} \end{vmatrix}$$

Nilai x, y, dan z dapat ditentukan dengan cara berikut.

$$x = \frac{D_x}{D}$$
; $y = \frac{D_y}{D}$; $z = \frac{D_z}{D}$

Contoh:

Tentukan penyelesaian sistem persamaan linear berikut dengan metode determinan.

a.
$$2x + y = 4$$
$$x - 2y = -3$$

b.
$$x + y + z = 0$$

 $x + y - z = -2$
 $x - y + z = 4$

Jawab:

Sistem persamaan linear di atas dapat disusun dalam bentuk matriks berikut.

$$\begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$$

Kita tentukan nilai D, D_v , dan D_v .

$$D = \begin{vmatrix} 2 & 1 \\ 1 & -2 \end{vmatrix} = -4 - 1 = -5$$

$$D_x = \begin{vmatrix} 4 & 1 \\ -3 & -2 \end{vmatrix} = -8 - (-3) = -5$$

$$D_{y} = \begin{vmatrix} 2 & 4 \\ 1 & -3 \end{vmatrix} = -6 - 4 = -10$$

Tantangan

Eksplorasi

• Kerjakan di buku tugas

Usia Dina sekarang 8 tahun lebih tua daripada umur Diva. Pada 4 tahun yang lalu, usia Diva sama dengan dua pertiga dari usia Dina.

- Buatlah sistem persamaan yang mewakili kasus di atas.
- b. Susunlah sistem persamaan yang kamu peroleh dalam bentuk perkalian matriks.
- Dengan menggunakan matriks, tentukan usia Dina sekarang.

Tantangan

Penalaran

• Kerjakan di buku tugas

Harga sebuah buku tulis Rp2.700,00 dan harga sebuah bolpoin Rp3.500,00. Heny membeli 4 buah buku tulis dan 2 buah bolpoin, sedangkan Ari membeli 5 buah buku tulis dan sebuah bolpoin. Bagaimana bentuk perkalian matriks dari kasus ini? Tentukan pula harga yang harus dibayarkan masing-masing anak.

Dengan demikian,
$$x = \frac{D_x}{D} = \frac{-5}{-5} = 1 \text{ dan } y = \frac{D_y}{D} = \frac{-10}{-5}$$

 Sistem persamaan linear tiga variabel di atas dapat disusun dalam bentuk matriks berikut.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 4 \end{bmatrix}$$

Kita tentukan nilai D, D_x, D_y , dan D_z .

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{vmatrix} = (1 + (-1) + (-1)) - (1 + 1 + 1) = -4$$

$$D_{x} = \begin{vmatrix} 0 & 1 & 1 \\ -2 & 1 & -1 \\ 4 & -1 & 1 \end{vmatrix} = (0 + (-4) + 2) - (4 + 0 + (-2) = -4$$

$$D_{y} = \begin{vmatrix} 1 & 0 & 1 \\ 1 & -2 & -1 \\ 1 & 4 & 1 \end{vmatrix} = (-2 + 0 + 4) - (-2 + (-4) + 0) = 8$$

$$D_z = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & -2 \\ 1 & -1 & 4 \end{vmatrix} = (4 + (-2) + 0) - (0 + 2 + 4) = -4$$

Dengan demikian, diperoleh

$$x = \frac{D_x}{D} = \frac{-4}{-4} = 1,$$

$$y = \frac{D_y}{D} = \frac{8}{-4} = -2$$
, dan

$$z = \frac{D_z}{D} = \frac{-4}{-4} = 1.$$

Soal Kompetensi 8

• Kerjakan di buku tugas

Untuk soal nomor 1–5, tentukan penyelesaiannya dengan menggunakan metode determinan.

$$1. \quad x + y = 1$$
$$2x + 4y = 1$$

2.
$$2x + 3y = 8$$

$$x + y = 2$$

3.
$$x-2y+3z = 10$$

 $2x + y - 2z = 11$

$$2x + 3y - z = -1$$

4.
$$x-2y+z=1$$

 $-2z+y+z=-2$

$$x + y + z = 4$$

$$5. \quad 0.5x + 0.3y + 0.2z = 46$$

$$0.1x + 0.8y - 0.6z = 26$$

$$0.2x - 0.5y + 0.4z = 0$$

6. Jika
$$x_0$$
 dan y_0 memenuhi persamaan
$$\begin{cases} 3x - 4y = p \\ 5x - 6y = 4 \end{cases}$$

dan
$$y_0 = \frac{p}{\begin{vmatrix} 3 & -4 \\ 5 & -6 \end{vmatrix}}$$
 maka tentukan nilai $5x_0 + 2p$.

- 7. Seseorang membeli 4 buah buku tulis dan 3 buah pensil, ia membayar Rp19.500,00. Jika ia membeli 2 buah buku tulis dan 4 buah pensil, ia membayar Rp16.000,00. Buatlah model matematika (sistem persamaan). Kemudian, dengan cara determinan, tentukan harga sebuah buku tulis dan sebuah pensil.
- 8. Ibu membeli 3 kg gula dan 7 bungkus teh dengan harga Rp20.050,00. Pada bulan berikutnya, Ibu kembali ke warung tersebut untuk membeli 4 kg gula dan 5 bungkus teh dengan harga Rp23.050,00. Berapakah harga untuk 2 kg gula dan 3 bungkus teh?
- 9. Sebuah kios menjual bermacam-macam buah di antaranya jeruk, salak dan apel. Seseorang yang membeli 2 kg apel, 3 kg salak, dan 1 kg jeruk harus membayar Rp33.000,00. Orang yang membeli 2 kg jeruk, 1 kg salak, dan 1 kg apel harus membayar Rp23.500. Orang yang membeli 1 kg jeruk, 2 kg salak, dan 3 kg apel harus membayar 36.500,00. Tentukan model matematika (dalam bentuk sistem persamaan). Kemudian, dengan cara determinan, tentukan berapa harga per kilogram salak, harga per kilogram jeruk, dan harga per kilogram apel?
- 10. Harga 3 kg beras, 2 kg gula, dan 1 kg telur di sebuah toko adalah Rp28.500,00. Harga 2 kg beras, 2 kg gula, dan 5 kg telur adalah Rp46.000,00. Seseorang harus membayar Rp34.000,00 untuk membeli 5 kg beras, 2 kg gula, dan 1 kg telur di toko itu.

Tugas: Informasi lanjut

• Kerjakan di buku tugas

Untuk menambah wawasan kalian tentang matriks, carilah hal-hal yang berkaitan dengan matriks (materi maupun tokohtokoh) dari media yang ada di sekelilingmu (internet, perpustakaan, dan bukubuku referensi).

- Buatlah sistem persamaan kasus di atas. Kemudian, dari sistem persamaan itu, ubahlah dalam bentuk persamaan matriks.
- b. Dengan cara determinan, tentukan berapa rupiah harga 1 kg beras, harga 1 kg gula, dan harga 1 kg telur di toko tersebut?
- c. Dengan cara determinan, tentukan berapa rupiah yang harus dibayarkan jika seseorang membeli 3 kg beras, 1 kg gula, dan 2 kg telur?

Rangkuman

- 1. Matriks adalah susunan berbentuk persegi panjang dari $m \times n$ elemen (biasanya bilangan) yang disusun dalam m baris dan n kolom.
- 2. Jika suatu matriks mempunyai m baris dan n kolom maka matriks tersebut berordo $m \times n$, ditulis $A_{m \times n}$.
- 3. Transpose matriks A berordo $m \times n$ adalah suatu matriks yang diperoleh dengan cara menukar elemen-elemen baris menjadi elemen-elemen kolom sehingga ordonya menjadi $n \times m$.
- 4. Sifat-sifat yang berlaku dalam penjumlahan matriks adalah sebagai berikut.
 - a. Komutatif, yaitu A + B = B + A.
 - b. Asosiatif, yaitu (A + B) + C = A + (B + C).
 - c. Terdapat unsur identitas, yaitu matriks nol sehingga A + O = O + A
 - d. Invers penjumlahan A adalah -A sehingga A + (-A) = -A + A = O.

Pada pengurangan tidak berlaku sifatsifat tersebut.

5. Hasil kali matriks *A* dengan skalar *k* adalah suatu matriks yang diperoleh dengan mengalikan setiap elemen dengan skalar *k*.

- 6. Dua matriks *A* dan *B* dapat dikalikan jika banyaknya kolom matriks *A* sama dengan banyaknya baris matriks *B*.
- 7. Jika *A*, *B*, dan *C* adalah matriks yang dapat dijumlahkan dan dikalikan, serta *k* adalah skalar (bilangan real) maka berlaku sebagai berikut.
 - a. Tidak komutatif, yaitu $A \times B \neq B \times A$
 - b. Asosiatif, yaitu $(A \times B) \times C = A \times (B \times C)$
 - c. Distributif, yaitu $A \times (B+C) = A \times B + A \times C \text{ dan}$ $(A+B) \times C = A \times C + B \times C$
 - d. Perkalian dengan skalar k, yaitu $(kA) \times B = k(A \times B)$
 - e. Terdapat unsur identitas, yaitu I sehingga $A \times I = I \times A = A$, dengan A dan I matriks persegi berordo sama.
 - f. Perkalian dengan matriks O, yaitu $A \times O = O \times A = O$.
- 8. Matriks A saling invers dengan matriks B jika AB = BA = I, dengan I matriks identitas. Jika det A = 0, matriks A tidak punya invers dan disebut matriks singular, sedangkan jika det $A \neq 0$, matriks A mempunyai invers dan disebut matriks nonsingular.

Refleksi

Menurut kalian, manfaat apa yang diperoleh setelah mempelajari matriks? Bagaimana aplikasinya dalam kehidupan sehari-hari? Benarkah matriks dapat dikembangkan untuk mempelajari model matematika sistem persamaan, baik linear maupun nonlinear? Jelaskan.

Tes Kemampuan Bab III

• Kerjakan di buku tugas

A. Pilihlah jawaban yang tepat dengan memberi tanda silang (x) pada huruf a, b, c, d, atau e.

1. Diketahui matriks
$$A = \begin{bmatrix} -4 & -2 & -4 \\ 4 & -5 & 6 \\ 6 & 10 & 3 \end{bmatrix}$$

maka pernyataan berikut yang benar, kecuali

- a. -5 adalah elemen pada baris ke-2 dan kolom ke-2
- b. 10 adalah elemen pada baris ke-3 dan kolom ke-2
- c. –4 adalah elemen pada baris ke-2 dan kolom ke-1
- d. 6 adalah elemen pada baris ke-2 dan kolom ke-3
- e. –2 adalah elemen pada baris ke-1 dan kolom ke-2

2. Transpose dari matriks
$$\begin{bmatrix} -4 & 5 & 7 \\ 8 & -4 & 1 \end{bmatrix}$$

adalah

a.
$$\begin{bmatrix} 8 & -4 & 1 \\ -4 & 5 & 7 \end{bmatrix}$$

b.
$$\begin{bmatrix} -4 & 8 \\ -4 & 5 \\ 7 & 1 \end{bmatrix}$$

c.
$$\begin{bmatrix} 8 & -4 \\ -4 & 5 \\ 7 & 1 \end{bmatrix}$$

d.
$$\begin{bmatrix} 1 & -4 & -8 \\ 7 & 5 & -4 \end{bmatrix}$$

e.
$$\begin{bmatrix} -4 & 8 \\ 5 & -4 \\ 7 & 1 \end{bmatrix}$$

3. Diketahui
$$A = \begin{bmatrix} 5 & -2 \\ 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 4 & k \\ 3 & -2 \end{bmatrix}$$

dan
$$C = \begin{bmatrix} 9 & 2 \\ -5 & 0 \end{bmatrix}$$
. Jika $A + B^T = C$, nilai

k adalah

4. Matriks
$$A = \begin{bmatrix} 0 & -1 & -1 \\ 2x & 1 & x-3 \\ 1 & 5 & 6 \end{bmatrix}$$
 adalah

matriks singular. Nilai $3x^2 + 2x$ adalah

5. Diketahui matriks $A = \begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix}$,

$$B = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}, C = \begin{bmatrix} -12 & 4x + y \\ -3 & x \end{bmatrix}.$$

Jika $AB^{-1} = C$, nilai 7x + 2y adalah

- a. 2
- d. 20
- b. 3
- e. 30
- c. 14
- 6. Diketahui persamaan $\begin{cases} \frac{1}{x} + \frac{2}{y} = 3\\ \frac{3}{x} \frac{1}{y} = 2 \end{cases}$

Nilai x + y adalah

- a. 1
- d. 4
- b. 2
- e. 5
- c. 3
- 7. Diketahui $P = \begin{bmatrix} x 10 & -3 \\ 9 & x \end{bmatrix}$;

$$Q = \begin{bmatrix} -2 & x \\ 3x - 2 & -5 \end{bmatrix}$$

Jika det P = 2 det Q, nilai x adalah

- a.
- b. -1

1

- c. 0
- d. $\frac{1}{3}$
- e. $\frac{2}{3}$
- 8. Nilai determinan dari matriks

$$\begin{bmatrix} 0 & 2 & 3 \\ -2 & 0 & 4 \\ -3 & -4 & 0 \end{bmatrix}$$

sama dengan (Sipenmaru 1985)

- a.
- b. 1
- c. 2
- d. 3
- e. 5

9. Nilai *p* yang memenuhi persamaan matriks

$$2\begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} + \begin{bmatrix} -6 & 2p \\ 4 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}$$

adalah (SPMB 2004)

- a. -2
- b. -1
- c. 0
- d. 1
- e. 2
- 10. Diketahui sistem persamaan linear

$$\begin{cases} x + 3y - z = -2\\ 2x + y + 2z = 5\\ 3x - 2y + z = 9 \end{cases}$$

Nilai x + y + z adalah

- a. -1
- b. 0
- c. 1d. 2
- e. 2
- 11. Nilai-nilai x agar matriks $\begin{bmatrix} 5x & 5 \\ 4 & x \end{bmatrix}$ tidak mempunyai invers adalah
 - a. 4 atau 5
 - b. –2 atau 2
 - c. –4 atau 5
 - d. -6 atau 4
 - e. 0
- 12. Nilai *a* yang memenuhi persamaan

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$$

adalah

- a. –2
- b. -1
- c. 0
- d. 1
- e. 2

13. Titik potong dari dua garis yang memenuhi persamaan matriks

$$\begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
 adalah

- a. (1, -2)
- b. (-2, 2)
- c. (-1, -2)
- d. (1, 2)
- e. (2, 1)
- 14. Diketahui persamaan

$$x \begin{bmatrix} 2 \\ 5 \\ -2 \end{bmatrix} + y \begin{bmatrix} -1 \\ -6 \\ 5 \end{bmatrix} = \begin{bmatrix} -7 \\ -21 \\ 2z - 1 \end{bmatrix}. \text{ Nilai } z = \dots.$$

- a. –2
- b. 3
- c. 0
- d. 6
- e. 30

15. Jika
$$\begin{bmatrix} 4 & 1 \\ 3 & a \end{bmatrix} \begin{bmatrix} -1 & a \\ 2a+b & 7 \end{bmatrix} = \begin{bmatrix} 1 & 15 \\ 7 & 20 \end{bmatrix}$$

maka $b = \dots$

- a. 1
- b. 2
- c. 3
- d. 4
- e. 5
- 16. Jika matriks

$$A = \begin{bmatrix} 2 & 1 \\ -2 & 3 \end{bmatrix}, B = \begin{bmatrix} a \\ 1 \end{bmatrix}, \text{ dan } C = \begin{bmatrix} 11 \\ 1 - 4b \end{bmatrix}$$

memenuhi AB = C maka $|a - b| = \dots$

- a. 2
- b. 3
- c. 4
- d. 5
- e. 6
- 17. Matrik *X* yang memenuhi persamaan

$$\begin{bmatrix} 2 & 7 \\ 5 & 3 \end{bmatrix} X = \begin{bmatrix} -3 & 8 \\ 7 & -9 \end{bmatrix}$$
adalah

a.
$$\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$$

c.
$$\begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$$

d.
$$\begin{bmatrix} -1 & 2 \\ 3 & -2 \end{bmatrix}$$

e.
$$\begin{bmatrix} 2 & 3 \\ 1 & -3 \end{bmatrix}$$

18. Jika I matriks satuan dan matriks A =

$$\begin{bmatrix} 2 & 1 \\ -4 & 3 \end{bmatrix}$$
 sehingga $A^2 = pA + qI$ maka

p + q sama dengan

- a. 15
- b. 10
- c. 5 d. -5
- u. –3

19. Jika
$$M = \begin{bmatrix} -2 & 5 \\ 1 & -3 \end{bmatrix} \operatorname{dan} K \times M =$$

$$\begin{bmatrix} 0 & -1 \\ -2 & 3 \end{bmatrix}$$
 maka matriks $K = \dots$

a.
$$\begin{bmatrix} 4 & 3 \\ -2 & -1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$$

c.
$$\begin{bmatrix} -1 & -2 \\ 3 & 4 \end{bmatrix}$$

d.
$$\begin{bmatrix} 3 & -4 \\ 1 & -2 \end{bmatrix}$$

e.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

20. Jika invers matriks M adalah

$$M^{-1} = \frac{1}{5} \begin{bmatrix} -1 & -4 \\ 2 & 3 \end{bmatrix}$$
 maka $M \begin{bmatrix} x \\ y \end{bmatrix} = \dots$

a.
$$\begin{bmatrix} 3x - 4y \\ -2x + y \end{bmatrix}$$

b.
$$\begin{bmatrix} 3x - 4y \\ -2x - y \end{bmatrix}$$

c.
$$\begin{bmatrix} 3x + 4y \\ -2x - y \end{bmatrix}$$

d.
$$\begin{bmatrix} 4x - 3y \\ -x - 2y \end{bmatrix}$$

e.
$$\begin{bmatrix} -2x - y \\ 3x - 4y \end{bmatrix}$$

21. Diketahui persamaan matriks

$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & a \\ 2b & 3 \end{bmatrix} + \begin{bmatrix} 2 & b \\ 1 & 1 \end{bmatrix}.$$

Nilai *a* dan *b* adalah (UN 2004)

a.
$$a = 1, b = 2$$

b.
$$a = 2, b = 1$$

c.
$$a = 5, b = -2$$

d.
$$a = -2, b = 5$$

e.
$$a = 4, b = -1$$

22. Diketahui matriks $A = \begin{bmatrix} 3 & 0 \\ 2 & 5 \end{bmatrix}$, B =

$$\begin{bmatrix} x & -1 \\ y & 1 \end{bmatrix}, \operatorname{dan} C = \begin{bmatrix} 0 & -1 \\ -15 & 5 \end{bmatrix}, A^{T} \operatorname{adalah}$$

transpose dari A. Jika $A^T \times B = C$ maka nilai 2x + y = (UN 2006)

23. Jika
$$\begin{bmatrix} 3 & -2 \\ -4 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 maka $x + 2y =$ (UAN 2003)

24. Diketahui matriks
$$A = \begin{bmatrix} 6 & -2 \\ 8 & 2 \end{bmatrix}$$
, $B =$

$$\begin{bmatrix} 1 & 7 \\ 0 & 8 \end{bmatrix}, \operatorname{dan} C = \begin{bmatrix} 2 - a & b \\ 5 + 3c & 7 \end{bmatrix}. \operatorname{Jika} \frac{1}{2} A$$

$$+ C = B$$
 maka nilai $a + b + c =$ (UN 2004)

25. Diketahui matriks
$$A = \begin{bmatrix} \frac{6}{x} & \frac{-10}{x} \\ -1 & 2 \end{bmatrix} \operatorname{dan} B$$

$$= \begin{bmatrix} x & 2 \\ 5 & 3 \end{bmatrix}$$
. Jika $A^T = B^{-1}$ dengan $A^T =$

transpose matriks A maka nilai 2x = (UN 2006)

c.
$$\frac{1}{4}$$

26. Jika diketahui

$$\begin{bmatrix} a & b \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 5 & -2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 13 \\ -7 & 12 \end{bmatrix}$$

maka a + b =

27. Diketahui matriks $A = \begin{bmatrix} x+y & x \\ y & x-y \end{bmatrix}$,

$$B = \begin{bmatrix} 1 & -\frac{1}{2}x \\ -2y & 3 \end{bmatrix}, \, \operatorname{dan} A^{T} = B, \, \operatorname{dengan}$$

 A^T menyatakan transpose dari A. Nilai x + 2y adalah (UN 2007)

- -2
- -1b.
- 0 c.
- d. 1
- 2 e.
- 28. Jika $A = \begin{bmatrix} 7 & \frac{\kappa}{2} \\ 6 & 5 \end{bmatrix}$, A^{-1} merupakan matriks invers dari A, A dan A-1 mempunyai determinan yang sama dan positif maka nilai k sama dengan

 - b. 12
 - c. $\frac{34}{3}$

 - e. -12

29. Diketahui persamaan matriks $A = 2B^T (B^T)$ adalah transpose matriks B), dengan

$$A = \begin{bmatrix} a & 4 \\ 2b & 3c \end{bmatrix} \operatorname{dan} B =$$

$$\begin{bmatrix} 2c - 3b & 2a + 1 \\ a & b + 7 \end{bmatrix}$$
. Nilai $a + b + c = \dots$

(UN 2007)

- a. 6
- d. 15
- 10
- 16
- 13
- 30. Jika M matriks berodo 2×2 dan memenuhi

$$M\begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 14 & 10 \end{bmatrix}$$
 maka matriks M^2 adalah

a.
$$\begin{bmatrix} 3 & 2 \\ 1 & -5 \end{bmatrix}$$

a.
$$\begin{bmatrix} 3 & 2 \\ 1 & -5 \end{bmatrix}$$
 d. $\begin{bmatrix} 25 & -4 \\ -2 & 15 \end{bmatrix}$

b.
$$\begin{bmatrix} 9 & 4 \\ 1 & 25 \end{bmatrix}$$

b.
$$\begin{bmatrix} 9 & 4 \\ 1 & 25 \end{bmatrix}$$
 e. $\begin{bmatrix} 27 & -8 \\ -4 & 15 \end{bmatrix}$

c.
$$\begin{bmatrix} 27 & -4 \\ -2 & 11 \end{bmatrix}$$

- Jawablah pertanyaan-pertanyaan berikut dengan benar.
- 1. Diketahui $A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$. Tentukan

- a. A^{T} ; d. AA^{T} ; b. A^{2} ; e. A^{-1} ; c. $3A^{2} A$; f. $(A^{2})^{-1}$.
- Diketahui $P = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}, Q = \begin{bmatrix} a & 1 \\ 2 & b \end{bmatrix},$

$$PQ = \begin{bmatrix} -1 & -1 \\ 5 & -1 \end{bmatrix}.$$

- Tentukan nilai a dan b.
- Tentukan matriks R sehingga RPQ
- 3. Diketahui matriks $A = \begin{bmatrix} 5 & -4 \\ 2 & -2 \end{bmatrix}$.

Jika $k \det A^T = \det A^{-1}$. Tentukan

- a. k + 1;
- $k^2 + k 1$.
- Diketahui sistem persamaan linear berikut.

$$\begin{cases} 2\sqrt{x} - 3\sqrt{y} - 1 = 0 \\ 4\sqrt{x} + 2\sqrt{y} - 10 = 0 \end{cases}$$

Tentukan nilai 3x + 4y dengan menggunakan metode matriks.

- 5. Sepuluh tahun yang lalu, perbandingan umur Amin dan Nina adalah 2:3. Perbandingan umur mereka pada saat ini 4:5. Buatlah model matematikanya dalam sistem persamaan. Kemudian, dari persamaan itu, ubahlah ke bentuk matriks. Dengan cara matriks, tentukan perbandingan umur mereka 10 tahun yang akan datang.
- 6. Diketahui matriks $A = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}$. Jika $A^2 + aA + bI = 0$, dengan I adalah matriks identitas, tentukanlah nilai a dan b.
- 7. Jika $A = \begin{bmatrix} 5 & -2 \\ 9 & -4 \end{bmatrix}$ dan $B = \begin{bmatrix} 2 & -1 \\ x & x+y \end{bmatrix}$ dan AB adalah matriks satuan, tentukan nilai x-y.
- 8. Jika $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ dan $B = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$ maka tentukan matriks $(AB)^{-1} A^{T}$.

Dengan memiliki keyakinan, keuletan, dan keberanian maka tidak ada yang menghalangi Anda untuk mencapai keberhasilan.

Latihan Ulangan Umum Semester 1

• Kerjakan di buku tugas

- A. Pilihlah jawaban yang tepat dengan memberi tanda silang (x) pada huruf a, b, c, d, atau e.
- 1. Hasil dari $\int (x^2 2x + 7) dx = ...$

a.
$$\frac{1}{2}x^3 - x^2 + 7x + c$$

b.
$$\frac{1}{2}x^3 - 2x^2 + 7x + c$$

c.
$$\frac{1}{3}x^3 - x^2 + 7x + c$$

d.
$$\frac{1}{3}x^3 + x^2 - 7x + c$$

e.
$$\frac{1}{3}x^3 + \frac{1}{2}x^2 + 7x + c$$

 Diketahui f adalah turunan dari fungsi F. Hubungan f(x) dengan F(x) adalah (Ebtanas 1995)

a.
$$\int f'(x)dx = f'(x) + c$$

b.
$$\int f(x)dx = F'(x) + c$$

c.
$$\int F'(x)dx = f(x) + c$$

d.
$$\int f'(x)dx = F(x) + c$$

e.
$$\int f(x)dx = F(x) + c$$

3. Jika F'(x) = 8x - 2 dan F(5) = 36 maka F(x) = (UMPTN 1989)

a.
$$8x^2 - 2x - 159$$
 d. $4x^2 - 2x - 54$

b.
$$8x^2 - 2x - 154$$
 e. $4x^2 - 2x - 59$

c.
$$4x^2 - 2x - 74$$

4. Jika $f(x) = \int (x^2 + 2x - 1)dx \, dan f(1) = 0$

maka
$$f(x) =$$
 (UMPTN 1994)

a.
$$\frac{1}{3}x^3 - x^2 + x - \frac{1}{3}$$

b.
$$\frac{1}{3}x^3 - \frac{x^2}{2} + \frac{x}{2} - \frac{1}{3}$$

c.
$$\frac{1}{3}x^3 + \frac{x^2}{2} - \frac{x}{2} - \frac{1}{3}$$

d.
$$\frac{1}{3}x^3 + x^2 - x - \frac{1}{3}$$

e.
$$\frac{1}{3}x^3 + 2x^2 - 2x - \frac{1}{3}$$

5.
$$\int (5x - 4)^4 dx =$$

a.
$$\frac{1}{25}(5x-4)^5 + c$$

b.
$$\frac{1}{5}(5x-4)^5 + c$$

c.
$$(5x-4)^5 + c$$

d.
$$5(5x-4)^5+c$$

e.
$$25(5x-4)^4 + c$$

6.
$$\int x^2(x-2) dx = ...$$

a.
$$\frac{1}{2}x^4 - \frac{1}{3}x^3 + c$$

b.
$$\frac{1}{4}x^4 - \frac{2}{3}x^3 + c$$

c.
$$3x^3 - 4x + c$$

d.
$$2x^3 - 4x + c$$

e.
$$3x^2 - x^3 + c$$

7.
$$\int 2x \sqrt{2x^2 + 1} \, dx = \dots$$

a.
$$3\sqrt{2x^2+1} + c$$

b.
$$\frac{3}{\sqrt{2x^2+1}} + c$$

c.
$$\frac{4}{3\sqrt{2x^2+1}} + c$$

d.
$$\frac{4}{3}(2x^2+1)\sqrt{2x^2+1}+c$$

e.
$$\frac{1}{3}(2x^2+1)\sqrt{2x^2+1}+c$$

- 8. Hasil dari $\int ax^{n+1}x^{n+2}dx$ adalah
 - a. $a^{n+2}x^n$
 - b. $\frac{a^{n+1}}{n+1} x^{n+3} + c$, $n \neq -1$
 - c. $\frac{a^{n+1}}{n+2} x^{n+2} + c$, $n \neq -2$
 - d. $\frac{a^{n+1}}{n+3}x^{n+3}+c, n \neq -3$
 - e. $\frac{n+2}{a^{n+2}} x^{n+3} + c$
- 9. F'(x) = (x + 1)(x + 2). Jika $F(-3) = \frac{3}{2}$

maka

 $F(x) = \dots \text{ (UMPTN 1996)}$

- a. $\frac{1}{3}x^3 + \frac{3}{2}x^2 + 2x$
- b. $\frac{1}{3}x^3 + \frac{3}{2}x^2 2x$
- c. $\frac{1}{3}x^3 + \frac{3}{2}x^2 + 2x 3$
- d. $\frac{1}{3}x^3 + \frac{3}{2}x^2 + 2x + 3$
- e. $(x+1)^2 \frac{(x+2)^2}{4}$
- 10. Luas daerah yang dibatasi kurva $y = 6(1 x^2)$ dan sumbu X adalah ... satuan luas.
 - a. $7\frac{1}{3}$
 - b. 8
 - c. $8\frac{2}{3}$
 - d. 9
 - e. $9\frac{1}{3}$
- 11. Luas daerah yang dibatasi oleh kurva y = x(6-x) dan y = x(x-2) ... satuan luas.

- a. $21\frac{1}{3}$
- b. 16
- c. $10\frac{2}{3}$
- d. $8\frac{2}{3}$
- e. $5\frac{1}{3}$
- 12. Luas daerah yang dibatasi oleh kurva $y = x^2 + 6x 5$ dan sumbu *X* adalah (UMPTN 1991)
 - a. $\frac{30}{3}$
- d. $\frac{33}{3}$
- b. $\frac{31}{3}$
- e. $\frac{34}{3}$
- c. $\frac{32}{3}$
- 13. Luas daerah yang dibatasi oleh kurva $y = x^2 3x 4$ dan sumbu X serta garis x = 2 dan x = 6 adalah (UMPTN 1995)
 - a. $5\frac{1}{3}$ satuan luas
 - b. $7\frac{1}{3}$ satuan luas
 - c. $12\frac{2}{3}$ satuan luas
 - d. 20 satuan luas
 - e. $20\frac{5}{6}$ satuan luas
- 14. Daerah D dibatasi oleh grafik fungsi

$$y = \frac{1}{\sqrt{x}}$$
, garis $x = 1$, garis $x = 4$, dan

sumbu X. Jika garis x=c memotong daerah D sehingga menjadi daerah D_1 dan D_2 luasnya sama maka nilai $c=\dots$ (SPMB 2002)

- a. 2
- d. $2\frac{1}{2}$
- b. $\sqrt{5}$
- e. $\sqrt{6}$
- c. $2\frac{1}{4}$

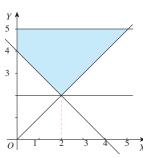
15. Fungsi pendapatan marginal dari suatu pabrik dirumuskan dengan x(Q) = 12 - Q dengan Q unit barang. Misalkan y(Q) adalah pendapatan total penjumlahan. Hubungan x(Q) dan y(Q) dinyatakan sebagai berikut.

$$x(Q) = \lim_{h \to 0} \frac{y(Q+h) - y(Q)}{h} (x \text{ dan } y)$$

dalam ribuan rupiah)

Dari 2 unit barang, pendapatan yang diperoleh adalah 26 ribu rupiah. Rumus fungsi pendapatan total adalah

a.
$$4 + 12Q - \frac{1}{2}Q^2$$


b.
$$-4 + 12Q - \frac{1}{2}Q^2$$

c.
$$6 + 12Q - \frac{1}{2}Q^2$$

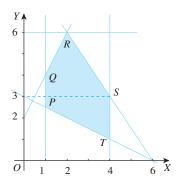
d.
$$6 + 12Q + Q^2$$

e.
$$6 - 12Q - Q^2$$

- 16. Nilai maksimum fungsi sasaran z = 3x + 6y + 3 dengan syarat $4x + 5y \le 20$; $2x + 7y \le 14$; $x \ge 0$, dan $y \ge 0$ adalah
 - a. 29
- d. 20
- b. 26
- e. 17
- c. 23
- 17. Jika (x, y) terletak pada daerah yang dibatasi oleh $x \ge 0$, $y \ge 0$, dan $y + 1 \le x \le 2 y$ maka nilai terbesar dari 2x + y adalah
 - a. 10
- d. 4
- b. 6,5
- e. 3,5
- c. 4,5
- 18. Nilai minimum dari z=2x+3y untuk (x, y) benda pada daerah yang diarsir adalah
 - a. 5
 - b. 10
 - c. 12
 - d. 15
 - e. 25

19. Nilai maksimum dari z = x + y - 6 yang memenuhi

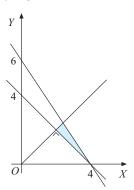
$$3x + 8y \le 340$$


$$7x + 4y \le 280$$

$$x \ge 0$$

$$y \ge 0$$

adalah


- a. 48
- d. 51
- b. 49
- e. 52
- c. 50
- 20. Perhatikan gambar berikut.

Pada daerah yang diarsir, fungsi sasaran z = 10x + 5y mencapai nilai minimum di titik

- a. *P*
- d. S
- b. *Q*
- e. *T*
- c. F
- 21. Nilai maksimum dari z = 10x + 20y dengan kendala $x \ge y$ 0, $y \ge 0$, $x + 4y \le 120$, $x + y \le 60$ adalah (SPMB 2004)
 - a. 400
- d. 700
- b. 500
- e. 800
- c. 600
- 22. Jumlah dari dua bilangan real tak negatif *x* dan 2*y* tidak lebih besar daripada 10. Jika *y* + 8 tidak lebih kecil daripada 2*x*, maka nilai maksimum dari 3*x* + *y* adalah
 -
 - a. 4
 - b. 12
 - c. 15
 - d. 18 e. 20

23. Nilai maksimum z = 5x + 10 di daerah yang diarsir adalah (UMPTN 1997)

- 24. Tukang jahit pakaian mempunyai kain polos 25 m dan kain batik 20 m akan membuat baju dengan 2 model. Model I memerlukan 1 m kain polos dan 2 m kain batik. Model II memerlukan 2 m kain polos dan 1 m kain batik. Jumlah total produk pakaian yang dihasilkan mencapai maksimum jika Model I dan Model II masing-masing jumlahnya (UMPTN 2000)
 - a. 10 dan 5
 - b. 5 dan 10
 - c. 8 dan 7
 - d. 7 dan 8
 - e. 9 dan 6
- 25. Nilai minimum dari z = 3x + 6y yang memenuhi syarat:

$$4x + y > 20$$

$$x + y < 20$$

$$x + y > 10$$

adalah (UMPTN 2001)

- a. 50
- b. 40
- c. 30
- d. 20
- e. 10
- 26. Diketahui model matematika berikut.

$$x + y \le 6$$

$$2x + 3y \le 15$$

 $x \ge 1$

 $y \ge 2$

Nilai maksimum untuk 3x + 4y = ...

a. 9

10

d. 12

b.

60

40

36

20 16

b.

c.

d.

e.

e. 13

- c. 11
- 27. Seorang pemilik toko sepatu ingin mengisi tokonya dengan sepatu laki-laki paling sedikit 100 pasang dan sepatu wanita paling sedikit 150 pasang. Toko tersebut dapat memuat 400 pasang sepatu. Keuntungan tiap pasang sepatu laki-laki Rp1.000,00 dan setiap pasang sepatu wanita Rp500,00. Jika banyaknya sepatu laki-laki tidak boleh melebihi 150 pasang, maka keuntungan terbesar diperoleh (UMPTN 1990)
 - a. Rp200.000,00
 - b. Rp250.000,00
 - c. Rp275.000,00
 - d. Rp300.000,00
 - e. Rp350.000,00
- 28. Luas daerah parkir 176 m². Luas ratarata untuk mobil sedan 4 m² dan bus 20 m². Kapasitas maksimum tempat parkir itu 20 mobil. Biaya parkir untuk mobil sedan Rp2.000,00 per jam dan untuk bus Rp4.000,00 per jam. Jika dalam 1 jam tidak ada kendaraan yang pergi dan datang maka hasil maksimum tempat parkir itu adalah
 - a. Rp34.500,00
 - b. Rp45.000,00
 - c. Rp50.000,00
 - d. Rp52.000,00
 - e. Rp54.500,00
- 29. Seorang pedagang kaki lima menyediakan uang Rp165.000,00 untuk membeli majalah jenis *A* dengan harga Rp2.000,00 per eksemplar dan majalah jenis *B* dengan harga Rp5.000,00 per eksemplar. Jumlah majalah jenis *A* yang ia beli tidak kurang dari 3 kali jumlah majalah jenis *B*. Ia mengambil keuntungan Rp300,00/eksemplar majalah jenis *A* dan Rp400,00/eksemplar majalah jenis *B*. Jika barang-barang yang

ia beli dengan cara-cara tersebut terjual habis, keuntungan maksimum yang diperoleh pedagang kaki lima itu adalah

- Rp16.200,00
- b. Rp18.600,00
- Rp22.500,00 c.
- Rp24.800,00
- e. Rp25.200,00
- 30. Misalkan suatu perguruan tinggi dalam menjaring calon mahasiswanya dilakukan dengan tes Matematika dan Akuntansi. Calon itu dinyatakan lulus jika Matematika memperoleh nilai tidak kurang dari 7 dan tes Akuntansi dengan nilai tidak kurang dari 5, sedangkan jumlah nilai Matematika dan Akuntansi tidak boleh kurang dari 13. Nayla, calon mahasiswa perguruan tinggi itu, memiliki nilai sebagai berikut. Jumlah dua kali nilai Matematika dan tiga kali nilai Akuntansi adalah 30. Dengan keadaan yang demikian maka Nayla
 - pasti ditolak
 - pasti diterima b.
 - diterima, asalkan nilai Matematikanya lebih dari 9
 - diterima, asalkan nilai Akuntansinya tidak kurang dari 5
 - diterima, hanya jika nilai Akuntansinya 6

31. Jika
$$B = \begin{bmatrix} -2 & 5 \\ 1 & -3 \end{bmatrix} \operatorname{dan} AB = \begin{bmatrix} 0 & -1 \\ -2 & 3 \end{bmatrix}$$

maka matriks A =

a.
$$\begin{bmatrix} 4 & 3 \\ -2 & -1 \end{bmatrix}$$
 d.
$$\begin{bmatrix} 3 & -4 \\ 1 & -2 \end{bmatrix}$$

d.
$$\begin{bmatrix} 3 & -4 \\ 1 & -2 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 e. $\begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$

c.
$$\begin{bmatrix} -1 & -2 \\ 3 & 4 \end{bmatrix}$$

32. Misalkan |A| adalah determinan dari matriks A. Diberikan $A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$. Nilai

dari
$$|A^{-1}|^4 =$$

e.
$$\frac{1}{81}$$

33. Misalkan persamaan matriks

$$\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \end{bmatrix}$$
 dapat ditulis $AX = B$.

Matriks |A|B, untuk |A| determinan dari A adalah

a.
$$\begin{bmatrix} 16 \\ 2 \end{bmatrix}$$

b.
$$\begin{bmatrix} 24 \\ 3 \end{bmatrix}$$

c.
$$\begin{bmatrix} 4.096 \\ 4 \end{bmatrix}$$

e.
$$\begin{bmatrix} 262.144 \\ 6 \end{bmatrix}$$

34. Misalkan diberikan matriks A =

$$\begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix}$$
. Jika |A| menyatakan determinan dari matriks A dan A^{-1}

menyatakan invers dari matriks A maka

$$\frac{|A^{-1}|}{|A|} = \dots$$

35. Misalkan diberikan matriks A =

$$\begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$$
. Matriks $A^3 = \dots$

a.
$$\begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix}$$

b.
$$\begin{bmatrix} -7 & 30 \\ 60 & -67 \end{bmatrix}$$

c.
$$\begin{bmatrix} -7 & 30 \\ -60 & -67 \end{bmatrix}$$

d.
$$\begin{bmatrix} 17 & -4 \\ 9 & 8 \end{bmatrix}$$

e.
$$\begin{bmatrix} -9 & 4 \\ 8 & -17 \end{bmatrix}$$

36. Jika
$$A = \begin{bmatrix} 3 & -5 \\ 2 & -2 \end{bmatrix}$$
 dan $AB = I$, dengan I

matriks satuan maka $B = \dots$ (UMPTN 1998)

a.
$$\begin{bmatrix} -2 & -2 \\ 5 & 3 \end{bmatrix}$$
 d. $\begin{bmatrix} -\frac{1}{2} & \frac{5}{4} \\ -\frac{1}{3} & \frac{3}{4} \end{bmatrix}$

b.
$$\begin{bmatrix} -2 & 5 \\ -2 & 3 \end{bmatrix}$$
 e. $\begin{bmatrix} \frac{1}{2} & -\frac{5}{4} \\ \frac{1}{2} & -\frac{3}{4} \end{bmatrix}$

c.
$$\begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \\ \frac{5}{4} & \frac{3}{4} \end{bmatrix}$$

37. Jika
$$A = \begin{bmatrix} 3 & -5 \\ 1 & -2 \end{bmatrix}$$
, A^T adalah tranpose dari

matriks A dan A^{-1} adalah invers dari matriks A maka $A^{T} + A^{-1} =$ (SPMB 2002)

a.
$$\begin{bmatrix} 5 & -4 \\ -6 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & 6 \\ -6 & 1 \end{bmatrix}$$

c.
$$\begin{bmatrix} 1 & -4 \\ -4 & 1 \end{bmatrix}$$

d.
$$\begin{bmatrix} 5 & -4 \\ -4 & -5 \end{bmatrix}$$

e.
$$\begin{bmatrix} -5 & -4 \\ 4 & 5 \end{bmatrix}$$

38. Jika bilangan real *a*, *b*, dan *c* memenuhi persamaan

$$a \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - 2b \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

maka a + b + c = (SPMB 2004)

a.
$$\frac{1}{4}$$

b.
$$\frac{1}{2}$$

39. Jika
$$\begin{bmatrix} 4 & 1 \\ 3 & a \end{bmatrix} \begin{bmatrix} -1 & a \\ 2a+b & 7 \end{bmatrix} = \begin{bmatrix} 1 & 15 \\ 7 & 20 \end{bmatrix}$$

maka nilai $b = \dots$

40. Diketahui matriks
$$A = \begin{bmatrix} x & 1 \\ -1 & y \end{bmatrix}$$
,

$$B = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}, \, \operatorname{dan} C = \begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}.$$

Nilai x + y yang memenuhi persamaan AB - 2B = C adalah

0

41. Diketahui matriks $A = \begin{bmatrix} 1 & a+b \\ b & c \end{bmatrix}$,

$$B = \begin{bmatrix} a - 1 & 0 \\ -c & d \end{bmatrix}, \, \operatorname{dan} \, C = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Jika $A + B^T = C^2$, dengan B^T notasi untuk transpose matriks B maka nilai d = ...

- -1
- h. -2
- c. 0
- 1 d.
- e.
- 42. A^T adalah notasi untuk transpose dari matriks A.

Jika
$$C = \begin{bmatrix} \frac{4}{7} & \frac{-1}{7} \\ \frac{-1}{7} & \frac{2}{7} \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 2 \\ 2 & 8 \end{bmatrix}$, dan $A = \begin{bmatrix} 4 & 2 \\ 2 & 8 \end{bmatrix}$

 C^{-1} maka determinan dari matriks $A^{T}B$ adalah

- -196
- h. -188
- 188 c.
- 196 d.
- 212 e.
- 43. Nilai *t* yang memenuhi $\begin{vmatrix} t-2 & -3 \\ -4 & t-1 \end{vmatrix} = 0$

adalah

- d. 5

- e. $-2 \operatorname{dan} 5$
- 2 e. $-2 \operatorname{dan} 2$

44. Jumlah akar-akar persamaan

$$\begin{vmatrix} 2x-1 & 2 \\ x+2 & x+2 \end{vmatrix} = 0 \text{ adalah}$$

- $-3\frac{1}{2}$
- c.
- d. $\frac{1}{2}$
- e. $3\frac{1}{2}$
- 45. Jika persamaan garis lurus yang dinya-

takan oleh
$$\begin{vmatrix} 1 & x & y \\ a & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0 \text{ memiliki}$$

gradien 2, nilai a =

- a. 0
- 1
- 2
- d. −1

- Jawablah pertanyaan-pertanyaan berikut dengan benar.
- Tentukan $\int 3(x-5)^3 dx$.
- Tentukan $\int x^3 (5-x)^2 dx$.
- Tentukan $\int x^2 \sqrt[3]{(1-x)^2} dx$.
- Tentukan $\int (1 + (1 + (1 + x)^2)^2 dx$.
- Tentukan luas daerah yang dibatasi oleh $y = x^2 - 3x - 4$, sumbu X, x = 2, dan x = 6.
- 6. Suatu industri rumah tangga memproduksi dua jenis roti, yaitu roti jenis A dan roti jenis B. Roti jenis A memerlukan 150 g tepung dan 50 g mentega. Roti jenis B memerlukan 75 g tepung dan 75 g mentega. Banyaknya tepung yang tersedia adalah 2,25 kg, sedangkan banyaknya mentega yang

tersedia adalah 1,25 kg. Pemilik industri rumah tangga itu ingin membuat kedua jenis roti tersebut sebanyak-banyaknya. Buatlah model matematika dari masalah tersebut.

- 7. Jika matriks $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$, tentukan nilai x yang memenuhi persamaan |A xI| = 0 dengan I matriks satuan dan |A xI| determinan dari matriks A xI.
- 8. Diketahui $B = \begin{bmatrix} 3 & 1 \\ 2 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 2 \\ 3 & -6 \end{bmatrix}$ dan determinan dari matrik B. Jika garis 2x y = 5 dan x + y = 1 berpotongan di titik A, tentukan persamaan garis yang

melalui A dan bergradien k.

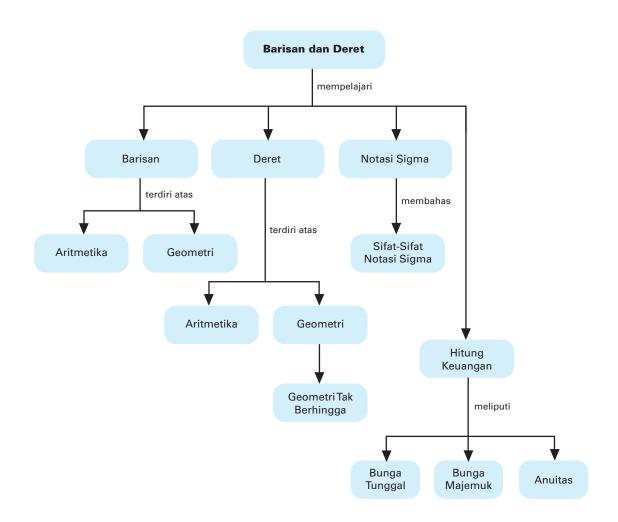
Bab

IV

Tujuan Pembelajaran

Setelah mempelajari bab ini, diharapkan kalian dapat

- menjelaskan ciri barisan aritmetika dan barisan geometri;
- merumuskan suku ken dan jumlah n suku deret aritmetika dan deret geometri;
- menentukan suku ke-n dan jumlah n suku deret aritmetika dan deret geometri;
- menjelaskan ciri deret geometri tak hingga yang mempunyai jumlah:
- 5. menghitung jumlah deret geometri tak hing-
- menuliskan suatu deret aritmetika dan geometri dengan notasi sigma;
- menjelaskan karakteristik masalah yang model matematikanya berbentuk deret aritmetika atau geometri;
- merumuskan dan menyelesaikan deret yang merupakan model matematika dari masalah;
- menjelaskan rumusrumus dalam hitung keuangan dengan deret aritmetika atau geometri;
- menentukan bunga tunggal, bunga majemuk, dan anuitas.


Sumber: www.exterpassive.com

Barisan dan Deret

Motivasi

Pernahkah kalian mengamati lingkungan sekitar? Di sekeliling kalian tentulah banyak terjadi hal-hal yang bersifat rutin. Kejadian rutin adalah kejadian yang mempunyai pola atau keteraturan tertentu. Amati pola susunan biji pada bunga matahari. Amati pola pertumbuhan populasi makhluk hidup tertentu. Kedua contoh itu sebenarnya membentuk pola keteraturan tertentu berupa barisan. Kita dapat memperkirakan suku pada waktu tertentu. Salah satunya adalah keteraturan populasi makhluk hidup. Untuk menghitung dan memperkirakannya, diperlukan suatu cara tertentu agar lebih mudah menyelesaikannya, yaitu dengan konsep barisan dan deret.

Peta Konsep

Kata Kunci

- angsuran
- anuitas
- barisan
- barisan berhingga
- batas atas
- batas bawah
- beda
- bunga

- bunga majemuk
- bunga tunggal
- deret
- deret tak hingga
- jumlahan Riemann
- konvergen
- modal
- periode bunga

- pola bilangan
- rasio
- sigma
- suku
- suku awal
- suku ke-n
- suku tetap

Sebelumnya, kalian pernah belajar barisan dan deret ketika duduk di bangku SMP. Pada pokok bahasan ini akan dibahas secara mendalam tentang barisan dan deret, serta hal-hal yang terkait dengan barisan dan deret. Kemudian, akan dijelaskan tentang kegunaan barisan dan deret dalam kehidupan sehari-hari.

Sebelum kalian mempelajari materi ini secara mendalam, perlu kalian ingat kembali tentang pola bilangan yang telah kalian pelajari. Untuk itu, kerjakan soal-soal berikut berikut terlebih dahulu.

Prasyarat

Kerjakan di buku tugas

- 1. Tentukan rumus umum suku ke-*n* dari pola bilangan berikut.
 - a. 1, 4, 7, 10, 13, ...
 - b. 2, 7, 12, 17, ...
- 2. Jika diketahui rumus suku ke-n adalah $U_n = 4n + 7$, tentukan 5 suku pertamanya.
- 3. Menurutmu, apa bedanya barisan dan deret?

Setelah kalian mampu menjawab soal-soal di atas, mari kita lanjutkan ke materi berikut.

A. Barisan dan Deret

Kalian tentu pernah berpikir tentang nomor rumah di sisi kiri jalan yang bernomor ganjil 1, 3, 5, 7, dan seterusnya, sedangkan nomor rumah di sisi kanan jalan bernomor genap 2, 4, 6, 8, dan seterusnya. Mungkin juga kalian pernah berpikir dari mana para pakar menyatakan bahwa 10 tahun ke depan penduduk Indonesia akan menjadi *x* juta jiwa.

Dua contoh di atas berkaitan dengan barisan dan deret dari suatu bilangan.

1. Barisan Bilangan

Misalkan seorang anak diberi uang saku orang tuanya setiap minggu Rp10.000,00. Jika setiap minggu uang sakunya bertambah Rp500,00 maka dapat dituliskan uang saku dari minggu ke minggu berikutnya adalah Rp10.000,00, Rp10.500,00, Rp11.000,00, Rp11.500,00,

Susunan bilangan-bilangan yang sesuai dengan contoh di atas adalah

Perhatikan bahwa dari bilangan-bilangan yang disusun berbentuk 10.000, 10.500, 11.000, 11.500, ... mempunyai keteraturan dari urutan pertama, kedua, ketiga, keempat, dan seterusnya, yaitu bilangan berikutnya diperoleh dari bilangan sebelumnya ditambah 500. Bilangan-bilangan yang disusun urut dengan aturan tertentu seperti itulah dikenal dengan nama *barisan bilangan*.

Secara matematis, barisan bilangan merupakan nilai fungsi dengan daerah definisinya adalah bilangan asli. Misalkan barisan bilangan ditulis lambang U untuk menyatakan urutan suku-sukunya maka bilangan pertama ditulis U(1) atau U_1 , bilangan kedua ditulis U(2) atau U_2 , dan seterusnya. Jika kita buat korespondensi, akan terlihat seperti berikut.

 U_1 U_2 U_3 U_4 ... U_n Jadi, bentuk umum barisan bilangan adalah U_1 , U_2 , U_3 , ..., U_n , ... Dalam hal ini, $U_n = f(n)$ disebut rumus umum suku ke-n dari barisan bilangan.

Contoh 1:

Diketahui barisan bilangan dengan suku ke-n berbentuk $U_n = n^2 - 2n$. Tuliskan 5 suku pertama dari barisan tersebut.

Jawab:

Rumus suku ke-n adalah $U_n = n^2 - 2n$.

Suku pertama dapat dicari dengan menyubstitusikan n=1 dan diperoleh $U_1=1^2-2(1)=-1$. Suku kedua dicari dengan menyubstitusikan n=2 dan diperoleh $U_2=2^2-2(2)=0$.

Dengan cara yang sama, diperoleh sebagai berikut.

Suku ketiga = $U_3 = 3^2 - 2(3) = 3$.

Suku keempat = $U_4 = 4^2 - 2(4) = 8$.

Suku kelima = $U_5 = 5^2 - 2(5) = 15$.

Jadi, lima suku pertama dari barisan itu adalah -1, 0, 3, 8, 15.

Misalkan diberikan suatu barisan bilangan dengan suku ke-n dari barisan bilangan tersebut tidak diketahui. Dapatkah kita menentukan rumus suku ke-n? Hal ini tidak selalu dapat ditentukan, tetapi pada beberapa barisan kita dapat melakukannya dengan memerhatikan pola suku-suku barisan tersebut.

Contoh 2:

Diketahui barisan bilangan 4, 7, 12, 19,

- Tentukan rumus suku ke-n.
- Suku keberapa dari barisan tersebut yang bernilai 199?

Jawab:

Barisan bilangan: 4, 7, 12, 19, ...

a. Suku ke-1 =
$$U_1$$
 = 4 = 1^2 + 3

Suku ke-2 =
$$U_2 = 7 = 2^2 + 3$$

Suku ke-3 =
$$U_3^2$$
 = 12 = 3^2 + 3

Suku ke-
$$4 = U_4^3 = 19 = 4^2 + 3$$

Suku ke-
$$n = U_n = n^2 + 3$$

Jadi, rumus suku ke-*n* barisan tersebut adalah $U_n = n^2 + 3$.

Diketahui suku ke-n = 199, berarti

$$U_{n} = 199$$

$$\Leftrightarrow n^2 + 3 = 199$$

$$\Leftrightarrow$$
 $n^2 = 196$

Karena $n^2 = 196$ maka $n_1 = 14$ atau $n_2 = -14$ (dipilih nilai *n* positif).

Mengapa tidak dipilih n = -14?

Jadi, suku yang nilainya 199 adalah suku ke-14.

Deret Bilangan 2.

Misalkan kita mempunyai barisan bilangan U_1 , U_2 , U_3 , ..., U_n dan S_n adalah jumlah dari suku-suku barisan itu. $S_n = U_1 + U_2$ $+ U_3 + ... + U_n$ disabut *deret*.

Jadi, deret adalah jumlahan suku-suku dari suatu barisan.

Mari Berdiskusi Berpikir Kritis

Apakah deret suatu bilangan dapat disebut suatu barisan? Apa perbedaan barisan dengan deret? Jika pola suku dari deret suatu bilangan diketahui, dapatkan rumus sukunya diketahui?

Soal Kompetensi 1

Tuliskan lima suku pertama dari barisan bilangan berikut.

a.
$$U_n = 4n - 5$$

$$U_n = 4n - 5$$
 d. $U_n = (-1)^n + 2n$

• Kerjakan di buku tugas

b.
$$U_n = 2 - n^2$$

b.
$$U_n = 2 - n^2$$
 e. $U_n = \frac{1}{n^2} + \frac{4}{5}$

c.
$$U_n = (-1)^n$$

c.
$$U_n = (-1)^n$$
 f. $U_n = \frac{1}{2}n + 4$

- 2. Diketahui rumus suku ke-*n* dari suatu barisan adalah $U_n = 3n^2 2$.
 - a. Tentukan empat suku pertama barisan tersebut.
 - b. Suku keberapa dari barisan tersebut yang bernilai 430?
- 3. Tentukan rumus suku ke-*n* dari barisan berikut, kemudian tentukan suku ke-20 dan suku ke-30.
 - a. 3, 5, 7, 9, ...
 - b. 3, 12, 37, 48, ...
 - c. -4, 10, -18, 28, ...
 - d. $\frac{1}{4}, \frac{2}{5}, \frac{3}{6}, \frac{4}{7}, \dots$
 - e. $-\frac{3}{9}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81}, \dots$
- 4. Diketahui suku ke-n dari suatu barisan bilangan adalah $U_n = an + b$.

Jika $U_3 = 18$ dan $U_5 = 28$, tentukan U_{20} .

- 5. Diketahui rumus suku ke-*n* barisan bilangan adalah $U_n = an^2 + b$, $U_2 + U_4 = 50$, dan $U_{10} U_5 = 150$. Tentukan
 - a. U_n ; d. $\frac{U_{n+1}}{U_n}$;
 - b. U_{50} ; e. jumlah 10 suku pertama;
 - c. $U_{n+1}^{30} U_n$; f. jumlah 15 suku pertama.
- 6. Diketahui rumus suku ke-*n* dari suatu barisan adalah $U_n = 2n^2 4n + 3$.
 - a. Tentukan lima suku pertama dari barisan tersebut.
 - b. Suku keberapa dari barisan tersebut yang bernilai 393?
 - c. Suku keberapa dari barisan tersebut yang bernilai 1.923?
- 7. Diketahui rumus suku ke-*n* barisan bilangan adalah $U_n = an^2 + b$. Jika $U_2 = 23$ dan $U_4 = 47$, tentukan
 - a. U_n ;
- d. jumlah 4 suku pertama;
- b. U_{20}^{n} ;
- e. U_{n+1} .
- c. $U_{15} + U_{7}$;
- 8. Diketahui rumus suku ke-(n + 1) dari suatu barisan bilangan adalah $U_{n+1} = an + b$. Jika $U_4 = 11$ dan $U_2 + U_7 = 27$, tentukan
 - a. rumus U_{n+1} ;
 - b. rumus U_n ;
 - c. rumus U_{n-1} ;
 - d. jumlah 5 suku pertama;
 - e. $U_{10} + U_{15}$.

- 9. Tentukan rumus suku ke-*n* dari barisan berikut, kemudian tentukan suku ke-10 dan ke-12.
 - a. 0, 5, 12, 21,
 - b. 2, 4, 8, 14,
 - c. $-2, 5, 16, 31, \dots$
- 10. Diketahui $U_{n-1} = an^3 + b$. Jika $U_2 = 50$ dan $U_3 U_1 = 112$ maka tentukan
 - a. nilai a dan b;
 - b. rumus U_{n-1} ;
 - c. rumus U_n ;
 - d. rumus U_{n+1} ;
 - e. $U_4 \operatorname{dan} U_5$.

B. Barisan dan Deret Aritmetika

1. Barisan Aritmetika

Indah menyisihkan sebagaian uang yang dimilikinya untuk disimpan. Pada bulan ke-1, ia menyimpan Rp20.000,00. Bulan berikutnya ia selalu menaikkan simpanannya Rp500,00 lebih besar dari bulan sebelumnya. Besar simpanan (dalam rupiah) Indah dari pertama dan seterusnya dapat ditulis sebagai berikut.

Bulan Ke-1	Bulan Ke-2	Bulan Ke-3	Bulan Ke-4	•••
20.000	20.500	21.000	21.500	

Jika kalian amati, selisih suku barisan ke suku berikutnya selalu tetap, yaitu 500.

Barisan seperti ini dinamakan barisan aritmetika. Jadi, dapat disimpulkan sebagai berikut.

Barisan aritmetika adalah suatu barisan bilangan yang selisih setiap dua suku berturutan selalu merupakan bilangan tetap (konstan).

Bilangan yang tetap tersebut disebut beda dan dilambangkan dengan b.

Perhatikan juga barisan-barisan bilangan berikut ini.

- a. 1, 4, 7, 10, 13, ...
- b. 2, 8, 14, 20, ...
- c. 30, 25, 20, 15, ...

Barisan-barisan tersebut merupakan contoh dari barisan aritmetika. Mari kita tinjau satu per satu.

a.
$$1, 4, 7, 10, 13, \dots$$

Pada barisan ini, suku berikutnya diperoleh dari suku sebelumnya ditambah 3. Dapat dikatakan bahwa beda sukunya 3 atau b = 3.

b.
$$2, 8, 14, 20, \dots$$

Pada barisan ini, suku berikutnya diperoleh dari suku sebelumnya ditambah 6. Dapat dikatakan bahwa beda sukunya 6 atau b = 6.

Pada barisan ini, suku berikutnya diperoleh dari suku sebelumnya ditambah -5. Dapat dikatakan bahwa beda sukunya -5 atau b = -5.

Secara umum dapat dikatakan sebagai berikut.

Jika U_n adalah suku ke-n dari suatu barisan aritmetika maka berlaku $b = U_n - U_{n-1}$.

Rumus umum suku ke-n barisan aritmetika dengan suku pertama (U_1) dilambangkan dengan a dan beda dengan b dapat ditentukan seperti berikut.

$$U_1 = a$$

$$U_2 = U_1 + b = a + b$$

$$U_3 = U_2 + b = (a + b) + b = a + 2b$$

$$U_4 = U_3 + b = (a + 2b) + b = a + 3b$$

$$U_5 = U_4 + b = (a + 3b) + b = a + 4b$$

$$\vdots$$

$$U_n = U_{n-1} + b = a + (n-1)b$$

Jadi, rumus suku ke-n dari barisan aritmetika adalah

$$U_n = a + (n-1)b$$

Keterangan:
$$U_n = \text{suku ke-}n$$

 $a = \text{suku pertama}$
 $b = \text{beda}$

n = banyak suku

Contoh 1:

Tentukan suku ke-8 dan ke-20 dari barisan -3, 2, 7, 12,

Jawab:

$$-3, 2, 7, 12, \dots$$

Suku pertama adalah a=-3 dan bedanya b=2-(-3)=5. Dengan menyubstitusikan a dan b, diperoleh $U_n=-3+(n-1)5$.

Suku ke-8 :
$$U_8 = -3 + (8 - 1)5 = 32$$
.

Suku ke-20 :
$$\mathring{U}_{20} = -3 + (20 - 1)5 = 92$$
.

Contoh 2:

Diketahui barisan aritmetika –2, 1, 4, 7, ..., 40. Tentukan banyak suku barisan tersebut.

Jawab:

Diketahui barisan aritmetika –2, 1, 4, 7, ..., 40.

Dari barisan tersebut, diperoleh a=-2, b=1-(-2)=3, dan $U_n=40$.

Rumus suku ke-*n* adalah $U_n = a + (n-1)b$ sehingga

$$40 = -2 + (n-1)3$$

$$\Leftrightarrow$$
 40 = 3 n - 5

$$\Leftrightarrow$$
 3n = 45

Karena 3n = 45, diperoleh n = 15.

Jadi, banyaknya suku dari barisan di atas adalah 15.

Problem Solving

Suku ke-10 dan suku ke-14 dari barisan aritmetika berturutturut adalah 7 dan 15. Tentukan suku pertama, beda, dan suku ke-20 barisan tersebut.

Jawab:

Diketahui $U_{10} = 7$ dan $U_{14} = 15$. Dari rumus suku ke-*n* barisan aritmetika $U_n = a + (n-1)b$, diperoleh 2 persamaan, yaitu

$$U_{10} = 7$$
 sehingga diperoleh $a + 9b = 7$ (1)

$$U_{14} = 15$$
 sehingga diperoleh $a + 13b = 15$ (2)

Untuk menentukan nilai a dan b, kita gunakan metode campuran antara eliminasi dan substitusi. Dari persamaan (1) dan (2), diperoleh

$$a + 9b = 7$$
$$a + 13b = 15$$

Dengan menyubstitusikan b = 2 ke persamaan (1), diperoleh

$$-4b = -6$$
 $a + 9(2) = 7 \Leftrightarrow a = -11$

$$\Leftrightarrow b = 2$$

Dengan demikian, diperoleh suku ke-n adalah $U_n = -11 + (n-1)2$. Jadi, suku ke-20 adalah $U_{20} = -11 + (20-1)2 = 27$.

• Kerjakan di buku tugas

Soal Kompetensi 2

- 1. Pada barisan bilangan berikut, mana yang merupakan barisan aritmetika? Berikan alasan.
 - a. 2, 4, 6, 8, 10, ...
 - b. -5, 10, -15, 20, ...
 - c. $-\frac{1}{2}$, 3, -12, 28, ...
 - d. $\frac{1}{2}, \frac{7}{6}, \frac{11}{6}, \frac{5}{2}, \dots$
 - e. $\sqrt{2}$, 1 + $\sqrt{2}$, 2 + $\sqrt{2}$, 3 + $\sqrt{2}$, ...
 - f. $a, ab, ab^2, ab^3, ...$
 - g. a^2 , $a^2 + k^3$, $a^2 + 2k^3$, $a^2 + 3k^2$, ...
 - h. $-\frac{1}{3}, 0, \frac{1}{3}, \frac{2}{3}, \dots$
- 2. Carilah suku-suku yang diminta pada barisan berikut ini.
 - a. Suku ke-11 dari barisan -2, 3, 8, ...
 - b. Suku ke-29 dari barisan 20, 17, 14, 11, ...
 - c. Suku ke-21 dari barisan $\frac{1}{5}, \frac{4}{5}, 1\frac{2}{5}, 2, ...$
 - d. Suku ke-*n* dari barisan 6, 15, 24, ...
- 3. Tentukan unsur-unsur yang ditanyakan pada barisan aritmetika berikut.
 - a. $a = 8, b = 5; U_{101} = ...$
 - b. a = 3, $U_{15} = 143$; b = ...
 - c. b = 15, $U_{21} = 295$; a = ...
 - d. $a = 12, b = \frac{1}{2}, U_n = \frac{3}{16}; n = ...$
 - e. $U_{10} = 34$, $U_{17} = 62$; a = ...
 - f. $U_5 = 3$, $U_{12} = -18$, a = ...; b = ...
 - g. $U_4 = 4$, $U_8 U_3 = 15$, a = ...; b = ...
 - h. 3x + 1, 5x 3, 6x 4, ...; x = ...
 - i. 4x + 6, 2x + 7, x + 10, ...; x = ...
- 4. Sisipkan beberapa bilangan agar membentuk barisan aritmetika.
 - Empat bilangan di antara 10 dan 25
 - b. Enam bilangan di antara -6 dan 29
 - c. Tiga bilangan di antara 67 dan 7
 - d. Lima bilangan di antara 2 dan 64

- 5. Misalkan a_1 , a_2 , dan a_3 merupakan barisan aritmetika. Buktikan bahwa $a_2=\frac{a_1+a_3}{2}$.
- 6. Diketahui U_n = suku ke-n barisan aritmetika sehingga U_{n-1} = U_n b. Nyatakan U_{n-2} , ..., U_3 , U_2 , U_1 , dalam U_n , b, dan n.
- 7. Pada suatu barisan aritmetika diketahui suku ke-5 adalah 35 dan suku ke-9 adalah 43. Tentukan suku ke-35 dan suku ke-100.
- 8. Penomoran kursi paling pinggir di sebuah gedung bioskop membentuk barisan aritmetika. Jika baris ke-4 bernomor 37 dan baris ke-10 bernomor 109, terletak di baris ke berapakah nomor 313?
- 9. Jika suku kelima dari barisan aritmetika adalah $24\sqrt{3}$ dan suku kedua belas barisan aritmetika adalah $25\sqrt{3}$. Tentukan suku pertama, beda, dan suku kedua puluh satu barisan itu.
- 10. Diketahui suatu sistem persamaan linear berikut.

$$\begin{cases} 2x + y = 9 \\ -x - 2y = -28 \end{cases}$$

Misalkan x_0 dan y_0 merupakan penyelesaian dari persamaan linear tersebut. Nilai x_0 merupakan suku kedua dari barisan tersebut dan y_0 merupakan suku kelima barisan tersebut. Tentukan suku ke-7 dan ke-15 dari barisan itu.

Jendela Informasi

Informasi lebih lanjut

Pola Kuadrat dari Bilangan 9

Apakah hasil kuadrat bilangan yang disusun dari angka 9 memiliki pola tertentu? Betul sekali. Hasil kuadratnya hanya tersusun dari angka 9, 8, 1, dan 0. Jika bilangan terdiri atas n digit angka 9 (n bilangan bulat kurang dari 10) maka kuadrat bilangan tersebut adalah bilangan yang tersusun dari angka 9 sebanyak n-1, diikuti angka 8, kemudian angka 0 sebanyak n-1, dan diakhiri angka 1. Perhatikan pola berikut.

Setelah memerhatikan pola di atas, coba kalian tentukan hasil dari

- a. 9999999²
- b. 99999999²
- c. 999999999²

Deret Aritmetika

Dari sembarang barisan aritmetika, misalnya 2, 5, 8, 11, 14, ... dapat dibentuk suatu deret yang merupakan penjumlahan berurut dari suku-suku barisan tersebut, yaitu 2 + 5 + 8 + 11 + Terlihat bahwa barisan aritmetika dapat dibentuk menjadi deret aritmetika dengan cara menjumlahkan suku-suku barisan aritmetika sehingga dapat didefinisikan secara umum.

Misalkan $U_1, U_2, U_3, ..., U_n$ merupakan suku-suku dari suatu barisan aritmetika. $U_1 + U_2 + U_3 + ... + U_n$ disebut *deret aritmetika*, dengan $U_n = a + (n-1)b$.

Seperti telah kalian ketahui, deret aritmetika adalah jumlah n suku pertama barisan aritmetika. Jumlah n suku pertama dari suatu barisan bilangan dinotasikan S_n . Dengan demikian, $S_n = U_1 + U_2 + U_3 + \ldots + U_n$.

Untuk memahami langkah-langkah menentukan rumus S_n , perhatikan contoh berikut.

Contoh 1:

Diketahui suatu barisan aritmetika 2, 5, 8, 11, 14. Tentukan jumlah kelima suku barisan tersebut.

Jawab:

Jumlah kelima suku 2, 5, 8, 11, 14 dapat dituliskan sebagai berikut

$$S_5 = 2 + 5 + 8 + 11 + 14$$

$$S_5 = 14 + 11 + 8 + 5 + 2$$

$$2S_5 = 16 + 16 + 16 + 16 + 16$$

$$2S_5 = 5 \times 16$$

$$S_5 = \frac{5 \times 16}{2} \Leftrightarrow S_5 = 40$$

Jadi, jumlah kelima suku barisan tersebut adalah 40.

Setelah kalian amati contoh di atas, kita dapat menentukan rumus umum untuk S_n sebagai berikut.

Diketahui rumus umum suku ke-n dari barisan aritmetika adalah $U_n = a + (n-1)b$. Oleh karena itu,

Dengan demikian, diperoleh

$$S_n = a + (a+b) + (a+2b) + \dots + (a+(n-1)b)$$

= $a + (U_n - (n-2)b) + (U_n - (n-3)b) + \dots + U_n$(1)

Dapat pula dinyatakan bahwa besar setiap suku adalah b kurang dari suku berikutnya.

$$U_{n-1} = U_n - b$$

$$U_{n-2} = U_{n-1} - b = U_n - 2b$$

$$U_{n-3} = U_{n-2} - b = U_n - 3b$$

Demikian seterusnya sehingga S_n dapat dituliskan

$$S_n = a + (U_n - (n-1)b) + \dots + (U_n - 2b) + (U_n - b) + U_n \dots (2)$$

Dari persamaan 1 dan 2 jika kita jumlahkan, diperoleh

$$S_{n} = a + (U_{n} - (n-2)b) + (U_{n} - (n-3)b) + \dots + U_{n}$$

$$S_{n} = U_{n} + (U_{n} - b) + (U_{n} - 2b) + \dots + a$$

$$2S_{n} = (a + U_{n}) + (a + U_{n}) + \dots + (a + U_{n})$$

$$S_{n} = (a + U_{n}) + (a + U_{n}) + \dots + (a + U_{n}) + \dots + (a + U_{n})$$

Dengan demikian, $2S_n = n(a + U_n)$

$$\Leftrightarrow S_n = \frac{1}{2}n(a + U_n)$$

$$\Leftrightarrow S_n = \frac{1}{2}n(a + (a + (n-1)b))$$

$$\Leftrightarrow S_n = \frac{1}{2}n(2a + (n-1)b)$$

Jadi, rumus umum jumlah n suku pertama deret aritmetika adalah

$$S_n = \frac{1}{2}n(a + U_n)$$
 atau
$$S_n = \frac{1}{2}n[2a + (n-1)b]$$
 $Keterangan:$

$$S_n = \text{jumlah } n \text{ suku}$$

$$a = \text{suku pertama}$$

$$b = \text{beda}$$

$$U_n = \text{suku ke-}n$$

$$n = \text{benyak suku}$$

Keterangan:

 S_n = jumlah n suku pertama

n = banyak suku

Contoh 2:

Carilah jumlah 100 suku pertama dari deret 2 + 4 + 6 + 8 + ...

Diketahui bahwa a = 2, b = 4 - 2 = 2, dan n = 100.

$$\begin{split} S_{100} &= \frac{1}{2} \times 100 \; \{ 2(2) + (100 - 1)2 \} \\ &= 50 \; \{ 4 + 198 \} \\ &= 50 \; (202) \\ &= 10.100 \end{split}$$

Jadi, jumlah 100 suku pertama dari deret tersebut adalah 10.100.

Kuis

• Kerjakan di buku tugas

Sebuah deret aritmetika mempunyai suku ketiga -11 dan jumlah dua puluh suku yang pertama 230. Jumlah sepuluh suku pertama deret itu adalah

a. -40 d. -20b. -35 e.

c. -30

(UMPTN 1999)

Contoh 3:

Hitunglah jumlah semua bilangan asli kelipatan 3 yang kurang dari 100.

Jawab:

Bilangan asli kelipatan 3 yang kurang dari 100 adalah 3, 6, 9, 12, ..., 99 sehingga diperoleh a=3, b=3, dan $U_n=99$. Terlebih dahulu kita cari n sebagai berikut.

$$U_n = a + (n-1)b$$

$$\Leftrightarrow 99^n = 3 + (n-1)3$$

$$\Leftrightarrow$$
 3n = 99

$$\Leftrightarrow$$
 $n = 33$

Jumlah dari deret tersebut adalah

$$S_n = \frac{1}{2}n(a + U_n)$$

$$S_{33} = \frac{1}{2} \times 33(3+99)$$

$$= 1.683$$

Jadi, jumlah bilangan asli kelipatan 3 yang kurang dari 100 adalah 1.683.

Problem Solving

Dari suatu deret aritmetika diketahui suku pertamanya 11, bedanya 4, dan jumlah *n* suku pertamanya adalah 200. Tentukan banyaknya suku dari deret tersebut.

Jawab:

Diketahui $a = 11, b = 4, dan S_n = 200.$

Dari rumus umum jumlah n suku pertama, diperoleh

$$S_n = \frac{1}{2}n(2a + (n-1)b)$$

$$\Leftrightarrow 200 = \frac{1}{2}n [2(11) + (n-1)4]$$

$$\Leftrightarrow 400 = n(22 + 4n - 4)$$

$$\Leftrightarrow 400 = n(4n + 18)$$

$$\Leftrightarrow 4n^2 + 18n - 400 = 0$$

Jika setiap suku dibagi 2, persamaan tersebut menjadi

$$2n^2 + 9n - 200 = 0$$

$$\Leftrightarrow (n-8)(2n+25) = 0$$

$$\Leftrightarrow n = 8 \text{ atau } n = \frac{-25}{2} \text{ (diambil } n \text{ positif karena } n \text{ bilangan asli)}$$

Jadi, banyak suku deret tersebut adalah 8.

Tugas: Eksplorasi

• Kerjakan di buku tugas

Misalkan jumlah n suku pertama dari deret aritmatika adalah S_n . Berapakah nilai $S_{n+3} - 3S_{n+2} + 3S_{n+1} - S_n$?

Tugas: Eksplorasi

• Kerjakan di buku tugas

Tunjukkan bahwa $U_n = S_n - S_{n-1}$ Petunjuk: $S_n = U_1 + U_2 + U_3$ $+ \ldots + U_{n-1} + U_n$ dan $S_{n-1} = U_1$ $+ U_2 + U_3 + \ldots + U_{n-1}$

Menentukan Suku ke-*n* jika Rumus Jumlah *n* Suku Pertama Diberikan

Misalkan diberikan suku ke-n barisan aritmetika S_n . Rumus suku ke-n dapat ditentukan dengan

$$U_n = S_n - S_{n-1}$$

Selain dengan menggunakan rumus itu, ada cara lain yang sangat efektif. Misalkan jumlah n suku pertama deret aritmetika adalah $S_n = pn^2 + qn$.

Suku ke-n dapat ditentukan dengan

$$U_n = 2pn + (q - p)$$

dengan beda 2p.

Contoh:

Jumlah n suku pertama dari deret aritmetika adalah $S_n = 2n^2 - 4n$. Tentukan suku ke-n deret tersebut dan bedanya. Tentukan pula U_9 .

Jawab:

$$S_n = 2n^2 - 4n \rightarrow p = 2, q = -4$$

$$U_n = 2pn + (q - p)$$

$$= 2 \cdot 2 \cdot n + (-4 - 2)$$

$$= 4n - 6$$
Rado = 2n

Beda =
$$2p$$

= $2(2) = 4$

Suku ke-10 dapat ditentukan dengan $U_{q} = S_{q} - S_{g}$

$$S_9 = 2(9^2) - 4(9) = 126$$

$$S_8 = 2(8^2) - 4(8) = 96$$

Jadi,
$$U_9 = 126 - 96 = 30$$
.

Soal Kompetensi 3

• Kerjakan di buku tugas

. Hitunglah jumlah deret aritmetika berikut ini.

a.
$$1 + 4 + 7 + 10 + \dots$$
 (20 suku)

b.
$$96 + 93 + 90 + \dots$$
 (15 suku)

c.
$$-20 - 16 - 12 - 8 - \dots$$
 (30 suku)

d.
$$1 + 3.5 + 6 + 8.5 + \dots$$
 (12 suku)

2. Tentukan unsur-unsur yang diminta.

a.
$$a = 5$$
, $U_5 = 11$, $S_{20} = ...$

b.
$$b = 2$$
, $S_{20} = 500$, $a = ...$

c.
$$a = 15, b = -3, S_n = 42, n = ...$$

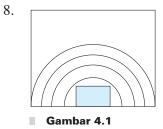
d.
$$a = 3$$
, $U_n = 87$, $U_6 + U_7 = 39$, $S_n = ...$

3. Tentukan nilai *m* jika

a.
$$5 + 8 + 11 + \dots + m = 220$$
;

b.
$$50 + 46 + 42 + ... + m = 330$$
.

4. Tentukan beda dan suku yang diminta untuk deret berikut.


a.
$$S_n = 3n^2 - 9$$
; U_8

b.
$$S_n^n = 4(1 - n^2) - 1$$
; U_{11}

c.
$$S_n^n = -2n^2 + 1$$
; U_{100}

5. Tentukan jumlah semua bilangan berikut.

- a. Bilangan asli ganjil kurang dari 100.
- b. Bilangan asli kurang dari 500 yang habis dibagi 5.
- c. Bilangan kelipatan 4 antara 25 dan 200.
- d. Bilangan asli kurang dari 300 yang tidak habis dibagi 6.
- e. Bilangan kelipatan 3 antara 25 dan 200.
- 6. Seorang pemilik kebun memetik jeruk setiap hari, kemudian mencatat banyak jeruk yang dipetik. Ternyata, pada hari pertama ia memperoleh hasil 75 buah. Hari kedua ia memperoleh 125 buah. Tentukan jumlah jeruk yang ia petik selama 20 hari pertama jika jumlah jeruk yang dipetik mengikuti pola barisan aritmetika.
- 7. Di sebuah pabrik genting, seorang pekerja mampu menghasilkan 5 lusin genting dalam waktu 1 hari. Jika tiap hari ia diharuskan dapat menambah produksinya sebanyak 1 lusin, dalam berapa harikah ia dapat menghasilkan 2.160 buah genting?

Bagan di samping adalah bagan suatu auditorium. Baris pertama memuat 20 kursi, baris kedua 25 kursi, barisan ketiga memuat 30 kursi, dan seterusnya. Berapa jumlah kursi yang ada jika dalam auditorium itu terdapat 12 baris?

- 9. Dian dan Ferdi mulai menabung di bank pada saat yang sama. Pada awal menabung Dian menabung Rp80.000,00 dan tiap bulan menabung Rp1.500,00 lebih banyak dari uang yang ditabungkan bulan berikutnya. Ferdi pada awalnya menabung Rp100.000,00 dan bulan berikutnya menabung Rp1.000,00 lebih banyak dari bulan sebelumnya. Tentukan pada bulan keberapakah jumlah tabungan mereka tepat sama.
- 10. Seorang pedagang meminjam modal *x* rupiah di Bank Wangsa dengan bunga tunggal 2% sebulan. Setelah satu tahun, ia mengembalikan pinjaman dan bunga semuanya Rp310.000,00. Tentukan berapa rupiah modal yang dipinjam oleh pedagang tersebut.

Tantangan Eksplorasi

• Kerjakan di buku tugas

Seorang salesman berkeliling menawarkan produknya dengan menggunakan sepeda motor. Misalkan pada minggu pertama ia melakukan perjalanan sejauh 1.150 km dan setiap minggu berikutnya jaraknya berkurang 75 km. Berapa uang yang harus ia keluarkan untuk mengisi bensin sampai dengan akhir bulan ke-3 jika harga bensin per liternya Rp4.500,00 dan tiap liternya dapat menempuh jarak 30 km?

Jendela Informasi

Informasi lebih lanjut

Pythagoras

Sumber:
segue.middlebury.edu

Teorema yang Mengharukan

Apakah kamu tahu teorema yang dikemukakan Pierre de Fermat (1601–1665)? Teorema ini dikembangkan dari teorema Pythagoras yang sangat masyur itu. Menurut teorema Pythagoras, ada banyak pasangan bilangan a, b, dan c yang memenuhi $c^2 = a^2 + b^2$, seperti 5, 3, dan 4 (beserta kelipatannya); 13, 12, dan 5 (beserta kelipatannya); 25, 24, dan 7 (beserta kelipatannya); dan seterusnya.

Pierre de Fermat mengklaim, tidak ada bilangan bulat a, b, dan c yang memenuhi $c^n = a^n + b^n$, untuk n > 2. Namun, pembuktiannya saat itu masih dipertanyakan. Banyak ilmuwan yang penasaran dengan teorema yang dilontarkan Fermat. Paul Wolfskehl, profesor matematik asal Jerman, awal tahun 1900an berusaha membuktikan teorema tersebut, namun gagal. Rasa frustrasi menyelimutinya, ditambah kekecewaan pada kekasihnya membuat ia berniat bunuh diri. Ketika waktu untuk bunuh diri sudah dekat, ia masih penasaran dan mencoba lagi membuktikan Teorema Fermat membuat dia lupa untuk bunuh diri. Sampai akhir hayatnya, teorema ini belum juga terbuktikan. Wolfskehl berwasiat, ia menyediakan uang 100.000 mark bagi orang pertama yang mampu membuktikan teorema itu. Tahun 1995, Dr. Andrew Wiles, matematikawan dari Universitas Princeton, Inggris, berhasil membuktikan teorema Fermat dengan gemilang. Ia akhirnya mendapat hadiah 200.000 dolar dari Yayasan Raja Faisal di Arab Saudi pada tahun 1997.

Sumber: www.mate-mati-kaku.com

C. Barisan dan Deret Geometri

1. Barisan Geometri

Coba kalian amati barisan 1, 2, 4, 8, 16, 32, Terlihat, suku berikutnya diperoleh dengan mengalikan 2 pada suku sebelumnya. Barisan ini termasuk barisan geometri. Jadi, secara umum, barisan geometri adalah suatu barisan bilangan yang setiap sukunya diperoleh dari suku sebelumnya dikalikan dengan suatu bilangan tetap (konstan). Bilangan yang tetap tersebut dinamakan *rasio* (*pembanding*) dan dinotasikan dengan *r*.

Perhatikan contoh barisan-barisan berikut.

a. 3, 6, 12, 24, ...

b.
$$2, 1, \frac{1}{2}, \frac{1}{4} \dots$$

c. 2, -4, 8, -16, ...

Kuis

• Kerjakan di buku tugas

Tiga bilangan merupakan barisan geometri dengan rasio lebih besar dari satu. Jika bilangan ketiga dikurangi 3 maka akan terbentuk barisan aritmetika dengan jumlah 54. Selisih suku ketiga dengan suku pertama barisan aritmetika tersebut adalah

a. 8 d. 14 b. 10 e. 16

c. 12

Kompetisi Matematika DKI, 2000 Barisan di atas merupakan contoh barisan geometri. Untuk barisan di atas berturut-turut dapat dihitung rasionya sebagai berikut.

a.
$$\frac{6}{3} = \frac{12}{6} = \frac{24}{12} = \dots = 2$$
. Jadi, $r = 2$.

b.
$$\frac{1}{2} = \frac{\frac{1}{2}}{1} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$$
. Jadi, $r = \frac{1}{2}$.

c.
$$\frac{-4}{2} = \frac{8}{-4} = -2$$
. Jadi, $r = -2$.

Dengan demikian, dapat disimpulkan jika $U_1,\ U_2,\ ...U_n$ barisan geometri dengan U_n adalah rumus ke-n, berlaku

$$r = \frac{U_n}{U_{n-1}}$$

Rumus umum suku ke-n barisan geometri dengan suku pertama (U_1) dinyatakan a dan rasio r, dapat diturunkan sebagai berikut.

$$U_1 = a$$

$$U_2 = U_1 \times r = ar$$

$$U_3 = U_2 \times r = ar^2$$

$$U_4^3 = U_3^2 \times r = ar^3$$

:

$$U_n = U_{n-1} \times r = ar^{n-2} \times r = ar^{n-1}$$

Dengan demikian, diperoleh barisan geometri a, ar, ar^2 , ..., ar^{n-1} ,

... Jadi, rumus umum suku ke- $n\left(U_{_{v}}\right)$ barisan geometri adalah

$$U_n = ar^{n-1}$$

Keterangan: a = suku pertama

r = rasio

n = banyak suku

Contoh:

Carilah suku pertama, rasio, dan suku ke-7 dari barisan geometri berikut.

b.
$$9, -3, 1, -\frac{1}{3}, \dots$$

Jawab:

a. 2, 6, 18, 54, ...

Dari barisan geometri di atas, diperoleh

1) suku pertama: a = 2;

2) rasio:
$$r = \frac{U_2}{U_1} = \frac{6}{2} = 3$$

Karena rumus suku ke-n barisan geometri adalah

$$U_n = ar^{n-1}$$
 maka

$$U_7^n = 2(3^{7-1})$$

= 2 × 729
= 1.458

b.
$$9, -3, 1, -\frac{1}{3}, \dots$$

Dari barisan ini, diperoleh

- 1) suku pertama: a = 9;
- 2) rasio: $r = \frac{U_2}{U_1} = \frac{-3}{9} = -\frac{1}{3}$;
- 3) suku ke-7: $U_7 = 9(-\frac{1}{3})^{7-1} = 9(\frac{-1}{3})^6 = \frac{9}{(-3)^6} = \frac{1}{81}$.

Problem Solving

Tiga bilangan membentuk barisan geometri. Jumlah ketiga bilangan itu 21 dan hasil kalinya 216. Tentukan ketiga bilangan itu.

Jawab:

Pemisalan yang mudah untuk barisan geometri adalah $\frac{a}{r}$, a, dan ar.

Jumlah ketiga bilangan itu adalah 21 maka $\frac{a}{r} + a + ar = 21$.

Hasil kali ketiga bilangan adalah 216 maka $\frac{a}{r} \times a \times ar = 216$

$$\Leftrightarrow a^3 = 216$$

Karena $a^3 = 216$, diperoleh a = 6. Kemudian, substitusikan nilai a = 6 ke persamaan $\frac{a}{r} + a + ar = 21$ sehingga diperoleh hasil sebagai berikut.

$$\frac{6}{r}$$
 + 6 + 6 r = 21 (kedua ruas dikalikan dengan r)

$$\Leftrightarrow$$
 6 + 6*r* + 6*r*² = 21*r*

$$\Leftrightarrow$$
 6 – 15 r + 6 r^2 = 0 (kedua ruas dibagi 3)

$$\Leftrightarrow 2r^2 - 5r + 2 = 0$$

$$\Leftrightarrow$$
 $(2r-1)(r-2)=0$

Kuis

• Kerjakan di buku tugas

Jika k + 3, 5k - 9, 11k + 9 membentuk barisan geometri maka jumlah semua nilai k yang memenuhi adalah

a.
$$\frac{66}{4}$$
 d. $\frac{66}{10}$

b.
$$\frac{66}{5}$$
 e. $\frac{66}{11}$

c.
$$\frac{66}{7}$$

(UMPTN 2001)

Tugas: Investigasi

• Kerjakan di buku tugas

Adakah cara lain untuk mengerjakan cara ini? Bagaimana jika kalian menggunakan pemisalan a, ar, dan ar^2 untuk ketiga bilangan itu? Coba kerjakan. Apa kesimpulan kalian?

$$\Leftrightarrow 2r - 1 = 0$$
 atau $r - 2 = 0$

$$\Leftrightarrow r = \frac{1}{2} \text{ atau } r = 2$$

Dari persamaan di atas, diperoleh $r = \frac{1}{2}$ dan r = 2.

Untuk $r = \frac{1}{2}$ dan a = 6, ketiga bilangan tersebut 12, 6, dan 3.

Untuk r = 2 dan a = 6, ketiga bilangan tersebut 3, 6, dan 12.

Jendela Informasi

Informasi lebih lanjut

Pola Bilangan yang Indah

Perhatikan pola bilangan berikut.

$$1 \times 8 + 1 = 9$$

$$12 \times 8 + 2 = 98$$

$$123 \times 8 + 3 = 987$$

$$1234 \times 8 + 4 = 9876$$

$$12345 \times 8 + 5 = 98765$$

$$123456 \times 8 + 6 = 987654$$

Bandingkan dengan pola bilangan berikut.

$$0 \times 9 + 1 = 1$$

$$1 \times 9 + 2 = 11$$

$$12 \times 9 + 3 = 111$$

$$123 \times 9 + 4 = 1111$$

$$1234 \times 9 + 5 = 11111$$

$$12345 \times 9 + 6 = 1111111$$

$$123456 \times 9 + 7 = 11111111$$

Dari kedua pola bilangan di atas, dapatkah kalian menemukan bentuk umumnya?

Dengan memerhatikan bentuk umum kedua pola bilangan di atas, tentu kalian dapat dengan mudah menentukan hasil dari pertanyaan berikut.

a.
$$1234567 \times 8 + 7 = \dots$$

b.
$$12345678 \times 8 + 8 = ...$$

c.
$$123456789 \times 8 + 9 = ...$$

d.
$$1234567 \times 9 + 8 = ...$$

e.
$$12345678 \times 9 + 9 = ...$$

Coba kalian kerjakan.

Soal Kompetensi 4

• Kerjakan di buku tugas

- 1. Tentukan suku-suku sesuai yang diminta.
 - a. Suku ke-8 dari barisan 7, 21, 63, 189, ...
 - b. Suku ke-6 dari barisan 54, −18, 6, −2 ...
 - c. Suku ke-7 dari barisan $\frac{3}{16}$, $\frac{3}{8}$, $\frac{3}{4}$, $\frac{3}{2}$,...
 - d. Suku ke-10 dari barisan 1, $\sqrt{3}$, 3, $3\sqrt{3}$, ...
- 2. Tentukan unsur yang diminta pada barisan geometri berikut.

a.
$$a = -3$$
, $U_4 = \frac{1}{9}$; $r = ...$

b.
$$U_3 = 8$$
, $U_4 = 32$; $a = ...$

c.
$$U_2 = 250$$
, $U_4 = 6.250$; $a = ...$

d.
$$U_2 = 12$$
, $U_5 = -324$; $r = ...$

e.
$$k-2, k-6, 2k+3, ...; k = ...$$

- Sisipkan beberapa bilangan agar membentuk barisan geometri.
 - a. Tiga bilangan antara 4 dan 324
 - b. Lima bilangan antara –1 dan –15.625
 - c. Empat bilangan antara $\frac{1}{3}$ dan $10\frac{2}{3}$

Petunjuk: Menyisipkan p bilangan di antara bilangan m dan n agar membentuk barisan geometri berarti suku pertama m dan suku ke-(p + 1) adalah n.

- 4. Tiga bilangan membentuk barisan geometri. Jika hasil kali ketiga bilangan itu adalah 512 dan jumlahnya 28. Tentukan ketiga bilangan itu.
- 5. Misalkan bakteri membelah menjadi 2 bagian tiap 20 menit. Jika pada pukul 15.00 ada 100 bakteri, tentukan banyak bakteri pada pukul 20.00 pada hari yang sama.
- 6. Selembar kertas yang tebalnya 0,01 cm dilipat sehingga sebagian terletak di atas yang lain.
 - a. Berapa tebal lipatan itu jika melipatnya dilakukan hingga 10 kali?
 - b. Berapa kali paling sedikit harus melakukan lipatan agar tebal lipatan kertas tidak kurang dari 5 cm?
- 7. Perhatikan **Gambar 4.2**. Jari-jari lingkaran pertama adalah 1 cm dan U_1 , U_2 , U_3 , ... merupakan barisan geometri. Jika luas lingkaran kedua 16π cm², tentukan jari-jari lingkaran keempat.

Gambar 4.2

- 8. Dari suatu barisan geometri diketahui hasil kali suku kedua dengan suku kesembilan adalah -18 dan hasil kali suku keempat dengan suku kesepuluh adalah $\frac{9}{4}$. Tentukan suku keenam barisan tersebut.
- 9. Pada barisan geometri, diketahui: $U_1+U_2+U_3=20$ $U_1+U_3+U_5=62$ $U_3+U_4+U_5=84$

Tentukan U_1 , U_3 , dan U_6 .

10. Tiga bilangan membentuk barisan geometri. Jumlah ketiga bilangan adalah 13. Jika bilangan ke-12 ditambah 2 maka barisan itu akan menjadi barisan aritmetika. Tentukan hasil kali ketiga bilangan semula.

2. Deret Geometri

Jika U_1 , U_2 , U_3 , ... U_n merupakan barisan geometri maka $U_1 + U_2 + U_3 + ... + U_n$ adalah deret geometri dengan $U_n = ar^{n-1}$. Rumus umum untuk menentukan jumlah n suku pertama dari deret geometri dapat diturunkan sebagai berikut.

Misalkan S_n notasi dari jumlah n suku pertama.

$$S_{n} = U_{1} + U_{2} + \dots + U_{n}$$

$$S_{n} = a + ar + \dots + ar^{n-2} + ar^{n-1} \dots (1)$$

 $J_{ika}^{"}$ kedua ruas dikalikan r, diperoleh

 $rS_n = ar + ar^2 + ar^3 + \dots + ar^{n-1} + ar^n$ Dari selisih persamaan (1) dan (2), diperoleh

$$rS_n = ar + ar^2 + ar^3 + ... + ar^{n-1} + ar^n$$

 $S_n = a + ar + ar^2 + ar^3 + ... + ar^{n-1}$

$$\frac{S_n = a + ar + ar^2 + ar^2 + \dots + ar^n}{rS_n - S_n = -a + ar^n}$$

$$\Leftrightarrow (r - 1)S_n = a(r^n - 1)$$

$$\Leftrightarrow S_n = \frac{a(r^n - 1)}{r - 1}$$

Jadi, rumus umum jumlah n suku pertama dari deret geometri adalah sebagai berikut.

Kuis

• Kerjakan di buku tugas

Ada barisan bilangan 4, x, y, z diketahui tiga suku pertama membentuk barisan geometri dan tiga suku terakhir membentuk barisan aritmetika. Nilai x + y =

- a. 1 atau 11
- b. -1 atau 14
- c. 0 atau 15
- d. 2 atau 17
- e. 2 atau 10

Olimpiade 2002

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
, untuk $r > 1$

$$S_n = \frac{a(1 - r^n)}{1 - r}$$
, untuk $r < 1$

Keterangan: S_n = jumlah n suku pertama

 $a^{"}$ = suku pertama

r = rasio

n = banyak suku

Apa yang terjadi jika *r* bernilai 1?

Contoh 1:

Tentukan jumlah dari deret geometri berikut.

 $2 + 4 + 8 + 16 + \dots$ (8 suku)

o. $12 + 6 + 3 + 1,5 + \dots$ (6 suku)

Jawab:

a. 2+4+8+16+...

Dari deret tersebut, diperoleh a = 2 dan $r = \frac{4}{2} = 2$ (r > 1).

Jumlah deret sampai 8 suku pertama, berarti n = 8.

$$S_n = \frac{a(r^n - 1)}{r - 1} \Leftrightarrow S_8 = \frac{2(2^8 - 1)}{2 - 1}$$

= 2(256 - 1)
= 510

Jadi, jumlah 8 suku pertama dari deret tersebut adalah 510.

b. 12 + 6 + 3 + 1,5 + ...

Dari deret itu, diperoleh a = 12 dan $r = \frac{6}{12} = \frac{1}{2} (r < 1)$.

Jumlah deret sampai 6 suku pertama, berarti n = 6.

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$\Leftrightarrow S_6 = \frac{12(1 - (\frac{1}{2})^6)}{1 - \frac{1}{2}}$$

$$= 24(1 - \frac{1}{64})$$
$$= 23\frac{5}{8}$$

Kuis

a. 81

b. 162

c. 324

• Kerjakan di buku tugas

Suku ke-5 dari barisan geo-

metri k, 3k, 8k + 4, ... adalah

d. 648

Kompetisi Matematika

e. 1.296

DKI, 2000

Contoh 2:

Diketahui deret $3 + 3^2 + 3^3 + ... + 3^n = 363$. Tentukan

- . suku pertama; c. banyak suku.
- b. rasio;

Jawab:

Deret $3 + 3^2 + 3^3 + \dots + 3^n = 363$

- a. Suku pertama: a = 3
- b. Rasio: $r = \frac{U_2}{U_1} = \frac{3^2}{3} = 3$
- c. Untuk $S_n = 363$ Karena r = 3 > 1, kita gunakan rumus

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$\Leftrightarrow 363 = \frac{3(3^n - 1)}{3 - 1}$$

$$\Leftrightarrow$$
 726 = $3^{n+1} - 3$

$$\Leftrightarrow 3^{n+1} = 729$$

$$\Leftrightarrow$$
 3ⁿ⁺¹ = 3⁶

Dengan demikian, diperoleh n + 1 = 6 atau n = 5. Jadi, banyak suku dari deret tersebut adalah 5.

Contoh 3:

Carilah *n* terkecil sehingga $S_n > 1.000$ pada deret geometri 1 + 4 + 16 + 64 + ...

Jawab:

Dari deret tersebut, diketahui a = 1 dan r = 4 (r > 1) sehingga jumlah n suku pertamanya dapat ditentukan sebagai berikut.

$$S_n = \frac{a(r^n - 1)}{r - 1} = \frac{1(4^n - 1)}{4 - 1} = \frac{4^n - 1}{3}$$

Nilai n yang mengakibatkan $S_n > 1.000$ adalah

$$\frac{4^n - 1}{3} > 1.000 \Leftrightarrow 4^n > 3.001$$

Jika kedua ruas dilogaritmakan, diperoleh

 $\log 4^n > \log 3.001$

 \Leftrightarrow $n \log 4 > \log 3.001$

$$\Leftrightarrow n > \frac{\log 3.001}{\log 4}$$

 \Leftrightarrow n > 5,78 (Gunakan kalkulator untuk menentukan nilai logaritma)

Jadi, nilai n terkecil agar $S_n > 1.000$ adalah 6.

Problem Solving

Tentukan rumus jumlah n dari deret 1 + 11 + 111 + 1.111 + ...**Jawab:**

Jika kalian perhatikan sekilas, deret ini bukan merupakan deret aritmetika maupun geometri. Namun, coba perhatikan penjabaran berikut.

$$1 + 11 + 111 + 1.111 + \dots = \frac{1}{9} \times 9(1 + 11 + 111 + 1.111 + \dots)$$

$$= \frac{1}{9} \times (9 + 99 + 999 + 9.999 + \dots)$$

$$= \frac{1}{9} \times (10 - 1) + (100 - 1) + (1.000 - 1) + (10.000 - 1) + \dots)$$

$$= \frac{1}{9} \times ((\underbrace{10 + 100 + 1.000 + \dots}_{\text{deret geometri}}) - (\underbrace{1 + 1 + 1 + \dots}_{\text{deret konstan}}))$$

$$= \frac{1}{9} \left(\left(\frac{10 \times (10^n - 1)}{10 - 1} \right) - (n \times 1) \right)$$

$$= \frac{1}{9} \left(\left(\frac{10^{n+1} - 10}{9} \right) - n \right)$$

$$= \frac{1}{9} \left(\frac{10^{n+1} - 9n - 10}{9} \right)$$

Soal Kompetensi 5

Kuis

• Kerjakan di buku tugas

Diketahui bilangan a + 1, a - 2, a + 3 membentuk barisan geometri. Agar ketiga suku ini membentuk barisan aritmetika maka suku ketiga harus ditambah dengan

- a. -8
- b. -6
- c. 5
- d. 6
- e. 8

Kompetisi Matematika DKI, 2000

• Kerjakan di buku tugas

1. Tentukan jumlah deret geometri di bawah ini.

a.
$$2 + 6 + 18 + 54 + ...; S_{10}$$

b.
$$1-3+9-27+81-...; S_{15}$$

c.
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}$$
 ...; $S_6 = ...$

2. Tentukan unsur yang diminta pada deret geometri berikut.

a.
$$a = 2, r = 5; S_5 = ...$$

b.
$$r = \frac{1}{2}$$
, $S_4 = 155$; $a = ...$

c.
$$r = \frac{1}{3}$$
, $n = 5$, $S_n = 1.820$; $a = ...$

d.
$$a = 9, r = 2, S_n = 567; n = ...$$

e.
$$a = 2, S_4 = -102; r = ...$$

f.
$$U_4 = k - 2, r = 2; S_n = ...$$

a.
$$2 + 2^2 + 2^3 + \dots + 2^n = 510$$

b.
$$a = 3 \operatorname{dan} r = \sqrt{2} \operatorname{sehingga} S_n > 10^8$$

c.
$$\sum_{k=1}^{n} 8(\frac{1}{4})^k \ge 7\frac{1}{6}$$

d.
$$\sum_{k=1}^{n} 3^{\frac{k}{2}} = 40(3 + \sqrt{3})$$

- Suatu tali dibagi menjadi 5 bagian dengan panjang bagianbagiannya membentuk barisan geometri. Jika yang terpendek 4 cm dan terpanjang 324 cm, tentukan panjang tali semula.
- 5. Sebuah bola dijatuhkan dari ketinggian 8 meter. Setiap mengenai lantai, bola memantul kembali secara vertikal

setinggi
$$\frac{3}{4}$$
 dari ketinggian sebelumnya. Berapa panjang

lintasan bola itu sampai mengenai lantai yang keenam kalinya?

- 6. Jumlah penduduk di suatu daerah 200.000 jiwa. Setiap tahunnya pertambahan penduduk mencapai 5%. Tentukan jumlah penduduk 5 tahun ke depan (dengan asumsi selama lima tahun itu tidak terjadi kematian maupun perpindahan penduduk).
- 7. Seorang pedagang membuka rekening tabungan di sebuah bank. Pada awal menabung, ia menabung sebesar Rp100.000,00. Ternyata usahanya sukses sehingga tiap bulan ia dapat menabung $1\frac{1}{2}$ kali dari tabungan bulan sebelumnya. Berapakah jumlah tabungannya setelah 1 tahun?
- 8. Kereta api bergerak dengan kecepatan awal 20 km/jam. Tiap jam kecepatannya bertambah naik 1,2 kali lipat dari kecepatan sebelumnya.

Tentukan:

- a. kecepatan kereta api setelah 5 jam berjalan;
- b. jarak seluruhnya yang ditempuh kereta api selama 5 jam perjalanan.
- 9. Akar persamaan kuadrat $2x^2 20x + (7k 1) = 0$ merupakan suku pertama dan suku ke-2 suatu deret geometri yang rasionya lebih besar 1. Jika kedua akar berbanding 2 dan 3, tentukan
 - a. suku ke-3;
 - b. suku ke-5;
 - c. jumlah kelima suku pertama.

Kuis

• Kerjakan di buku tugas

Besar suku ke-p dari suatu deret geometri adalah 2p, sedangkan suku ke-2p adalah p. Jumlah p suku pertama deret itu adalah

a.
$$\frac{2p}{\sqrt{p}-1}$$

b.
$$\frac{2p}{\sqrt[p]{2}-1}$$

c.
$$\frac{2p}{1-\sqrt{2}}$$

d.
$$1+\sqrt[p]{2}$$

e.
$$1-\sqrt[p]{2}$$

Kompetisi Matematika DKI, 2000 10. Pada suatu deret geometri ditentukan jumlah suku pertama dan suku kedua adalah 4, $U_{n-1} + U_n = 108$, dan jumlah n suku pertama adalah 121. Tentukan rasio deret geometri tersebut.

Deret Geometri Tak Berhingga

Deret geometri yang tidak dapat dihitung banyak seluruh sukunya disebut deret geometri tak berhingga. Perhatikan deret geometri berikut.

a.
$$1 + 2 + 4 + 8 + \dots$$

c.
$$1 + \frac{1}{2} + \frac{1}{4} + \dots$$

b.
$$5 - 10 + 20 - 40 + \dots$$

d.
$$9-3+1-\frac{1}{3}+...$$

Deret-deret di atas merupakan contoh deret geometri tak berhingga.

Dari contoh a dan b, rasionya berturut-turut adalah 2 dan -2. Jika deret tersebut diteruskan maka nilainya akan makin besar dan tidak terbatas. Deret yang demikian disebut *deret divergen*, dengan |r| > 1. Sebaliknya, dari contoh c dan d, rasio masing-

masing deret $\frac{1}{2}$ dan $-\frac{1}{3}$. Dari contoh c dan d, dapat kita hitung

pendekatan jumlahnya. Deret tersebut dinamakan *deret konvergen* dengan |r| < 1. Pada deret konvergen, jumlah suku-sukunya tidak akan melebihi suatu harga tertentu, tetapi akan mendekati harga tertentu. Harga tertentu ini disebut jumlah tak berhingga suku yang dinotasikan dengan S_{∞} . Nilai S_{∞} merupakan nilai pendekatan (limit) jumlah seluruh suku (S_n) dengan n mendekati tak berhingga. Oleh karena itu, rumus deret tak berhingga dapat diturunkan dari deret geometri dengan suku pertama a, rasio r, dan $n \to \infty$.

$$S_{\infty} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a(1 - r^n)}{1 - r}.$$

Karena deret konvergen (|r| < 1), untuk $n \to \infty$ maka $r^n \to 0$ sehingga

$$S_{\infty} = \lim_{n \to \infty} \frac{a(1-r^n)}{1-r} = \lim_{n \to \infty} \frac{a-ar^n}{1-r} = \frac{a-0}{1-r} = \frac{a}{1-r}.$$

Jadi, rumus jumlah deret geometri tak berhingga adalah

$$S_{\infty} = \frac{a}{1 - r}$$
, dengan | r | < 1

Contoh 1:

Tentukan jumlah tak berhingga suku dari deret berikut.

a.
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

b
$$2^{2+1+\frac{1}{2}+\frac{1}{4}+\dots}$$

Jawab:

a.
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

Dari deret tersebut diketahui a = 1 dan $r = \frac{1}{2}$ sehingga

$$S_{\infty} = \frac{a}{1-r} = \frac{1}{1-\frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2$$

b.
$$2^{2+1+\frac{1}{2}+\frac{1}{4}+\dots}$$

Perhatikan deret
$$2 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \dots$$

Dari deret tersebut, diperoleh a = 2 dan $r = \frac{1}{2}$.

$$S_{\infty} = \frac{a}{1 - r} = \frac{2}{1 - \frac{1}{2}} = 4$$

Jadi.
$$2^{2+1+\frac{1}{2}+\frac{1}{4}+\dots} = 2^4 = 16$$
.

Tantangan

Eksplorasi

Kerjakan di buku tugas

Sebuah bola tenis dijatuhkan dari ketinggian 715 m dan memantul kembali dengan

ketinggian $\frac{4}{5}$ kali keting-

gian semula. Pemantulan terjadi terus-menerus sampai bola berhenti. Tentukan panjang seluruh lintasan bola sampai berhenti

> Kompetisi Matematika DKI, 2000

Contoh 2:

Suku pertama suatu deret geometri adalah 2 dan jumlah sampai tak berhingga adalah 4. Carilah rasionya.

Jawab:

Dari soal di atas, unsur-unsur yang diketahui adalah a=2 dan $S_{\infty}=4$.

Kita substitusikan ke dalam rumus S_{∞} .

$$S_{\infty} = \frac{a}{1-r} \iff 4 = \frac{2}{1-r}$$
$$\iff 1 - r = \frac{1}{2}$$

$$\Leftrightarrow$$
 $r = \frac{1}{2}$

Jadi, rasionya adalah $\frac{1}{2}$.

Contoh 3:

Sebuah bola jatuh dari ketinggian $10 \,\mathrm{m}$ dan memantul kembali dengan ketinggian $\frac{3}{4}$ kali tinggi sebelumnya. Pemantulan berlangsung terus-menerus sehingga bola berhenti. Tentukan jumlah seluruh lintasan bola. (UMPTN 1995)

Jawab:

$$U_0 = 10 \text{ m}; r = \frac{3}{4}$$

$$U_1 = \frac{3}{4} \times 10 \text{ m}$$

$$= \frac{30}{4} \text{ m}$$

$$S_n = 10 + 2 S_{\infty}$$

$$= 10 + 2 \times \frac{U_1}{1 - r}$$

$$= 10 + 2 \times \frac{\frac{30}{4}}{1 - \frac{3}{4}}$$

$$= 10 + 2 \times 3$$

$$= 70 \text{ m}$$

Tantangan

Penalaran

• Kerjakan di buku tugas

Sebuah bola dijatuhkan ke lantai dari tempat yang tingginya 1 meter. Setiap kali setelah bola itu memantul, bola itu mencapai ketinggian seperlima dari tinggi sebelumnya. Tentukan panjang lintasan bola sampai berhenti.

Dengan cara lain:

Misalnya suatu benda dijatuhkan dari ketinggian H_0 secara vertikal dan memantul ke atas dengan tinggi pantulan $\frac{a}{b}$ kali dari ketinggian semula maka panjang lintasan pantulan (H) hingga berhenti dirumuskan dengan:

$$H = \left(\frac{b+a}{b-a}\right)H_0$$

(Coba kalian buktikan rumus tersebut.)

Dengan menggunakan cara ini, diketahui a = 3, b = 4, dan $H_0 = 10$ m.

Jadi,
$$H = \left(\frac{b+a}{b-a}\right) H_0$$

= $\left(\frac{3+4}{4-3}\right) \times 10$
= $7 \times 10 = 70 \text{ m}$

Mari Berdiskusi

Eksplorasi

Diketahui deret geometri tak berhingga berikut.

$$a + ar + ar^2 + ar^3 + ar^4 + \dots$$

Deret suku-suku ganjilnya adalah $a + ar^2 + ar^4 + ...$

Deret suku-suku genapnya adalah $ar + ar^3 + ar^5 + ...$

Tunjukkan bahwa jumlah suku-suku ganjilnya adalah $\frac{a}{1-r^2}$;

jumlah suku-suku genapnya adalah $\frac{ar}{1-r^2}$

Soal Kompetensi 6

• Kerjakan di buku tugas

- 1. Tentukan batas-batas nilai x agar barisan geometri: $2, 2(3-x), 2(3-x)^2, 2(3-x)^3, ...$ konvergen.
- 2. Tentukan jumlah dari deret geometri tak berhingga berikut.

a.
$$12 + 4 + 1\frac{1}{3} + \dots$$

b.
$$1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots$$

c.
$$-72 - 60 - 50 - \dots$$

d.
$$-1 - \frac{1}{2} - \frac{1}{4} - \dots$$

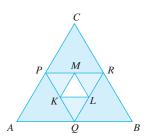
e.
$$10^{2+1+\frac{1}{2}+\frac{1}{4}+\dots}$$

3. Tentukan unsur-unsur yang ditanyakan pada deret geometri di bawah ini.

a.
$$S_{\infty} = 8, r = -\frac{1}{4}; a = ...$$

b.
$$S_{\infty} = 36, a = 18; r = ...$$

c.
$$U_n = \frac{3}{2^n}$$
; $S_{\infty} = ...$


d.
$$S_{\infty} = 4, r = \frac{1}{2}, a =$$

e.
$$a = 10, r = \frac{1}{3}, S_{\infty} = \dots$$

f.
$$a = 20, r = -\frac{1}{4}, S_{\infty} =$$

Kuis

• Kerjakan di buku tugas

Segita ABC sama sisi dan luasnya 1 satuan. Di dalam segitiga ABC dibuat segitiga dengan titik sudutnya berimpit dengan pertengahan sisi-sisi segitiga pertama. Selanjutnya, dibuat segitiga sama sisi dengan titik sudut pertengahan sisi-sisi segitiga tersebut. Proses ini dilanjutkan terus-menerus. Luas segitiga yang ke-6 adalah satuan luas.

a.
$$\frac{1}{4.096}$$
 d. $\frac{1}{64}$

b.
$$\frac{1}{1.024}$$
 e. $\frac{1}{32}$

c.
$$\frac{1}{729}$$

(Olimpiade 2000)

4. Tentukan jumlah suku-suku ganjil dan jumlah suku-suku genap dari deret berikut.

a.
$$4+2+1+\frac{1}{2}+...$$

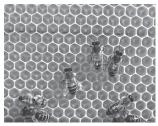
b.
$$\frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \frac{1}{128} + \dots$$

- 5. Sebuah ayunan di sebuah rumah digunakan untuk mainan anak. Dengan sekali ayun, panjang lintasan pertama 120 cm, panjang lintasan berikutnya ⁷/₁₀ dari panjang lintasan sebelumnya. Berapa panjang lintasan seluruhnya hingga ayunan berhenti?
- 6. Seorang anak bermain gasing di halaman rumahnya. Pada detik pertama, gasing berputar sebanyak 16 kali. Detik berikutnya, gasing hanya berputar ⁵/₈ kali dari banyak putaran pada detik sebelumnya. Berapa banyak putaran sampai gasing berhenti berputar?
- 7. Sebuah bola tenis dijatuhkan dari ketinggian 20 m dan memantul kembali dengan ketinggian $\frac{3}{7}$ kali ketinggian semula. Pemantulan terjadi terus-menerus sampai bola berhenti. Tentukan jumlah seluruh lintasan bola yang terjadi.
- 8. Diketahui deret geometri dirumuskan dengan $U_n = 5^{-n}$. Tentukan jumlah tak berhingga dari deret tersebut.
- 9. Jumlah semua suku dari deret geometri tak berhingga adalah 12. Jumlah suku-suku bernomor genap adalah 4. Tentukan suku ke-7 dari suku-suku bernomor ganjil.
- 10. Dari suatu deret geometri konvergen, diketahui selisih U_1 dan U_3 adalah 8 dan $^3\log U_1 + ^3\log U_2 + ^3\log U_3 = 3$. Tentukan jumlah tak berhingga suku deret geometri tersebut. (Ingat kembali materi logaritma di kelas X).

Jendela Informasi

Informasi lebih lanjut

Keindahan Matematika dalam Deret


"Small is beautiful", demikian salah satu slogan yang dipegang banyak matematikawan dalam membuktikan teoriteori matematis. Thomas Aquino, pada abad XIII sudah melihat hubungan antara keindahan dan matematika. Dia mengatakan, "Indra itu senang dengan sesuatu yang proporsinya tepat". Proporsi yang tepat itu dapat diterjemahkan dalam keserasian, keteraturan, keselarasan, keseimbangan, dan keutuhan.

Jika kita jeli, alam menyediakan banyak sekali keindahan matematis. Coba kalian perhatikan, spiral geometris pada cangkang sarang siput (*Nautilus*), susunan sel segi enam pada sarang tawon madu, susunan mahkota bunga aster, susunan mahkota dan biji bunga matahari, dan masih banyak yang lainnya. Susunan-susunan objek di atas berkaitan barisan atau deret matematis.

Sumber: Happy with Math, 2007

- (a) Cangkang siput
- Sumber: www.digitalguide.com

- (c) Sarang tawon madu
- Sumber: www.anomalies.net

- (b) Bunga aster
- Sumber: www.goingnativegardentour.org

- (d) Bunga matahari
- Sumber: www.exterpassive.com

D. Penerapan Konsep Barisan dan Deret

Kaidah barisan dan deret dapat digunakan untuk memudahkan penyelesaian perhitungan, misalnya bunga bank, kenaikan produksi, dan laba/rugi suatu usaha. Untuk menyelesaikan persoalan tersebut, kita harus dapat membedakan apakah persoalan tersebut termasuk barisan aritmetika, barisan geometri, deret aritmetika ataupun deret geometri. Kemudian, kita dapat menyelesaikan persoalan tersebut menggunakan rumus-rumus yang berlaku.

Contoh 1:

Ketika awal bekerja, seorang karyawan sebuah perusahaan digaji Rp700.000,00 per bulan. Setahun berikutnya, gaji per bulannya akan naik sebesar Rp125.000,00. Demikian seterusnya untuk tahun-tahun berikutnya. Berapa gaji karyawan itu per bulan untuk masa kerjanya sampai pada tahun ke-9?

Jawab:

Kasus ini adalah aplikasi dari barisan aritmetika.

Suku awal a = 700.000

Beda b = 125.000

n = 9

Jadi suku ke-9, dapat ditentukan sebagai berikut.

 $U_n = a + (n-1)b$

 $U_0^{\prime\prime} = 700.000 + (9 - 1) 125.000$

= 700.000 + 1.000.000

= 1.700.000

Jadi, gaji per bulan karyawan itu pada tahun ke-9 adalah Rp1.700.000,00.

Contoh 2:

Tantangan

Penalaran

• Kerjakan di buku tugas

Setiap tahun, jumlah penduduk suatu kota bertambah menjadi tiga kali lipat dari jumlah penduduk tahun sebelumnya. Menurut taksiran, jumlah penduduk pada tahun 2009 penduduk kota tersebut akan mencapai 3,2 juta jiwa. Berdasarkan informasi ini, tentukan jumlah penduduk pada tahun 1959.

Setiap awal bulan Nyoman menabung Rp50.000,00 di suatu bank yang memberikan bunga 1% per bulan. Pada tiap akhir bulan, bunganya ditambahkan pada tabungannya. Berapakah uang Nyoman di bank itu pada akhir tahun ke-1 jika ia tidak pernah mengambil tabungannya sampai akhir tahun ke-1?

Jawab:

Misalkan tabungan awal adalah Rp50.000,00.

Pada akhir bulan ke-1

Jumlah uang Nyoman adalah sebagai berikut.

Bunga yang ia peroleh = $50.000 \times 1\% = 50.000 \times 0.01$

Jumlah uang Nyoman = $50.000 + (50.000 \times 0.01)$

= 50.000(1 + 0.01)

= 50.000(1,01)

Pada akhir bulan ke-2

Uang yang sudah dimasukkan sejak bulan ke-1 adalah jumlah uang pada akhir bulan ke-1 ditambah bunga sehingga diperoleh $50.000(1,01) + (50.000(1,01) \times 1\%)$

= 50.000(1,01)(1+0,01)

 $= 50.000(1,01)^2$

Uang yang dimasukkan pada awal bulan ke-2 menjadi

 $50.000 + (50.000 \times 1\%) = 50.000(1 + 0.01)$ = 50.000(1.01)

Jadi, jumlah uang Nyoman pada akhir bulan ke-2 adalah $50.000(1.01) + 50.000(1.01)^2$.

Pada akhir bulan ke-3

Uang yang sudah dimasukkan sejak bulan ke-1 adalah $50.000(1.01)^2 + (50.000(1.01)^2 \times 1\%)$

$$=50.000(1,01)^2(1+0,01)$$

$$=50.000(1,01)^2(1,01)$$

$$=50.000(1,01)^3$$

Uang yang dimasukkan pada awal bulan ke-2 menjadi $50.000(1,01) + (50.000(1,01) \times 1\%)$

$$=50.000(1,01)(1+0,01)$$

$$= 50.000(1,01)(1,01)$$

$$= 50.000(1,01)^2$$

Uang yang sudah dimasukkan pada awal bulan ke-3 menjadi $50.000 + (50.000 \times 1\%) = 50.000(1 + 1\%)$ = 50.000(1,01)

Jadi, jumlah uang Nyoman pada akhir bulan ke-3 adalah $50.000(1,01) + 50.000(1,01)^2 + 50.000(1,01)^3$

Demikian seterusnya, sampai akhir bulan ke-12.

Dari hasil perhitungan sampai bulan ke-3, dapat disimpulkan bahwa jumlah uang tabungan Nyoman adalah $50.000(1,01) + 50.000(1,01)^2 + 50.000(1,01)^3 + ... +$

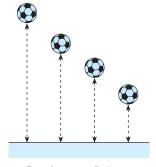
$$50.000(1,01) + 50.000(1,01)^2 + 50.000(1,01)^3 + \dots + 50.000(1,01)^{12} = 50.000\{1,01 + (1,01)^2 + (1,01)^3 + \dots + (1,01)^{12}\}$$

Deret $1,01 + (1,01)^2 + ... + (1,01)^{12}$ merupakan deret geometri dengan

$$a = 1.01$$
, $r = 1.01$, dan $n = 12$.

$$S_{12} = \frac{1,01((1,01)^{12} - 1)}{1,01 - 1}$$
$$= \frac{1,01(0,127)}{0,01}$$
$$= 12.83$$

Oleh karena itu, jumlah uang Nyoman setelah 1 tahun adalah 50.000 $\{1,01 + (1,01)^2 + ... + (1,01)^{12}\} = 50.000 \times 12,83$ = 641.500


Jadi, jumlah uang Nyoman setelah 1 tahun adalah Rp641.500,00.

Soal Kompetensi 7

• Kerjakan di buku tugas

1. Suatu perusahaan memproduksi TV sebanyak 15.000 unit pada awal tahun pendiriannya. Ternyata, tiap tahun perusahaan tersebut dapat menambah produksinya sebesar 500 unit. Jika perusahaan tersebut didirikan tahun 1994, berapa unit TV-kah yang telah diproduksi perusahaan itu sampai akhir tahun 2008?

- 2. Selama 4 tahun berturut-turut jumlah penduduk di Kota *A* membentuk deret aritmetika. Jumlah penduduk pada tahun ke-4 adalah 17 juta jiwa. Selisih penduduk pada tahun ke-2 dan ke-4 adalah 10 juta jiwa. Tentukan berapa jiwakah jumlah penduduk pada akhir tahun ke-3?
- 3. Seorang buruh pabrik mendapat gaji permulaan Rp500.000,00 per bulan. Tiap tahun ia mendapat kenaikan gaji Rp50.000,00. Tentukan jumlah pendapatannya setelah 10 tahun bekerja di pabrik tersebut.
- 4. Populasi serangga di suatu tempat pada tanggal 5 Februari 2008 adalah 100.000 ekor. Tiap 3 hari sekali bertambah 15% dari jumlah semula. Berapa banyak serangga tersebut pada tanggal 6 Maret 2009?
- 5. Tia mendapatkan hadiah dari orang tuanya setiap ulang tahun berupa tabungan di bank sebesar Rp100.000,00. Jika bank itu memberikan bunga majemuk sebesar 12% setiap tahunnya, berapakah uang Tia setelah ia berumur 25 tahun?
- 6. Harga suatu mesin pada saat pembelian adalah 10.000.000,00. Setiap tahun menyusut 15% terhadap nilai awal permulaan tahun. Berapa harga mesin tersebut pada akhir tahun ke-8?
- 7. Suatu bola dilempar dari ketinggian 100 meter. Setiap menyentuh lantai, bola akan memantul kembali dengan ketinggian 4/5 kali dari ketinggian sebelumnya. Berapa jarak yang ditempuh bola sampai bola berhenti?
- 8. Jumlah bangunan di sebuah kota tiap sepuluh tahun menjadi dua kali lipat. Menurut perhitungan pada tahun 2020 nanti akan mencapai 2,8 juta bangunan. Tentukan jumlah bangunan kota tersebut pada saat perhitungan pertama yaitu tahun 1950.
- 9. Pada tanggal 1 Januari 2000, Robin menabung di bank Rp100.000,00 dengan suku bunga 12% per tahun. Demikian juga pada 1 Januari tahun-tahun berikutnya sampai 10 kali. Tentukan jumlah tabungan Robin pada tahun 2010.
- 10. Wenny mempunyai pita rambut yang panjangnya 20 m. Untuk meringkas penyimpanannya, ia melipat pita itu menjadi 2 bagian dan seterusnya sehingga panjang pita yang ia peroleh 15,625 cm. Berapa kali Wenny harus melipat pita tersebut?

Gambar 4.3 Bola pemantul

E. Notasi Sigma

Salah satu ciri matematika adalah digunakannya lambang untuk mengungkapkan suatu pernyataan secara singkat, jelas, dan konsisten yang jika diungkapkan dengan kalimat biasa cukup panjang. Salah satu lambang yang penting adalah " \sum " (dibaca: sigma). Lambang ini digunakan untuk menuliskan penjumlahan secara singkat.

1. Pengertian Notasi Sigma

Perhatikan penjumlahan bilangan-bilangan di bawah ini. 1 + 2 + 3 + 4 + ... + 50

Jika semua suku-sukunya ditulis, cara penulisan penjumlahan tersebut jelas tidak efektif. Apalagi jika banyak bilangan yang dijumlahkan makin besar. Dengan menggunakan notasi sigma,

penulisan 1 + 2 + 3 + 4 + ... + 50 dipersingkat men-jadi $\sum_{k=1}^{50} k$

(dibaca: sigma k mulai dari k = 1 sampai dengan k = 50). Atau, boleh dibaca sigma k, untuk k = 1 hingga k = 500.

Huruf *k* digunakan sebagai variabel suku yang akan bergerak mulai 1 dan bertambah 1 sampai mencapai 50. Bilangan 1 disebut *batas bawah* dan 50 disebut *batas atas* penjumlahan.

Secara umum, notasi sigma dinyatakan sebagai berikut.

$$\sum_{k=1}^{n} U_{k} = U_{1} + U_{2} + \dots + U_{n}$$

Keterangan: 1 = batas bawah

n = batas atas k = indeks

 U_k = suku ke-k

Batas bawah tidak harus bernilai 1. Jika batas bawah penjumlahan 1 dan batas atasnya n maka penjumlahan terdiri atas n suku, sedangkan jika batas bawahnya r dan batas atasnya n maka penjumlahan terdiri dari (n-r+1) suku.

Contoh 1:

Nyatakan dalam bentuk penjumlahan $\sum_{k=1}^{5} k(k + 1)$.

Jawab:

$$\sum_{k=1}^{5} k(k+1) = 1(1+1) + 2(2+1) + 3(3+1) + 4(4+1) + 5(5+1)$$

$$= 1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + 5 \times 6$$

$$= 2 + 6 + 12 + 20 + 30$$

Contoh 2:

Tulislah bentuk penjumlahan berikut dalam notasi sigma.

a.
$$2+4+6+8+10$$

b.
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5}$$

c.
$$ab^5 + a^2b^4 + a^3b^3 + a^4b^2$$

Jawab:

a.
$$2+4+6+8+10 = 2 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 + 2 \times 5$$

= $2(1+2+3+4+5)$
= $\sum_{k=0}^{5} 2k$

b.
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} = (-1)\frac{1}{1+1} + (-1)^2 \frac{2}{2+1} + (-1)^3 \frac{3}{3+1}$$

$$+(-1)^4 \frac{4}{4+1} = \sum_{k=1}^4 (-1)^k \cdot \frac{k}{k+1}$$

c.
$$ab^5 + a^2b^4 + a^3b^3 + a^4b^2 = a^1b^{6-1} + a^2b^{6-2} + a^3b^{6-3} + a^4b^{6-4}$$

= $\sum_{k=1}^4 a^k b^{6-k}$

2. Menentukan Nilai Penjumlahan yang Dinyatakan dengan Notasi Sigma

Nilai penjumlahan yang dinyatakan dengan notasi sigma dapat dicari, antara lain dengan terlebih dahulu menyatakan ke dalam bentuk lengkapnya, kemudian dijumlahkan. Perhatikan contoh-contoh berikut ini.

Contoh:

Tentukan nilai-nilai notasi sigma berikut.

a.
$$\sum_{p=1}^{10} p$$

b.
$$\sum_{n=3}^{6} 2n^2$$

Jawab:

a.
$$\sum_{p=1}^{10} P = 1 + 2 + 3 + 4 + \dots + 10$$
$$= 55$$

b.
$$\sum_{n=3}^{6} 2n^2 = 2(3^2) + 2(4^2) + 2(5^2) + 2(6^2)$$
$$= 18 + 32 + 50 + 72$$
$$= 172$$

3. Sifat-Sifat Notasi Sigma

Untuk mempermudah perhitungan yang berhubungan dengan notasi sigma, dapat digunakan sifat-sifat yang berlaku pada notasi sigma. Sifat apakah yang berlaku pada notasi sigma? Lakukan Aktivitas berikut.

Aktivitas

Tujuan : Menemukan sifat-sifat yang berlaku pada

notasi sigma.

Permasalahan: Sifat-sifat apakah yang berlaku pada notasi

sigma?

Kegiatan : Kerjakan soal-soal berikut.

1. Nyatakan notasi sigma berikut dalam bentuk penjumlahan biasa.

a.
$$\sum_{k=1}^{6} U_k$$

b.
$$\sum_{i=1}^{6} U_i$$

- c. Bandingkan hasil antara a dan b. Apa kesimpulanmu?
- Tentukan nilai penjumlahan yang dinyatakan dalam notasi sigma berikut.

a. Apakah
$$\sum_{k=3}^{7} 5$$
 hasilnya sama dengan $(7-3+1) \times 5$?

b.
$$\sum_{k=2}^{5} 3k$$

$$c. \quad 3\sum_{k=2}^{5} k$$

d. Bandingkan hasil antara c dan d. Apa kesimpulanmu?

Kesimpulan : Sifat-sifat apakah yang kalian temukan?

Dari Aktivitas di atas diperoleh sifat-sifat berikut.

a.
$$\sum_{k=p}^{q} U_k = \sum_{i=p}^{q} U_i$$

b.
$$\sum_{k=p}^{q} c = (q-p+1)c, c = \text{konstanta}, c \in R$$

c.
$$\sum_{k=p}^{q} c U_k = c \sum_{i=p}^{q} U_k$$

Sifat-sifat lain yang berlaku pada notasi sigma adalah sebagai berikut.

Untuk U_k dan V_k adalah rumus umum suku ke-k dan $p, q \in B$, berlaku

d.
$$\sum_{k=p}^{q} (U_k \pm V_k) = \sum_{k=p}^{q} U_k \pm \sum_{k=p}^{q} V_k$$

e.
$$\sum_{k=p}^{n} U_k + \sum_{k=n+1}^{q} U_k = \sum_{k=p}^{q} U_k$$

f. 1)
$$\sum_{k=p}^{q} U_k = \sum_{k=p+a}^{q+a} U_{k-a}$$

$$2) \quad \sum_{k=p}^{q} U_k = \sum_{k=p-a}^{q-a} U_{k+a}$$

g.
$$\sum_{k=p}^{p} U_k = U_p$$

h.
$$\sum_{k=p}^{q} (U_k \pm V_k)^2 = \sum_{k=p}^{q} U_k^2 \pm 2 \sum_{k=p}^{q} U_k V_k + \sum_{k=p}^{q} V_k^2$$

Bukti:

Pada kali ini, akan dibuktikan sifat b dan e saja.

Tugas: Eksplorasi

• Kerjakan di buku tugas

Coba kalian buktikan kebenaran sifat-sifat notasi sigma di atas selain sifat b dan e.

Sifat b:

$$\sum_{k=p}^{q} c = \frac{c+c+c+c+...+c}{(q-p+1)\text{suku}}$$
$$= (q-p+1)c \dots \text{ (terbukti)}$$

Sifat e:

Sekarang, mari kita gunakan sifat-sifat di atas untuk menyelesaikan permasalahan notasi sigma, seperti contoh-contoh berikut.

Contoh 1:

Hitunglah nilai dari $\sum_{k=1}^{4} (k^2 - 4k)$.

Jawab:

Ada 2 cara yang dapat digunakan untuk menyelesaikan soal di atas.

Cara 1:

$$\sum_{k=1}^{4} (k^2 - 4k) = (1^2 - 4(1)) + (2^2 - 4(2)) + (3^2 - 4(3)) + (4^2 - 4(4))$$

$$= (1 - 4) + (4 - 8) + (9 - 12) + (16 - 16)$$

$$= -3 - 4 - 3 + 0$$

$$= -10$$

Cara 2:

$$\sum_{k=1}^{4} (k^2 - 4k) = \sum_{k=1}^{4} k^2 - \sum_{k=1}^{4} 4k$$

$$= \sum_{k=1}^{4} k^2 - 4 \sum_{k=1}^{4} k$$

$$= (1^2 + 2^2 + 3^2 + 4^2) - 4(1 + 2 + 3 + 4)$$

$$= (1 + 4 + 9 + 16) - 4(10)$$

$$= 30 - 40$$

$$= -10$$

Contoh 2:

Dengan menggunakan sifat notasi sigma, buktikan bahwa

$$\sum_{k=1}^{n} (2k-4)^2 = 4 \sum_{k=1}^{n} k^2 - 16 \sum_{k=1}^{n} k + 16n.$$

Jawab:

$$\sum_{k=1}^{n} (2k - 4)^2 = \sum_{k=1}^{n} (4k^2 - 16k + 16)$$

$$= \sum_{k=1}^{n} 4k^2 - \sum_{k=1}^{n} 16k + 16\sum_{k=1}^{n} 1$$

$$= 4\sum_{k=1}^{n} k^2 - 16\sum_{k=1}^{n} k + 16n \dots (terbukti)$$

Contoh 3:

Ubahlah batas bawah sigma menjadi 1 dari notasi sigma berikut.

a.
$$\sum_{k=3}^{5} (k+1)$$

b.
$$\sum_{k=0}^{4} (3-2k)$$

Jawab:

a.
$$\sum_{k=3}^{5} (k+1) = \sum_{k=3-2}^{5-2} (k+2) + 1 = \sum_{k=3}^{3} (k+3)$$

b.
$$\sum_{k=0}^{4} (3-2k) = \sum_{k=0+1}^{4+1} (3-2(k-1))$$
$$= \sum_{k=1}^{5} (3-2k+2) = \sum_{k=1}^{5} (5-2k)$$

Contoh 4:

Ubahlah batas bawah sigma menjadi 4 dari notasi sigma berikut.

a.
$$\sum_{k=-2}^{4} \frac{k}{2k-1}$$

b.
$$\sum_{k=6}^{10} (k^2 + 1)$$

Jawab:

a.
$$\sum_{k=-2}^{4} \frac{k}{2k-1} = \sum_{k=-2+6}^{4+6} \frac{k-6}{2(k-6)-1}$$
$$= \sum_{k=4}^{10} \frac{k-6}{2k-13}$$
b.
$$\sum_{k=6}^{10} (k^2+1) = \sum_{k=6-2}^{10-2} (k+2)^2 + 1$$
$$= \sum_{k=6}^{8} (k^2+4k+5)$$

4. Menyatakan Suatu Deret dalam Notasi Sigma

Notasi sigma dapat mempermudah kita dalam menuliskan jumlah bilangan-bilangan yang terpola, misalnya $2+4+6+8+\ldots$... Seperti kalian ketahui, deret aritmetika dan deret geometri merupakan deret dengan suku-sukunya terpola tetap. Deret-deret seperti ini dapat kita sajikan dalam notasi sigma. Agar lebih paham, perhatikan contoh berikut.

Contoh:

Suatu deret dinyatakan dengan notasi sigma berikut.

a.
$$\sum_{n=1}^{10} (2n+1)$$

b.
$$\sum_{n=1}^{6} 2^n$$

Deret apakah itu? Kemudian, tentukan nilainya.

Jawab:

a.
$$\sum_{n=1}^{10} (2n+1) = (2(1)+1) + (2(2)+1) + (2(3)+1) + \dots + (2(10)+1)$$
$$= (2+1) + (4+1) + (6+1) + \dots + (20+1)$$
$$= 3+5+7+\dots + 21$$

Tampak bahwa deret itu memiliki suku-suku yang selisihnya tetap, yaitu 2. Jadi, deret itu adalah deret aritmetika dengan suku awal a=3, beda b=2, dan $U_{10}=21$.

Nilai $\sum_{n=1}^{10} (2n+1)$ sama dengan nilai jumlah n suku

pertama, S_{10} . Dengan menggunakan jumlah 10 suku pertama yang kalian ketahui, diperoleh

$$S_n = \frac{1}{2}n(a + U_n)$$

$$= \frac{1}{2}(10)(3 + 21)$$

$$= 120$$
Jadi, $\sum_{n=0}^{10} (2n+1) = 120$.

b.
$$\sum_{n=1}^{6} 2^n = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6$$
$$= 2 + 4 + 8 + 16 + 32 + 64$$

Tampak bahwa deret itu memiliki rasio tetap, yaitu r = 2. Jadi, deret ini termasuk deret geometri dengan suku awal

a = 2 dan rasio r = 2. Oleh karena itu $\sum_{n=0}^{\infty} 2^n = S_6$. Karena

r = 2 > 1, kita gunakan rumus berikut.

$$S_n = \frac{a(r^n - 1)}{r - 1} \iff S_6 = \frac{2(2^6 - 1)}{2 - 1}$$
$$= \frac{2(64 - 1)}{1}$$
$$= 126$$

Jadi,
$$\sum_{n=1}^{6} 2^n = 126$$
.

• Kerjakan di buku tugas

Soal Kompetensi 8

Tulislah notasi sigma berikut dalam bentuk lengkap atau penjumlahan biasa.

a.
$$\sum_{j=1}^{5} j^3$$

a.
$$\sum_{j=1}^{5} j^3$$
 d. $\sum_{k=3}^{7} \frac{k^2}{k+1}$

b.
$$\sum_{k=0}^{6} 2^{5-k}$$

b.
$$\sum_{k=0}^{6} 2^{5-k}$$
 e. $\sum_{k=1}^{5} (-1)^{k+1} x^k y^{k-1}$

c.
$$\sum_{k=1}^{3} (3 + \frac{1}{k})$$

c.
$$\sum_{k=1}^{3} (3 + \frac{1}{k})$$
 f. $\sum_{n=1}^{4} (-n)^{n-1} n^2$

Nyatakan penjumlahan berikut dalam bentuk sigma.

a.
$$3 + 4 + 5 + \dots + 100$$

b.
$$3+6+9+...+24$$

c.
$$1 \times 3 + 3 \times 5 + 5 \times 7 + 7 \times 9 + 9 \times 11 + 11 \times 13$$

d.
$$xy^2 + x^2y^3 + x^3y^4 + x^4y^5 + x^5y^6 + x^6y^7$$

Tantangan

Penalaran

• Kerjakan di buku tugas

Tentukan nilai notasi sigma berikut. Adakah yang termasuk deret konvergen?

a.
$$\sum_{k=1}^{5} (3n-2)^2$$

b.
$$\sum_{i=1}^{6} (2i^2 + i - 4)^2$$

c.
$$\sum_{n=4}^{10} 3 \times 2^{n-3}$$

d.
$$\sum_{i=5}^{10} n^{n-6}$$

3. Hitunglah hasil penjumlahan berikut (jika perlu gunakan sifat notasi sigma).

a.
$$\sum_{k=4}^{10} 8$$

b.
$$\sum_{k=1}^{5} (2k-1)$$

c.
$$\sum_{i=1}^{6} i^2$$

d.
$$\sum_{k=2}^{6} (\frac{1}{2})^2 (\frac{1}{k})^2$$

e.
$$\sum_{i=1}^{6} (2i+3)(2i+1)$$

f.
$$\sum_{n=1}^{5} \frac{(3n+2)(2n+3)}{(n+1)}$$

4. Dengan menggunakan sifat-sifat notasi sigma, buktikan pernyataan berikut.

a.
$$\sum_{k=1}^{n} (2k-1)^2 = 4\sum_{k=1}^{n} k^2 - 4\sum_{k=1}^{n} k + n$$

b.
$$\sum_{k=6}^{10} 3k^2 = 3\sum_{k=1}^{5} k^2 + 30\sum_{k=1}^{5} k + 375$$

c.
$$\sum_{k=5}^{n} (k^2 + 4) = \sum_{k=1}^{n-4} k^2 + 8 \sum_{k=1}^{n-4} k + 20(n-4)$$

5. Jika diketahui $\sum_{i=1}^{10} x_i = 25$ dan $\sum_{i=1}^{10} y_i = 50$, hitunglah nilainilai sigma berikut.

a.
$$\sum_{i=1}^{10} (x_i + 4)$$

b.
$$\sum_{i=1}^{10} (3y_i - 1)$$

c.
$$\sum_{i=1}^{10} (2x_i - 4y_i + 5)$$

d.
$$\sum_{i=1}^{10} (7y_i - 4x_i)$$

6. Ubahlah notasi sigma berikut ke dalam batas bawah *b* yang ditentukan.

a.
$$\sum_{n=6}^{10} \frac{n+3}{2n-1}$$
; $b=2$

b.
$$\sum_{k=5}^{10} (k^2 + 5); b = 1$$

c.
$$b = 3$$

d.
$$\sum_{p=0}^{10} \left(p + \frac{4}{p-3} \right); b=5$$

e.
$$\sum_{i=1}^{8} (i^2 - 2i + 5)$$
; $b = 2$

7. Tentukan nilai notasi sigma berikut.

a.
$$\sum_{k=1}^{5} |k-5|$$

b.
$$\sum_{k=2}^{4} |3k^2 - 4|$$

c.
$$\sum_{n=1}^{5} |k^2 - 4k - 10|$$

8. Diketahui $\sum_{n=1}^{8} U_n = p$, tentukan nilai notasi sigma berikut.

a.
$$\sum_{n=1}^{8} (2U_n + 4)$$

b.
$$\sum_{n=1}^{8} (3U_n - 2)$$

F. Deret dalam Hitung Keuangan

Pernahkah kalian mengamati kegiatan ekonomi yang terjadi di sekitarmu? Kegiatan ekonomi pada umumnya melibatkan terjadinya rotasi uang. Misalnya, terjadinya transaksi jual beli, hutang-piutang, pinjam-meminjam, dan lain-lain. Pada transaksi-transaksi tersebut, biasanya dihubungkan dengan bunga. Berkaitan dengan hal itu, pada pembahasan kali ini, kita akan membicarakan bunga tunggal, bunga majemuk, dan anuitas.

Untuk mempermudah proses perhitungan bunga tunggal, bunga majemuk, dan anuitas, kalian dapat menggunakan bantuan kalkulator.

1. Bunga Tunggal

Pada suatu kegiatan (usaha) yang berhubungan dengan uang, misalnya pinjam-meminjam, biasanya jumlah nominal uang yang

Gambar 4.4 Aktivitas perbankan

Sumber: Dukumen Penerbit

dibayarkan oleh seorang peminjam akan lebih besar daripada jumlah nominal uang yang dipinjamnya. Selisih jumlah nominal uang yang dipinjam dan jumlah yang dikembalikan itu dinamakan *bunga*. Bunga pinjaman merupakan beban ganti rugi bagi peminjam. Hal ini disebabkan peminjam menggunakan uang pinjaman tersebut untuk usaha.

Besarnya bunga dipengaruhi oleh besar uang yang dipinjam, jangka waktu peminjaman, dan tingkat suku bunga (persentase). Bunga yang dibayarkan oleh peminjam pada

akhir jangka waktu peminjaman tertentu dengan besar pinjaman dijadikan dasar perhitungan dan bunga pada periode berikutnya. Jika besarnya bunga sebagai jasa peminjaman yang dibayarkan tetap untuk setiap periode, bunga itu dinamakan *bunga tunggal*.

Misalkan uang sebesar Rp100.000,00 dibungakan atas dasar bunga tunggal dengan tingkat suku bunga 10%.

Jumlah uang dan bunga sampai akhir bulan pertama:

 $Rp100.000,00 + 10\% \times Rp100.000,00 = Rp100.000,00 (1 + 10\%)$

Jumlah uang dan bunga sampai akhir bulan kedua:

 $Rp100.000,00 + 10\% \times Rp100.000,00 + 10\% \times Rp100.000,00$

 $= Rp100.000,00 (1 + 2 \times 10\%)$

Jumlah uang dan bunga sampai akhir bulan ketiga:

 $Rp100.000,00 + 10\% \times Rp100.000,00 + 10\% \times Rp100.000,00$

 $+10\% \times \text{Rp}100.000,00 = \text{Rp}100.000,00 (1 + 3 \times 10\%)$

Jumlah uang dan bunga sampai akhir bulan ke-t:

 $Rp100.000,00 + 10\% \times Rp100.000,00 + ... +$

 $10\% \times \text{Rp}100.000,00 = \text{Rp}100.000,00 \ (1 + t \times 10\%)$

Secara umum, dapat kita katakan sebagai berikut.

Misalkan modal sebesar M_0 dibungakan atas dasar bunga tunggal selama t periode waktu dengan tingkat suku bunga (persentase) r. Bunga (B) dan besar modal pada akhir periode (M_t) adalah

$$B = M_0 \times t \times r$$

$$M_t = M_0(1 + t \times r)$$

Contoh 1:

Koperasi Jatra Lestari memberikan pinjaman kepada anggotanya atas dasar bunga tunggal sebesar 2% per bulan. Jika seorang anggota meminjam modal sebesar Rp3.000.000,00 dengan jangka waktu pengembalian 1 tahun, tentukan

- a. besar bunga setiap bulannya;
- b. besar uang yang harus dikembalikan sesuai jangka waktu yang ditentukan.

Jawab:

Besar bunga dihitung setiap bulan.

Diketahui r = 2%, $M_0 = \text{Rp3.000.000,00}$, dan t = 12 bulan.

a. Besar bunga setiap bulan adalah

$$B = M_0 \times 1 \times r$$

= Rp3.000.000,00 \times 1 \times 2\%
= Rp60.000,00

b. Besar uang yang harus dikembalikan sesuai jangka 12 bulan adalah

$$\begin{array}{rcl} M_t &=& M_0(1+t\times r) \\ M_{12} &=& \mathrm{Rp3.000.000,00(1+12\times2\%)} \\ &=& \mathrm{Rp3.000.000,00(1,24)} \\ &=& \mathrm{Rp3.720.000,00} \end{array}$$

Contoh 2:

Cecep meminjam uang di suatu bank sebesar Rp2.000.000,00 dengan suku bunga tunggal 30% per tahun. Dalam waktu 60 hari, Cecep sudah harus mengembalikan uang tersebut. Berapa bunga dan jumlah uang yang harus dikembalikannya? (**Asumsikan**: 1 tahun = 360 hari)

Jawab:

Dari soal di atas diketahui $M_0 = \text{Rp2.000.000,00}, r = 30\% \text{ per}$

tahun, dan t = 60 hari $= \frac{1}{6}$ tahun.

a. Bunga
$$B = M_0 \times t \times r$$

= Rp2.000.000,00 × $\frac{1}{6}$ × 30%
= Rp100.000,00

b. Jumlah uang yang harus dikembalikan Cecep adalah

$$\begin{split} M_{t} &= M_{0}(1 + t \times r) \\ &= M_{0} + M_{0} \times t \times r \\ &= M_{0} + B \\ &= \text{Rp2.000.000,00} + \text{Rp100.000,00} \\ &= \text{Rp2.100.000,00} \end{split}$$

Contoh 3:

Budi meminjam uang di bank sebesar Rp3.000.000,00 dengan menggunakan aturan sistem bunga tunggal dan tingkat bunga r per tahun. Dalam waktu satu tahun, Budi harus mengembalikan ke bank sebesar Rp3.240.000,00. Tentukan tingkat bunga r.

Jawab:

Dari soal di atas diketahui $M_0 = \text{Rp3.000.000,000}$ $M_t = \text{Rp3.240.000,00}$

Nilai bunga dalam satu tahun adalah

$$B = M_1 - M_0$$

= Rp3.240.000,00 - Rp3.000.000,00
= Rp240.000,00

sehingga tingkat bunga per tahun adalah

$$r = \frac{B}{M_0}$$

$$= \frac{\text{Rp240.000,00}}{\text{Rp3.000.000,00}} = \frac{24}{300} = \frac{8}{100} = 8\%$$

Jadi, besarnya tingkat bunga per tahun adalah 8%.

Problem Solvina

Suatu modal dipinjamkan dengan menggunakan aturan sistem bunga tunggal 4% per bulan. Dalam waktu berapa bulan modal itu harus dipinjamkan agar jumlah uang yang dikembalikan menjadi empat kali modal semula?

Jawab:

Misalkan modal yang dipinjamkan adalah M_0 . Jumlah uang yang dikembalikan $M_t = 4M_0$.

Dengan tingkat bunga 4% per bulan dan menggunakan hubungan

$$M_{t} = M_{0}(1 + t \times r)$$

$$\Leftrightarrow 4M_{t} = M_{0}(1 + t \times 4\%)$$

$$\Leftrightarrow \frac{4M_{0}}{M_{0}} = 1 + t \times 4\%$$

$$\Leftrightarrow 4 = 1 + t \times \frac{4}{100}$$

$$\Leftrightarrow t \times \frac{4}{100} = 3$$

$$\Leftrightarrow t = 75$$

Jadi, modal yang dipinjamkan itu akan mencapai empat kali modal semula untuk masa waktu 75 bulan.

Mari Berdiskusi

Inkuiri

Buatlah sebuah soal yang berhubungan dengan bunga tunggal. Kemudian, buatlah susunan besar uang yang harus dibayarkan untuk tiap periode. Perhatikan pola bilangan yang ditunjukkan pada susunan itu. Buktikan bahwa susunan (pola) barisan itu sesuai dengan barisan aritmetika.

Soal Kompetensi 9

• Kerjakan di buku tugas

- 1. Modal sebesar Rp4.000.000,00 dipinjamkan dengan perjanjian sistem bunga tunggal. Hitunglah besarnya bunga jika diketahui
 - a. tingkat bunga 5% per tahun untuk jangka waktu 1 tahun;
 - b. tingkat bunga 8% per tahun untuk jangka waktu 3 tahun:
 - c. tingkat bunga 10% per tahun untuk jangka waktu 7 bulan:
 - d. tingkat bunga 15% per tahun untuk jangka waktu 5 bulan;
 - e. tingkat bunga 17% per tahun untuk jangka waktu 9 bulan;
 - f. tingkat bunga 2,5% per bulan untuk jangka waktu 3 bulan;
 - g. tingkat bunga 1,25% per bulan untuk jangka waktu 1 tahun
- 2. Modal sebesar Rp12.500.000,00 dipinjamkan untuk jangka waktu 2 tahun dengan perjanjian sistem bunga tunggal dan tingkat bunga 1% per bulan. Tentukan jumlah uang yang akan diterima setelah pengembalian pada jangka waktu yang sudah ditentukan.
- 3. Hitunglah tingkat bunga tunggal per tahun (dalam %) untuk setiap soal berikut.
 - a. Modal Rp500.000,00 menjadi Rp535.000,00 dalam jangka waktu 2 tahun.
 - b. Modal Rp1.000.000,00 menjadi Rp1.180.000,00 dalam jangka waktu 3 tahun.
 - c. Modal Rp2.000.000,00 menjadi Rp3.100.000,00 dalam jangka waktu 5 tahun.
 - d. Modal Rp10.500.000,00 menjadi Rp11.235.000,00 dalam jangka waktu 7 bulan.
 - e. Modal Rp25.000.000,00 menjadi Rp30.625.000,00 dalam jangka waktu 15 bulan.

Tantangan

Penalaran

• Kerjakan di buku tugas

Ketika Bu Endar melahirkan anak pertamanya, Pak Endar segera mempersiapkan biaya untuk masa depan anaknya itu. Pak Endar menabung di Bank Wangsa. Bank itu memberikan bunga 14% per tahun atas dasar bunga majemuk. Jika uang yang disimpan Pak Endar sebesar Rp1.000.000,00, berapa lama uang itu harus disimpan agar nilai akhir menjadi 2 kali nilai tunainya?

- 4. Tuan Simangunsong meminjam uang sebesar Rp1.000.000,00 pada koperasi Jaya Bersama. Koperasi menetapkan suku bunga tunggal 3,5% per bulan. Berapa jumlah uang yang harus dia kembalikan jika jangka waktu pengembaliannya 1 tahun?
- 5. Bu Dina meminjam uang di Bank Jatra Lancar sebesar Rp15.000.000,00. Dalam 1 bulan uang tersebut harus dikembalikan dengan jumlah Rp15.750.000,00. Tentukan
 - a. tingkat (suku) bunga tunggal;
 - b. jumlah uang yang harus dikembalikan Bu Dina jika akan meminjam selama 1 tahun;
 - c. jumlah uang yang harus dikembalikan Bu Dina jika akan meminjam 1,5 tahun

(Asumsi: 1 bulan = 30 hari).

- 6. Rani menabung uang di Bank Makmur sebesar Rp3.500.000,00. Pihak bank menetapkan sistem bunga tunggal dengan tingkat bunga 6% per tahun. Hitunglah jumlah uang Rani (modal serta bunganya) untuk masa waktu 5 tahun.
- 7. Alan membeli mobil dengan harga Rp150.000.000,00. Jumlah uang muka disepakati sebesar Rp90.000.000,00 dan sisanya dibayar dalam jangka waktu 8 bulan sejumlah Rp67.200.000,00. Jika perhitungan sisa pinjaman ini dengan menggunakan sistem bunga tunggal, tentukan besarnya tingkat bunga per bulan.
- 8. Seorang pedagang menyimpan uang di bank sebesar Rp10.000.000,00 dengan sistem bunga tunggal 0,4% per bulan. Dalam jangka waktu berapa bulan uang pedagang itu akan menjadi Rp10.440.000,00?
- 9. Modal pinjaman sebesar Rp12.000.000,00 harus dilunasi dalam waktu 10 bulan dengan menggunakan aturan sistem

suku bunga tunggal. Hutang yang dikembalikan nilainya $\frac{5}{4}$

kali modal semula. Hitunglah besar tingkat bunga per tahun.

10. Modal bunga sebesar M_0 dipinjamkan dengan tingkat bunga tunggal 8% per bulan. Dalam masa waktu berapa tahun modal itu harus dipinjamkan agar uang yang dikembalikan menjadi satu setengah kali modal semula?

2. Bunga Majemuk

Kalian telah mengetahui perhitungan bunga yang didasarkan atas bunga tunggal. Sekarang kalian diajak untuk memahami bunga majemuk, yaitu bunga yang dihitung atas dasar jumlah modal yang digunakan ditambah dengan akumulasi bunga yang

Tantangan

Penalaran

Misalkan diberikan harga suatu penanaman modal sebesar Rp25.000.000,00.

· Kerjakan di buku tugas

Dalam perhitungan, untuk tahun pertama nilai penanaman modal akan berkurang 15%, tahun kedua turun 13,5%, tahun ketiga turun 12%, demikian seterusnya. Coba tentukan nilai sisa penanaman modal pada akhir tahun ke-8 jika persentase dihitung terhadap nilai awal.

telah terjadi. Bunga semacam ini biasanya disebut bunga yang dapat berbunga. Adapun perhitungannya dapat kalian pahami melalui perhitungan deret geometri.

Misalkan modal sebesar M_0 dibungakan atas dasar bunga majemuk, dengan tingkat suku bunga i (dalam persentase) per periode waktu. Besar modal pada periode ke-t(M) dapat dihitung dengan cara berikut.

$$\begin{split} M_1 &= M_0 + M_0 \times i = M_0 (1+i) \\ M_2 &= M_1 (1+i) = [M_0 (1+i)] \; (1+i) = M_0 (1+i)^2 \\ M_3 &= M_2 (1+i) = [M_0 (1+i)^2] (1+i) = M_0 (1+i)^3 \\ \vdots &\vdots &\vdots &\vdots \end{split}$$

 $M_{t} = M_{t-1}(1+i) = [M_{0}(1+i)^{t+1}](1+i) = M_{0}(1+i)^{t}$ Jadi, diperoleh kesimpulan sebagai berikut.

Jika modal M_0 dibungakan atas dasar bunga majemuk dengan tingkat suku bunga i (dalam persen) per periode tertentu, besar modal pada periode ke-t(M) dapat ditentukan dengan rumus

$$M_{t} = M_{0}(1+i)^{t}$$

Contoh 1:

Sebuah bank memberi pinjaman kepada nasabahnya atas dasar bunga majemuk 3% per tahun. Jika seorang nasabah meminjam modal sebesar Rp5.000.000,00 dan bank membungakan majemuk per bulan, berapakah modal yang harus dikembalikan setelah 1 tahun?

Jawab:

Diketahui $M_0 = \text{Rp}5.000.000,00$, i = 3% = 0.03, dan t = 12bulan.

Dengan demikian, modal yang harus dikembalikan setelah 1 tahun (12 bulan) adalah

$$M_{t} = M_{0}(1+i)^{t}$$

 $M_{12} = \text{Rp5.000.000,00}(1+0.03)^{12}$
 $= \text{Rp5.000.000,00}(1,42576)$
 $= \text{Rp7.128.800,00}$

Pada bunga majemuk, banyak periode bunga tidak harus tepat 1 bulan atau pun 1 tahun. Namun, periodenya juga dapat dalam kurun waktu tertentu, misalnya 2 bulan, 3 bulan, atau 4 bulan. Perhatikan contoh berikut.

Contoh 2:

Tugas: Inovatif

• Kerjakan di buku tugas

Berdasarkan rumus menentukan besar modal pada periode ke-t (M_t), yaitu $M_t = M_0$ (1 + i)t, coba turunkan rumus untuk menentukan besarnya nilai bunga majemuk setelah t periode.

Ramli meminjam uang di suatu bank sebesar Rp2.000.000,00. Bank tersebut memberikan bunga atas dasar bunga majemuk 20% per tahun dengan periode pembungaan setiap catur wulan. Jika Ramli meminjam uang dalam jangka waktu 3 tahun, tentukan jumlah uang yang harus dikembalikan pada akhir tahun ke-3.

Jawab:

Diketahui $M_0 = \text{Rp}2.000.000,00$ dan i = 20% = 0,2. Pembungaan dilakukan setiap catur wulan (4 bulan).

Jadi, banyak periode pembungaannya dalam setahun ada $\frac{12}{4}$

= 3 kali. Jadi, jika lama peminjaman 3 tahun, banyak periode pembungaannya 3 × 3 = 9 kali. Dengan demikian, jumlah modal (uang) yang harus dikembalikan Ramli pada akhir tahun ke-3 adalah

$$M_t = M_0(1+i)^t$$

 $M_9 = \text{Rp2.000.000,00}(1+0,2)^9$
 $= \text{Rp2.000.000,00}(5,159780)$
 $= \text{Rp10.319.560,00}$

Problem Solving

Suatu modal sebesar Rp5.000.000,00 dibungakan dengan aturan sistem bunga majemuk. Setelah 10 tahun, modal itu menjadi Rp7.500.000,00. Tentukan tingkat bunga per tahun dalam bentuk persen.

Jawab:

Dari soal di atas diketahui $M_0 = \text{Rp}5.000.000,00$,

 $M_{10} = \text{Rp7.500.000,00}$, dan t = 10 tahun.

$$M_t = M_0(1+i)^t$$

$$\Leftrightarrow M_{10}^{i} = M_{0}^{0}(1+i)^{10}$$

$$\Leftrightarrow$$
 7.500.000 = 5.000.000(1 + *i*)¹⁰

$$\Leftrightarrow (1+i)^{10} = \frac{7.500.000}{5.000.000}$$

$$\Leftrightarrow$$
 $(1+i)^{10} = 1,5$

$$\Leftrightarrow 1 + i = (1,5)^{\frac{1}{10}}$$

$$\Leftrightarrow$$
 1 + *i* = 1,041

$$\Leftrightarrow$$
 $i = 1,041 - 1$

$$\Leftrightarrow$$
 $i = 0.041 = 4.1\%$

Jadi, besarnya nilai tingkat bunga per tahun adalah 4,1%.

Tantangan

Kreativitas

• Kerjakan di buku tugas

Setiap tahun, jumlah penduduk suatu kota bertambah menjadi tiga kali lipat dari jumlah penduduk tahun sebelumnya. Menurut taksiran, jumlah penduduk pada tahun 2009 penduduk kota tersebut akan mencapai 3,2 juta jiwa. Berdasarkan informasi ini, tentukan jumlah penduduk pada tahun 1959.

Soal Kompetensi 10

• Kerjakan di buku tugas

- 1. Tentukan nilai modal untuk setiap soal berikut.
 - a. Modal awal Rp2.000.000,00; tingkat bunga majemuk 4% per tahun untuk masa 3 tahun.
 - b. Modal awal Rp2.500.000,00, tingkat bunga majemuk 5% per tahun untuk masa 4 tahun.
 - c. Modal awal Rp4.000.000,00, tingkat bunga majemuk 6% per tahun untuk masa 4 tahun.
 - d. Modal awal Rp10.000.000,00, tingkat bunga majemuk 7% per tahun untuk masa 3 tahun.
- Uang sebesar Rp1.000.000,00 didepositokan atas dasar sistem bunga majemuk. Hitunglah besarnya nilai uang pada permulaan tahun keempat jika diketahui tingkat bunga
 - a. 2% per tahun;
 - b. 3% per tahun;
 - c. 8% per tahun;
 - d. 10% per tahun;
 - e. 15% per tahun.
- 3. Widi mendepositokan uang Rp4.000.000,00 di Bank Cahaya dengan tingkat bunga 8% per tahun. Tentukan nilai akhir deposito Widi untuk masa
 - a. 4 tahun;
 - b. 5 tahun;
 - c. 6 tahun:
 - d. 8 tahun;
 - e. 10 tahun.
- 4. Tuan Iwan menyimpan uang di suatu bank yang memberikan bunga majemuk dengan tingkat suku bunga 4,75% per tahun. Berapa jumlah uang Tuan Iwan pada akhir tahun ke-5?
- 5. Wayan meminjam uang Rp2.000.000,00 kepada seorang peminjam dengan perjanjian bunga majemuk. Jika suku bunga yang diberikan Wayan 5,2% per tahun, tentukan uang yang harus dikembalikan peminjam selama jangka peminjaman 8 tahun?
- 6. Raja meminjam uang di Bank Makmur sebesar Rp3.000.000,00. Bank tersebut memberikan bunga majemuk 3,5% per tahun dengan periode pembungaan setiap semester. Jika Raja meminjam uang dalam jangka waktu 2 tahun, tentukan jumlah uang yang harus dikembalikan pada akhir tahun ke-2.

Tantangan

Kreativitas

• Kerjakan di buku tugas

Modal sebesar Rp5.000.000,00 dipinjamkan dengan sistem bunga majemuk dan tingkat bunga 15% per tahun. Penggabungan bunga dengan modal dilakukan setiap empat bulan. Modal itu dipinjamkan untuk masa 3 tahun.

- Tentukan banyak periode bunganya.
- b. Tentukan nilai modal untuk masa 3 tahun.
- c. Tentukan nilai bunga majemuk untuk masa 3 tahun.

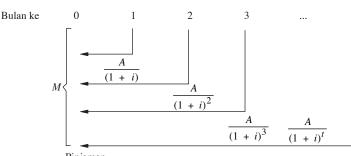
Tantangan

Kreativitas

• Kerjakan di buku tugas

Yaman mendepositokan uang Rp300.000,00 di suatu bank dengan tingkat bunga majemuk 10% per tahun. Dalam waktu berapa tahun nilai deposito Yaman akan menjadi 3 kali lipat?

- 7. Modal sebesar Rp10.000.000,00 didepositokan dengan tingkat bunga majemuk 5% per tahun. Dalam waktu berapa tahun nilai akhir deposito itu akan menjadi Rp11.576.250,00?
- 8. Alan meminjam uang di Bank X sebesar M_0 rupiah dengan tingkat bunga majemuk 5% per bulan untuk masa 3 bulan. Rani meminjam uang (dalam jumlah sama dengan yang dipinjam Alan) di Bank Y dengan tingkat bunga majemuk i% per bulan untuk masa 2 bulan. Jika jumlah uang yang dikembalikan Alan ke Bank X sama dengan jumlah uang yang dikembalikan oleh Rani ke Bank Y, tentukan nilai i.


3. Anuitas

Pernahkah kalian memperhatikan cara pembayaran kredit sepeda motor dengan sistem bunga menurun? Biasanya seseorang yang mengkredit sepeda motor melakukan pembayaran dengan cara angsuran, yaitu sistem pembayaran atau penerimaan dengan jangka waktu tetap secara berulang-ulang sesuai kesepakatan. Angsuran ini merupakan bagian dari anuitas. Anuitas adalah sistem pembayaran atau penerimaan secara berurutan dengan jumlah dan jangka waktu yang tetap (tertentu).

Untuk dapat menentukan rumus perhitungan anuitas, perhatikan uraian berikut.

Misalkan modal sebesar M dipinjamkan secara tunai (cash), dengan suku bunga i (dalam persentase) per periode waktu dan harus dilunasi dalam t anuitas setiap periode waktu. Ingat, besarnya anuitas selalu tetap. Bagaimana cara menentukan besar anuitas?

Misalkan M adalah modal yang dipinjamkan secara tunai dengan suku bunga i (dalam persentase) dan anuitasnya A. Kita dapat membuat gambaran perhitungan anuitas A sebagai berikut.

Pinjaman

Jika pengembalian pinjaman dilakukan:

satu kali anuitas maka $\frac{A}{(1+i)} = M;$

dua kali anuitas maka $\frac{A}{(1+i)} + \frac{A}{(1+i)^2} = M;$

tiga kali anuitas maka $\frac{A}{(1+i)} + \frac{A}{(1+i)^2} + \frac{A}{(1+i)^3} = M;$

demikian seterusnya.

Jadi, jika pembayaran dilakukan sebanyak t kali anuitas, berlaku

$$\frac{A}{(1+i)} + \frac{A}{(1+i)^2} + \dots + \frac{A}{(1+i)^t} = M$$

$$\Leftrightarrow A(1+i)^{-1} + A(1+i)^{-2} + \dots + A(1+i)^{-t} = M$$

$$\Leftrightarrow A((1+i)^{-1}+(1+i)^{-2}+...+A(1+i)^{-i})=M$$

Hal ini dapat dituliskan dengan rumus berikut.

$$A\sum_{n=1}^{t} (1+i)^{-n} = M$$
 atau $A = \frac{M}{\sum_{n=1}^{t} (1+i)^{-n}}$

Keterangan:

A = besar anuitas i = tingkat suku bunga

M = modal (pokok) t = banyak anuitas

Rumus anuitas juga dapat ditulis dalam bentuk

$$A = iM \frac{(1+i)^n}{(1+i)^n - 1}$$

Contoh 1:

Dealer "Lestari Motor" melayani penjualan sepeda motor dengan sistem pembayaran anuitas. Pak Dani membeli sebuah sepeda motor seharga Rp12.000.000,00 di dealer tersebut. Jika bunga yang ditetapkan pihak dealer 3% per tahun dan pelunasan dilakukan dengan 6 kali anuitas, tentukan besarnya anuitas. Kemudian, buatlah tabel rencana angsurannya.

Jawab:

Dari soal diketahui

M = Rp12.000.000,00;

i = 3% = 0.03;

t = 6

Dengan menggunakan rumus anuitas dan melihat tabel, diperoleh sebagai berikut.

Tantangan

Kreativitas

• Kerjakan di buku tugas

Pak Sianipar meminjam uang di suatu bank sebesar Rp5.000.000,00 dan akan dilunasi dengan 6 anuitas. Suku bunga yang diberikan oleh pihak bank sebesar 5% per tahun.

- a. Tentukan besar anuitas.
- b. Buatlah tabel rencana angsuran.

$$A = \frac{M}{\sum_{n=1}^{t} (1+i)^{-n}} = \frac{\text{Rp12.000.000,00}}{\sum_{n=1}^{6} (1+0,03)^{-n}}$$

Karena
$$\frac{1}{\sum_{n=1}^{6} (1 + 0.03)^{-n}} = 0.18459750 \text{ maka}$$

$$\sum_{n=1}^{6} (1+0.03)^{-n} = 5.4177144 \text{ (lihat tabel anuitas)}. \text{ Oleh karena}$$

itu,
$$A = \frac{\text{Rp12.000.000,00}}{5,4179144} = \text{Rp2.215.170,01}$$

Jadi, besar anuitas adalah Rp2.215.170,01.

Setelah mengetahui cara menentukan besar anuitas yang harus dibayarkan, tentu kalian juga harus mengetahui besar angsuran yang telah dibayarkan sehingga kalian mengetahui sisa pinjaman setelah pembayaran anuitas pada periode ke-t. Untuk itu, perhatikan uraian di atas.

Kalian tahu bahwa besar anuitas selalu tetap. Pada contoh di atas, sisa hutang Pak Dani setelah anuitas pertama dibayarkan adalah sebagai berikut.

Pinjaman pertama + bunga – anuitas yang dibayarkan Jadi, sisa hutang

= Rp12.000.000,00(1+0.03) - Rp2.215.170,01

= Rp10.144.829,99

Dengan demikian, angsuran yang dibayarkan sebenarnya hanya selisih anuitas dengan bunganya.

Jadi, angsuran pada pembayaran anuitas pertama adalah

 $Rp2.215.170,01 - 3\% \times Rp12.000.000 = Rp1.855.170,01.$

Perhitungan ini biasanya dilakukan pada akhir periode bunga.

Misalkan:

M = hutang awal

A = besar anuitas

i = tingkat suku bunga

 $a_{\cdot} = \operatorname{angsuran} \ker t$

Pada akhir periode bunga ke-1, besar angsurannya

 $a_1 = A - i M.$

Pada akhir periode bunga ke-2, besar angsurannya $a_2 = (A - i M)(1 + i)^{2-1}$.

Pada akhir periode bunga ke-3, besar angsurannya $a_3 = (A - i M)(1 + i)^{3-1}$.

Jadi, pada akhir periode bunga ke-t, besar angsurannya

$$a_t = (A - i M)(1 + i)^{t-1}$$

Dari contoh di atas, kita dapat menentukan besar angsuran ke-3 Pak Dani pada dealer "Lestari Motor" sebesar

$$a_3 = (A - i M)(1 + i)^{3-1}$$

= (Rp2.215.170,01 – 0,03 × Rp12.000.000,00)(1 + 0,03)²
= Rp1.968.149,86

Jadi, besar angsuran ke-3 Pak Dani adalah Rp1.968.149,86.

Misalkan M =hutang awal

 H_t = sisa pinjaman akhir periode ke-t

A = besar anuitas

i = tingkat suku bunga

 $a_t = angsuran ke-t$

Tabel rencana angsuran adalah sebagai berikut.

Tabel Rencana Angsuran

Akhir Periode	Sisa Pinjaman	Anuitas	Beban Bunga di Akhir Periode	Besar Angsuran
ke-1 ke-2 ke-3	$H_{1} = M$ $H_{2} = H_{1} - a_{1}$ $H_{3} = H_{2} - a_{2}$	A A A	$\begin{array}{c} i \ H_1 \\ i \ H_2 \\ i \ H_3 \end{array}$	$a_{1} = A - i H_{1}$ $a_{2} = A - i H_{2}$ $a_{3} = A - i H_{3}$
ke-t	$\vdots \\ H_{t} = H_{t-1} - a_{t-1}$: <i>A</i>	: i H ₁	$a_{t} = A - i H_{t}$

Dari contoh di atas, kita dapat membuat tabel rencana angsuran sebagai berikut.

Akhir Periode	Sisa Pinjaman	Anuitas	Beban Bunga di Akhir Periode	Besar Angsuran
ke-1	$H_1 = \text{Rp}12.000.000;$	Rp2.215.170,01	$iH_1 = \text{Rp360.000,00}$	$a_1 = A - iH_1$ = Rp1.855.170,01
ke-2	$H_2 = H_1 - a_1$ = Rp10.144.829,99	Rp2.215.170,01	$iH_2 = \text{Rp}304.344,89$	$a_2 = A - iH_2$ = Rp1.910.825,1
ke-3	$H_3 = H_2 - a_2$ = Rp8.234.004,89	Rp2.215.170,01	$iH_3 = \text{Rp}247.020,15$	$a_3 = A - iH_3$ = Rp1.968.149,86
ke-4	$H_4 = H_3 - a_3$ = Rp6.265.855,03	Rp2.215.170,01	$iH_4 = \text{Rp}187.975,65$	$a_4 = A - iH_4$ = Rp2.027.194,35
ke-5	$H_5 = H_4 - a_4$ = Rp4.238.660,68	Rp2.215.170,01	$iH_5 = \text{Rp}127.159,82$	$a_5 = A - iH_5$ = Rp2.088.010,19
ke-6	$H_6 = H_5 - a_5$ = Rp2.150.650,49	Rp2.215.170,01	$iH_6 = \text{Rp}64.519,52$	$a_6 = A - iH_6$ = Rp2.150.650,49
ke-7	$H_7 = H_6 - a_6$ $= 0$		$iH_7 = 0$	

Setelah kalian memahami rumus untuk menentukan besarnya angsuran, sekarang kita akan menentukan rumus untuk mencari besar pinjaman. Dari rumus menentukan besarnya angsuran pada periode bunga ke-t, untuk melunasi pinjaman sebesar M dengan besar anuitas A setiap periode pembayaran pada tingkat bunga i% per periode pembayaran ditentukan oleh

$$a_t = (A - iM)(1 + i)^{t-1}$$

Untuk nilai-nilai $t = 1, 2, 3, \dots n$, diperoleh hubungan berikut.

$$a_1 = (A - iM)(1 + i)^{1-1} = (A - iM)$$

$$a_2 = (A - iM)(1 + i)^{2-1} = (A - iM)(1 + i) = a_1(1 + i)$$

$$a_{1} = (A - iM)(1 + i) = (A - iM)(1 + i) = a_{1}(1 + i)$$

$$a_{2} = (A - iM)(1 + i)^{2-1} = (A - iM)(1 + i) = a_{1}(1 + i)$$

$$a_{3} = (A - iM)(1 + i)^{3-1} = (A - iM)(1 + i)^{2} = a_{1}(1 + i)^{2}$$
:

$$a_t = (A - iM)(1 + i)^{t-1} = a_1(1 + i)^{t-1}$$

Besarnya pinjaman M sama dengan jumlah angsuran ke-1, angsuran ke-2, dan seterusnya sampai dengan angsuran ke-t.

$$M = a_1 + a_2 + a_3 + a_4 + \dots + a_r$$

$$M = a_1^{1} + a_1^{2} (1+i) + a_1^{2} (1+i)^{2} + a_1^{2} (1+i)^{3} + \dots + a_1^{2} (1+i)^{t-1}$$

Terlihat bahwa M merupakan jumlah n suku pertama deret geometri dengan suku pertama a_1 dan rasio (1 + i). Dengan

menggunakan rumus deret geometri $S_n = \frac{a(r^n - 1)}{r - 1}$ maka

diperoleh
$$M = \frac{a_1\{(1+i)^t - 1\}}{(1+i)-1} = \frac{a_1\{(1+i)^t - 1\}}{i}.$$

Jadi, diperoleh rumus untuk menentukan besar pinjaman atau hutang dengan sistem anuitas adalah

$$M = \frac{a_1 \{ (1+i)^t - 1 \}}{i}$$

dengan M = besar pinjaman/hutang awal

 a_1 = angsuran pertama

i = tingkat suku bunga

t = periode pembayaran

Contoh 2

Hutang sebesar M rupiah akan dilunasi dengan sistem pembayaran anuitas. Besarnya angsuran untuk tahun pertama adalah Rp400.000,00 dan tingkat bunga 10% per tahun. Jika hutang itu lunas dalam tempo 4 tahun, hitunglah besarnya nilai hutang (M) tersebut.

Jawab:

Berdasarkan soal di atas, diketahui a_1 = Rp400.000,00, tingkat bunga per tahun i = 10% = 0,1, dan jangka pembayaran t = 4 tahun.

Substitusikan nilai-nilai a_1 , i, dan t ke dalam rumus berikut.

$$M = \frac{a_1 \{(1+i)^t - 1\}}{i}$$

$$= \frac{400.000 \{(1+0,1)^4 - 1\}}{0,1}$$

$$= \frac{400.000 \{(1,1)^4 - 1\}}{0,1}$$

$$= 1.856.400$$

Jadi, nilai pinjaman atau hutang awal tersebut adalah Rp1.856.400,00.

Soal Kompetensi 11

• Kerjakan di buku tugas

- 1. Suatu modal sebesar Rp10.000.000,00 dipinjamkan dengan sistem anuitas. Tentukan besarnya anuitas jika
 - a. bunga 3% per tahun dan pelunasan dilakukan 6 kali anuitas;
 - b. bunga 4% per tahun dan pelunasan dilakukan 5 kali anuitas;
 - c. bunga 7% per tahun dan pelunasan dilakukan 4 kali anuitas.
 - d. bunga 10% per tahun dan pelunasan dilakukan 8 kali anuitas.
 - e. bunga 15% per tahun dan pelunasan dilakukan 10 kali anuitas.
- 2. Suatu pinjaman sebesar Rp5.000.000,00 akan dilunasi dengan sistem anuitas tahunan sebesar Rp864.099,10 pada tingkat bunga 5% per tahun. Tentukan
 - a. besar angsuran kedua;
 - b. besar angsuran keempat;
 - c. besar angsuran kelima;
 - d. besar angsuran keenam.
- 3. Suatu pinjaman sebesar *M* rupiah akan dilunasi dengan sistem anuitas. Besar angsuran pertamanya Rp200.000,00. Jika tingkat bunga yang berlaku 8% per tahun dalam jangka pembayaran 10 tahun, tentukan besarnya nilai pinjaman *M*.

- 4. Suatu modal sebesar Rp6.000.000,00 dipinjamkan dengan suku bunga 3% per bulan. Modal itu harus dilunasi dalam 8 anuitas. Anuitas pertama dilakukan sebulan setelah uang diterima peminjam. Tentukan besarnya anuitas dan angsuran setelah periode bunga ke-2.
- 5. Sebuah dealer sepeda motor mengkreditkan sebuah motor seharga Rp15.000.000,00 kepada Tuan Deni. Sepeda ini harus dilunasi dalam 20 anuitas bulanan. Jika suku bunga yang diberikan pihak dealer 2,5%, tentukan
 - a. besar anuitas;
 - b. angsuran pada akhir periode bunga ke-3;
 - c. sisa hutang pada akhir periode bunga ke-3;
 - d. buatlah tabel rencana angsuran sampai angsuran ke-6.
- 6. Tentukan besarnya anuitas tahunan dari pinjaman Rp3.000.000,00 pada tingkat suku bunga 4% per tahun dalam jangka pembayaran 5 tahun.
- 7. Suatu pinjaman besarnya Rp8.000.000,00 akan dilunasi dengan sistem anuitas tahunan pada tingkat bunga 6% per tahun dalam tempo pembayaran 4 tahun.
 - a. Tentukan besarnya nilai anuitas.
 - b. Buatlah tabel rencana angsurannya.
- 8. Pinjaman sebesar *X* rupiah akan dilunasi dengan sistem pembayaran anuitas. Besarnya angsuran untuk bulan pertama adalah Rp100.000,00 dan tingkat bunga 1,5% per bulan. Jika pinjaman itu lunas dalam tempo pembayaran 1 tahun, tentukan besarnya nilai pinjaman itu.
- Sebuah toko elektronik mengkreditkan sebuah televisi seharga Rp1.500.000,00 kepada seorang pelanggannya. Televisi tersebut harus dilunasi dalam 15 anuitas bulanan. Jika suku bunga yang diberikan pihak toko 1,5%, tentukan
 - a. besar anuitas;
 - b. sisa hutang pada akhir periode bunga ke-4;
 - c. buatlah tabel rencana angsurannya.
- 10. Sebuah bank memberikan pinjaman yang harus dilunasi dengan sistem anuitas. Besar angsuran pertama Rp200.000,00. Jika bank tersebut memberikan tingkat bunga 6% per tahun dalam jangka pembayaran 12 tahun, tentukan besar pinjaman yang diberikan.

Tugas: Inkuiri

Kerjakan di buku tugas

Untuk menambah wawasan kalian tentang materi barisan dan deret coba kalian cari hal-hal yang berkaitan dengan barisan dan deret, sigma, serta induksi matematika (materi maupun tokoh-tokoh) di media yang ada di sekitarmu (internet, perpustakaan maupun bukubuku referensi).

Rangkuman

1. Barisan aritmetika adalah suatu barisan bilangan yang setiap sukunya diperoleh dari suku sebelumnya ditambah suatu bilangan tetap (konstan) yang disebut beda (b).

Rumus umum suku ke-*n* dari barisan aritmetika adalah

$$U_n = a + (n-1)b,$$

dengan $b = U_n - U_{n-1}$

Rumus umum jumlah *n* suku pertama deret aritmetika adalah

$$S_n = \frac{1}{2}n(a + U_n) \text{ atau}$$
$$S_n = n(2a + (n-1)b)$$

2. Barisan geometri adalah suatu barisan bilangan yang setiap sukunya diperoleh dari suku sebelumnya dikalikan dengan suatu bilangan tetap (konstan) yang dinamakan rasio (*r*).

Rumus umum suku ke-*n* dari barisan geometri adalah

$$U_n = ar^{n-1}$$
, dengan $r = \frac{U_n}{U_{n-1}}$

Rumus umum jumlah *n* suku pertama deret geometri adalah

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
, untuk $r > 1$

$$S_n = \frac{a(1-r^n)}{1-r}$$
, untuk $r < 1$

3. Syarat deret geometri tak berhingga disebut konvergen adalah | r | < 1. Rumus jumlah tak berhingga deret geometri ini adalah

$$S_{\infty} = \frac{a}{1 - r}.$$

Refleksi

Setelah mempelajari barisan dan deret, dapatkah kalian:

- a. menjelaskan deret yang mempunyai jumlah;
- b. memberikan contoh aplikasinya.

Manfaat apa yang dapat kalian peroleh setelah mempelajari bab ini? Cobalah untuk membuat suatu ringkasan tentang materi ini dengan menggunakan bahasamu sendiri.

Tes Kemampuan Bab IV

• Kerjakan di buku tugas

- A. Pilihlah jawaban yang tepat dengan memberi tanda silang (x) pada huruf a, b, c, d, atau e.
- 1. Diketahui penjumlahan bilanganbilangan

$$3 + \frac{5}{4} + \frac{7}{9} + \frac{9}{16} + \dots + \frac{17}{64}$$
. Penjumlahan

tersebut jika ditulis dalam notasi sigma adalah

a.
$$\sum_{n=1}^{8} \frac{2n-1}{n^2}$$

b.
$$\sum_{n=0}^{8} \frac{2n+2}{n^2}$$

c.
$$\sum_{n=1}^{8} \frac{n+1}{n^2 - 1}$$

d.
$$\sum_{n=1}^{8} \frac{2n+1}{n^2}$$

e.
$$\sum_{n=0}^{8} \frac{2n+3}{2n}$$

- 2. Nilai dari $\sum_{n=4}^{8} (3n^2 + 2)$ adalah
 - a. 508
- d. 850
- b. 480
- e. 408
- c. 580
- 3. Suatu barisan aritmetika mempunyai suku ke-n yang dirumuskan sebagai $U_n = 4n 5$. Beda dari barisan itu adalah
 - a. 3
 - b. 4
 - c. $\frac{1}{4}$
 - d. $\frac{1}{3}$
 - e. 12

- 4. Diketahui suku ke-2 dan suku ke-10 barisan aritmetika berturut-turut adalah -7 dan 17, suku ke-20 barisan tersebut adalah
 - a. 37
- d. 57
- b. 47
- e. 74
- c. 50
- 5. Dari sebuah deret aritmetika diketahui $S_4 = 44$ dan $S_8 = 152$. Suku pertama dari deret tersebut adalah
 - a. -5
- d. 4
- b. –4
- e. 5
- c. 3
- Lima bilangan merupakan deret aritmetika yang jumlahnya sama dengan 175. Bilangan ketiga sama dengan tiga kali bilangan pertama. Tiga kali bilangan kedua adalah
 - a.
- 23 d. 70
- b. 35
- e. 90
- c. 48
- 7. Dari suatu barisan geometri diketahui $U_1 + U_3 = p$ dan $U_2 + U_4 = q$. Nilai U_4 adalah

a.
$$\frac{p^2}{p^2 + q^2}$$

b.
$$\frac{p^3 + q^3}{p^2 + q^2}$$

$$c. \quad \frac{q^3}{p^2 + q^2}$$

$$d. \quad \frac{q^2}{p^2 + q^2}$$

e.
$$\frac{p^2 + q^2}{q^2}$$

- 8. Dari barisan geometri diketahui suku pertamanya adalah a^{-6} dan suku ke-4 adalah ax. Jika suku ke-10 adalah a^{12} , nilai x adalah
 - a. \sqrt{a}
- d. *a*
- b. $\frac{1}{a}$
- e. $\frac{1}{a^2}$
- c. 1
- 9. Suku kedua dan kelima dari deret geometri berturut-turut adalah 6 dan 48. Jumlah 8 suku pertama adalah
 - a. 756
- d. 384
- b. 765
- e. 438
- c. 657
- 10. Jika jumlah n suku dari suatu deret geometri yang rasionya r adalah S_n maka

$$\frac{S_{6n}}{S_{3n}} = \dots \text{(SPMB 2004)}$$

- a. r^{3n}
- d. $r^{2n} + \frac{1}{2}$
- b. r^{2n}
- e. r^{3n} –
- c. $r^{3n} + 1$
- 11. Jumlah n suku pertama dari suatu deret

aritmetika adalah
$$S_n = \frac{n}{2}(3n - 17)$$
.

Rumus umum suku ke-*n* adalah (PPI 1983)

- a. 3*n*
- b. 3n 10
- c. 3n 8
- d. 3n 6
- e. 3n-2
- 12. Sepotong kawat panjang 124 cm dipotong menjadi 5 bagian sehingga panjang potong-potongannya membentuk barisan geometri. Jika potongan kawat yang paling pendek panjangnya 4 cm maka potongan kawat yang paling panjang adalah (UMPTN 2001)
 - a. 60 cm
 - b. 64 cm
 - c. 68 cm
 - d. 72 cm
 - e. 76 cm

- 13. Jumlah suatu deret aritmetika adalah 20. Suku pertama deret tersebut adalah 8 dan bedanya –2. Jika banyaknya suku deret adalah *n*, maka *n* adalah (SPMB 2004)
 - a. 4 atau 5
 - b. 4 atau 6
 - c. 4 atau 7
 - d. 3 atau 6
 - e. 5 atau 7
- 14. Bu Dina menyimpan uang di bank Rp20.000.000,00 dengan suku bunga tunggal 12% per tahun selama 6 bulan. Jumlah tabungan Bu Dina selama 6 tahun adalah
 - a. Rp34.400.000,00
 - b. Rp22.400.000,00
 - c. Rp21.200.000,00
 - d. Rp20.600.000,00
 - e. Rp18.800.000,00
- 15. Pada saat di awal diamati 8 virus jenis tertentu, setiap 24 jam masing-masing virus membelah diri menjadi dua. Jika setiap 96 jam seperempat dari seluruh virus dibunuh, maka banyaknya virus pada hari ke-6 adalah (SPMB 2004)
 - a. 96
- d. 224
- b. 128
- e. 256
- c. 192
- 16. x_0 adalah rata-rata dari data $x_1, x_2, ..., x_{10}$. Jika data tersebut diubah mengikuti pola

$$\frac{x_1}{2} + 2, \frac{x_2}{2} + 4, \frac{x_3}{2} + 6$$
, dan seterusnya

maka nilai rata-rata menjadi (SPMB 2006)

- a. $x_0 + 11$
- b. $x_0 + 12$
- c. $\frac{x_0}{2} + 10$
- d. $\frac{x_0}{2} + 11$
- e. $\frac{x_0}{2} + 12$

- 17. Akar-akar persamaan kuadrat $2x^2 20x + (7k 1) = 0$ merupakan suku pertama dan suku kedua suatu deret geometri dengan pembanding yang lebih besar dari 1. Jika perbandingan kedua akar persamaan itu 2 : 3 maka suku keempat deret geometri itu adalah (UMPTN 1994)
 - a. 9 untuk k = 7
 - b. $13\frac{1}{2}$ untuk *k* sembarang
 - c. $13\frac{1}{2}$ untuk k = 7
 - d. $15\frac{1}{2}$ untuk *k* sembarang
 - e. $15\frac{1}{2}$ untuk k = 7
- 18. Pada awal bulan, Firdaus menabung di bank sebesar Rp500.000,00. Jika bank itu memperhitungkan suku bunga majemuk sebesar 2,5% setiap bulan dengan bantuan tabel di bawah, jumlah tabungan Firdaus setelah satu tahun adalah (UN SMK 2006)

$$(1 + i)^n$$

n	2,5%
10	1,2802
11	1,3121
12	1,3449

- a. Rp575.250,00
- b. Rp624.350,00
- c. Rp640.050,00
- d. Rp656.050,00
- e. Rp672.450,00
- 19. Pinjaman sebesar Rp1.000.000,00 berdasarkan suku bunga majemuk 2% per bulan akan dilunasi dengan 5 kali anuitas bulanan sebesar Rp220.000,00. Besar angsuran pada bulan ke-4 adalah (UN SMK 2006)
 - a. Rp200.820,00
 - b. Rp212.260,00
 - c. Rp213.464,00
 - d. Rp216.480,00
 - e. Rp218.128,00

- Jumlah lima suku pertama suatu deret geometri adalah 93 dan rasio deret itu 2. Hasil kali suku ke-3 dan ke-6 adalah (UN 2006)
 - a. 4.609
 - b. 2.304
 - c. 1.152
 - d. 768
 - e. 381
- 21. Nilai *n* yang memenuhi $\frac{\frac{n}{2}[4+2(n+1)]}{2n-3}$
 - = $5 + 4(0,2)^1 + 4(0,2)^2 + 4(0,2)^3 + \dots$ adalah (UMPTN 2001)
 - a. 2 dan 3
 - b. 2 dan 5
 - c. 2 dan 6
 - d. 3 dan 5
 - e. 3 dan 6
- 22. Seseorang mempunyai sejumlah uang yang akan diambil setiap bulan yang besarnya mengikuti aturan barisan aritmetika. Pada bulan pertama diambil Rp1.000.000,00, bulan kedua Rp925.000,00, bulan ketiga Rp850.000,00, demikian seterusnya. Jumlah seluruh uang yang telah diambil selama 12 bulan pertama adalah (UN 2006)
 - a. Rp6.750.000,00
 - b. Rp7.050.000,00
 - c. Rp7.175.000,00
 - d. Rp7.225.000,00
 - e. Rp7.300.000,00
- 23. Suku kelima sebuah deret aritmetika adalah 11 dan jumlah nilai suku ke-8 dengan suku ke-12 sama dengan 52. Jumlah 8 suku pertama deret itu adalah (UN 2007/Paket 14)
 - a. 68
 - b. 72
 - c. 76
 - d. 80
 - e. 84

- 24. Bakteri jenis A berkembang biak menjadi dua kali lipat setiap lima menit. Pada waktu lima belas menit pertama banyaknya bakteri ada 400. Banyak bakteri pada waktu tiga puluh lima menit pertama adalah (UN 2007/Paket 14)
 - a. 640 bakteri
 - b. 3.200 bakteri
 - c. 6.400 bakteri
 - d. 12.800 bakteri
 - e. 32.000 bakteri
- 25. Diketahui suatu barisan aritmetika, U_{n} menyatakan suku ke-n. Jika $U_7 = 16$ dan $U_3 + U_9 = 24$ maka jumlah 21 suku pertama dari deret aritmetika tersebut adalah (UN 2007/Paket 47)
 - 336
- d. 1.344
- 672 b.
- 1.512
- 756 c.
- 26. Sebuah bola pingpong dijatuhkan ke lantai dari ketinggian 2 meter. Setiap kali setelah bola itu memantul ia mencapai

ketinggian $\frac{3}{4}$ dari ketinggian yang

dicapai sebelumnya. Panjang lintasan bola tersebut hingga bola berhenti adalah (UN 2007/Paket 47)

- 17 meter
- d. 6 meter
- 14 meter b.
- 4 meter
- 8 meter
- e.
- 27. Notasi sigma yang menyatakan 7 + 11 + 15 + 19 + 23 + ... + 51 adalah (UN 2004)

 - a. $\sum_{n=1}^{11} (4n+3)$ d. $\sum_{n=1}^{15} (3n+4)$
 - b. $\sum_{n=1}^{12} (4n+3)$ e. $\sum_{n=1}^{16} (3n+4)$
 - c. $\sum_{1}^{13} (4n+3)$
- 28. Seorang anak berjalan dengan kecepatan 6 km/jam pada jam pertama. Pada jam kedua, kecepatan dikurangi setengahnya, demikian seterusnya sampai ber-

henti. Jarak terjauh yang dapat dicapai anak tersebut adalah (UN 2004)

- a. 9 km
- b. 12 km
- c. 15 km
- d. 18 km
- e. 24 km
- 29. Suatu keluarga mempunyai 4 orang anak yang urutan usianya membentuk barisan geometri. Jika usia anak pertama 27 tahun dan anak ketiga 12 tahun maka jumlah usia keempat anak tersebut adalah (UN 2004)
 - 57 tahun a.
- d. 69 tahun
- h. 61 tahun
- e. 73 tahun
- 65 tahun
- 30. Sebuah barisan aritmetika dikelompokkan menjadi (1), (4, 7, 10), (13, 16, 19, 22, 25), ..., dengan banyak bilangan dalam kelompok membentuk barisan aritmetika. Bilangan kedua pada kelompok kelima puluh adalah (SPMB 2007)
 - 7.204 a.
- d. 7.207
- h. 7.205
- e. 7.208
- 7.206
- 31. Jika $\frac{1}{n} + \frac{1}{a} = 1$ maka jumlah deret tak

berhingga
$$\frac{1}{p} + \frac{1}{pq} + \frac{1}{pq^2} + ... + \frac{1}{pq^n} + ...$$

adalah (SPMB 2005)

- $1\frac{1}{2}$

- 32. Suku pertama dan suku kedua dari suatu deret geometri berturut-turut adalah p^2 dan p^x . Jika suku kelima deret tersebut adalah p^{18} maka x = (SPMB 2005)
 - a. 1
- d. 6
- b. 2
- e. 8
- c. 4
- 33. Suku keempat suatu deret aritmetika adalah 9, sedangkan jumlah suku keenam dan suku kedelapan adalah 30. Jumlah 20 suku pertama deret tersebut adalah (SPMB 2005)
 - a. 200
- d. 640
- b. 440
- e. 800
- c. 600

- 34. Jika suku ke-n suatu deret adalah $U_n = 2^{2x+1}$ maka jumlah tak berhingga deret tersebut adalah (SPMB 2005)
 - a. 2^{2x+2}
- d. 2^{2x+1}
- b. 2^{2x-1}
- e. 2^{2x+2}
- c. 2^{2x}
- 35. Suku tengah suatu deret aritmetika adalah 23. Jika suku terakhirnya 43 dan suku ketiganya 13 maka banyak suku deret tersebut adalah (SPMB 2005)
 - a. 5
 - b. 7
 - c. 9
 - d. 11
 - e. 13
- B. Jawablah pertanyaan-pertanyaan berikut dengan benar.
- 1. Hitunglah nilai sigma berikut.
 - a. $\sum_{k=5}^{10} (-1)^2 2^{-k}$
 - b. $\sum_{k=1}^{5} \frac{k^2 + 5}{3}$
 - c. $\sum_{k=0}^{8} (-1)^{k+1} \frac{2^{k+1}}{k+1}$
 - d. $\sum_{k=1}^{6} (3^{k+1})^{\frac{3-k}{k}}$
 - e. $\sum_{k=5}^{10} 2^{k+x} (k+1)$
- 2. Tiga buah bilangan (x + 1), (2x 1), dan (2x + 2) membentuk barisan aritmetika, tentukan bilangan-bilangan itu.
- Panjang sisi-sisi suatu segitiga siku-siku membentuk barisan aritmetika. Jika luasnya 24 cm², hitunglah kelilingnya.

- 4. Dari suatu barisan geometri diketahui U_1 + U_6 = 33 dan $U_3 \times U_4$ = 32. Tentukan suku ke-8 dan jumlah 8 suku pertama.
- 5. Akar persamaan $2x^2 20x + (7k 1) = 0$ merupakan suku pertama dan suku ke-2 suatu deret geometri yang rasionya lebih besar 1. Jika kedua akar tersebut berbanding 2 : 3. Tentukan suku ke-4 dan ke-6.
- 6. Dari suatu deret geometri konvergen diketahui $U_1 U_3 = 8 \, \mathrm{dan}^3 \mathrm{log} \, U_1 + ^3 \mathrm{log} \, U_2 + ^3 \mathrm{log} \, U_3 = 3$, tentukan jumlah tak hingga suku deret tersebut.
- 7. Sisi-sisi suatu segitiga siku-siku membentuk barisan aritmetika bila sisi miringnya 20 cm. Tentukan panjang sisisisi yang lain kemudian tentukan luas segitiga tersebut.
- 8. Suku pertama, ketiga dan kesembilan barisan aritmetika membentuk barisan geometri yang jumlahnya 26. Tentukan jumlah suku ke-4 dari barisan aritmetika dan barisan geometri tersebut.

- 9. Pak Hasim ingin membeli 50 ekor ayam untuk suatu acara. Oleh pedagang, ia diminta membayar Rp10.000,00 untuk satu ekornya. Namun, Pak Hasim menawar Rp6.000,00 untuk satu ekor ayam dan naik 3% dari harga paling awal untuk satu ekor ayam berikutnya sampai diperoleh 50 ekor ayam. Jika pedagang
- menyetujui penawaran tersebut, untung atau rugikah pedagang tersebut? Berapa rupiahkah itu?
- 10. Bu Diah meminjam uang di bank sebesar Rp4.000.000,00. Pembayaran dilakukan dengan 5 kali anuitas. Suku bunga yang ditetapkan bank adalah 2% per bulan. Tentukan besar anuitas.

Latihan Ujian Nasional

• Kerjakan di buku tugas

Pilihlah jawaban yang tepat dengan memberi tanda silang (x) pada huruf a, b, c, d, atau e.

- 1. Bentuk akar $\sqrt{3+\sqrt{8}}$ ekuivalen dengan
 - a. $1 \sqrt{2}$
 - b. $1 + \sqrt{2}$
 - c. $2 + \sqrt{2}$
 - d. $2 \sqrt{2}$
 - e. $\sqrt{2} + \sqrt{3}$
- 2. Dari 48 orang siswa di suatu kelas, 27 siswa gemar Matematika, 20 siswa gemar Ekonomi, dan 7 orang gemar Matematika dan Ekonomi. Banyaknya siswa yang tidak gemar Matematika dan Ekonomi adalah
 - a. 1 orang
 - b. 3 orang
 - c. 5 orang
 - d. 8 orang
 - e. 9 orang
- 3. Dalam suatu acara peragaan busana akan ditampilkan 6 peragawati yang dipilih dari 20 peragawati terkenal dari kota *B*. Banyaknya susunan berbeda dari peragawati yang mungkin tampil pada acara tersebut adalah
 - a. 5.040
 - b. 1.680
 - c. 1.260
 - d. 840
 - e. 210
- 4. Suatu tim bulutangkis terdiri atas 3 putra dan 2 putri. Jika akan dibentuk pasangan ganda, peluang terbentuknya pasangan ganda campuran adalah
 - a. 0,2
 - b. 0,3
 - c. 0,4
 - d. 0,5
 - e. 0,6

- 5. Peluang Ali lolos SPMB adalah 0,4 dan peluang Budi tidak lolos SPMB adalah 0,4. Peluang hanya satu dari mereka yang lolos SPMB adalah
 - a. 0.40
- d. 0,38
- b. 0,52
- e. 0,16
- c. 0,36
- 6. Akar persamaan kuadrat $x^2 + 7x 2 = 0$ adalah a dan b. Persamaan kuadrat yang akar-akarnya (a-1) dan (b-1) adalah
 - a. $x^2 5x + 1 = 0$
 - b. $x^2 + 5x + 1 = 0$
 - c. $x^2 + 9x 6 = 0$
 - d. $x^2 9x 6 = 0$
 - e. $x^2 + 9x + 6 = 0$
- 7. Persamaan $(k-1)x^2 8x 8k = 0$ mempunyai akar-akar real maka nilai k adalah
 - a. $-2 \le k \le -1$
 - b. $-2 \le k \le 1$
 - c. $-1 \le k \le 2$
 - d. $k \le -1$ atau $k \le 2$
 - e. $k \le -1$ atau $k \le 1$
- 8. Diketahui fungsi kuadrat $f(x) = -2x^2 + 8x + 3$ dengan daerah asal $\{x \mid -1 \le x \le 4, x \in R\}$. Daerah hasil fungsi adalah
 - a. $\{y \mid -7 \le y \le 11, y \in R\}$
 - b. $\{y \mid -7 \le y \le 3, y \in R\}$
 - c. $\{y \mid -7 \le y \le 19, y \in R\}$
 - d. $\{y \mid -3 \le y \le 11, y \in R\}$
 - e. $\{y \mid -3 \le y \le 19, y \in R\}$
- 9. Persamaan kuadrat yang kuat akarakarnya 5 dan –2 adalah
 - a. $x^2 + 7x + 10 = 0$
 - b. $x^2 7x + 10 = 0$
 - c. $x^2 + 3x + 10 = 0$
 - d. $x^2 + 3x 10 = 0$
 - e. $x^2 3x 10 = 0$

10. Jika x_0 , y_0 , dan z_0 adalah penyelesaian 16. Diketahui f(x) = 2x + 1 dan $(f \circ g)(x) = 2x + 1$ sistem persamaan:

$$2x + z = 5$$

$$y - 2z + 3 = 0$$

$$x + y - 1 = 0$$

maka $x_0 + y_0 + z_0 = \dots$

e. 6

11. Persamaan garis yang melalui A(-2, 1) dan tegak lurus garis 2x + y - 3 = 0 adalah

a.
$$x + 2y - 4 = 0$$
 d. $2x - y + 4 = 0$

b.
$$2x + y - 4 = 0$$
 e. $x - 2y + 4 = 0$

c.
$$x + 2y + 4 = 0$$

12. Himpunan penyelesaian dari pertidaksamaan $x^2 - 5x - 6 > 0$, untuk $x \in R$, adalah

a.
$$\{x \mid -6 < x < 1\}$$

b.
$$\{x \mid -3 < x < 2\}$$

c.
$$\{x \mid x < -6 \text{ atau } x > 6\}$$

d.
$$\{x \mid x < -1 \text{ atau } x > 6\}$$

e.
$$\{x \mid x < 2 \text{ atau } x > 3\}$$

13. Nilai x yang memenuhi $\frac{12x+39}{x+12} < 0$

adalah

a.
$$x < -12$$
 atau $x > -3$

b.
$$-3 > x > -12$$

c.
$$x < 3$$
 atau $x > 12$

d.
$$3 < x < 12$$

e.
$$x < -12$$

14. Nilai-nilai x yang memenuhi $|x + 3| \le 1$ adalah

a.
$$x \le -1$$
 atau $x \ge 3$

b.
$$x \le -1$$
 atau $x \ge 1$

c.
$$-4 \le x \le -2$$

d.
$$x \le -2$$
 atau $x \ge -4$

e.
$$x \le -4$$
 atau $x \ge -2$

15. Persamaan garis yang melalui titik (1, 1) dan (2, 3) tegak lurus pada garis

a.
$$y = 2x + 1$$

a.
$$y = 2x + 1$$
 d. $y = -\frac{1}{2}x + 1$

b.
$$y = -2x + 1$$
 e. $y = x - 1$

$$v = x - 1$$

c.
$$y = \frac{1}{2}x - 1$$

- $2x^2 5$. Nilai g(1) = ...
 - -2
 - b. -1
 - 0 c.
 - d. 1
 - e.
- 17. Diketahui $f(x) = \frac{2 3x}{4x + 1}, x \neq -\frac{1}{4}$. Jika

 f^{-1} adalah invers fungsi f maka $f^{-1}(x-2)$

a.
$$\frac{4-x}{4x-5}, x \neq \frac{5}{4}$$

b.
$$\frac{-x-4}{4x-5}$$
, $x \neq \frac{5}{4}$

c.
$$\frac{-x+2}{4x+3}$$
, $x \neq \frac{-3}{4}$

d.
$$\frac{x}{4x+3}$$
, $x \neq \frac{-3}{4}$

e.
$$\frac{-x}{4x+5}$$
, $x \neq \frac{-5}{4}$

18. Nilai ujian Matematika sekelompok siswa adalah sebagai berikut:

3 siswa masing-masing bernilai 50,

5 siswa masing-masing bernilai 60, dan 2 siswa masing-masing bernilai 70.

Rata-rata nilai Matematika dari kelompok siswa tersebut adalah

- 55 a.
- b. 56
- 57 c.
- 58 d.
- 59
- 19. Dari 100 buah data diketahui data terbesar 27,5 dan data terkecil 3,8. Jika data tersebut akan disusun dalam suatu tabel distribusi frekuensi nilai kelompok, maka intervalnya (panjang kelas) adalah
 - 6.0
 - 5,0 b.
 - c. 4,0
 - 3,0 d.
 - 2.9 e.

- 20. Rata-rata nilai UAN sembilan orang siswa adalah 5. Kemudian, ada seorang siswa yang mengikuti UAN susulan sehingga sekarang rata-rata nilai siswa menjadi 5,4 maka nilai siswa yang mengikuti UAN susulan tersebut adalah
 - a. 5
- d. 8
- b. 6
- e. 9
- c. 7

0.1		
21.	Nilai	Frekuensi
	47–49	1
	50-52	6
	53–55	6
	56–58	7

Median data di atas adalah

a. 55,6

59-61

d. 53,5

4

- b. 55,0
- e. 33,0
- c. 54.5
- 22.

Nilai Ujian	Frekuensi
3	2
4	4
5	6
6	20
7	10
8	5
9	2
10	1

Nilai ujian dari peserta seleksi pegawai di suatu instansi diperlihatkan dalam tabel di atas. Seorang calon dinyatakan lulus jika nilainya sama dengan atau di atas rata-rata. Banyak calon yang lulus adalah

- a. 8
- d. 44
- b. 18
- e. 48
- c. 38
- 23. Tabel berikut menunjukkan besarnya uang saku siswa suatu SMA dalam ribuan rupiah.

Uang Saku (ribuan rupiah)	Frekuensi
1 - 3 $4 - 6$	13 25
7 – 9 10 – 12 13 – 15	40 10 12

Modusnya adalah

- a. Rp7.490,00
- d. Rp7.750,00
- b. Rp7.500,00
- e. Rp7.800,00
- c. Rp7.600,00
- 24. Suatu kelas terdiri atas 50 siswa, 35 diantaranya gemar Matematika dan 25 gemar Bahasa Inggris. Jika dipilih secara acak seorang siswa, peluang terpilih siswa yang gemar Matematika dan Bahasa Inggris adalah
 - a. $\frac{1}{5}$
- d. $\frac{3}{5}$
- b. $\frac{1}{2}$
- e. $\frac{4}{5}$
- c. $\frac{2}{5}$
- 25. Dari sebuah kotak yang berisi 6 kelereng berwarna merah dan 4 kelereng berwarna putih diambil 3 kelereng sekaligus secara acak. Peluang terambil kelereng-kelereng tersebut ketiganya berwarna merah adalah
 - a. $\frac{2}{3}$
 - b. $\frac{3}{5}$
 - c. $\frac{1}{16}$
 - d. $\frac{2}{21}$
 - e. $\frac{1}{12}$

26.
$$\lim_{x \to -2} \frac{x^2 + 5x + 6}{x(x+2)} = \dots \text{ (SPMB 2004)}$$

- a. $-\frac{1}{2}$ d. $\frac{1}{4}$
- b. $-\frac{1}{4}$ e. $\frac{1}{2}$
- c.

27. Nilai
$$\lim_{x \to \infty} \frac{x^2 - x + 1}{2x^2} = \dots$$

- d. 2

- 28. Diketahui $f(x) = 5x^2 + ax 4$. Apabila f'(2) = 22 maka nilai a adalah
 - 2 a.
- d. 6
- b. 3
- e. 10
- c.
- 29. Kurva $y = x^3 + 6x^2 16$ naik untuk nilai x yang memenuhi (SPMB 2004)
 - x < -4 atau x > 0
 - b. x < 0 atau x > 4
 - c. -4 < x < 1
 - d. -1 < x < 4
 - 0 < x < 4
- 30. Ingkaran dari pernyataan "Semua makhluk hidup perlu makan dan minum" adalah
 - Semua makhluk hidup tidak perlu makan dan minum
 - Ada makhluk hidup yang tidak perlu makan atau minum
 - Ada makhluk hidup yang tidak perlu makan dan minum
 - d. Semua makhluk tidak hidup perlu makan dan minum
 - Semua makhluk hidup perlu makan tetapi tidak perlu minum

31. Diketahui premis-premis:

Premis 1 : Jika ia dermawan maka ia disenangi masyarakat.

Premis 2: Ia tidak disenangi masyarakat.

Kesimpulan yang sah untuk dua premis di atas adalah

- Ia tidak dermawan
- Ia dermawan tetapi tidak disenangi masyarakat
- Ia tidak dermawan dan tidak disenangi masyarakat
- d. Ia dermawan
- Ia tidak dermawan tetapi disenangi masyarakat
- 32. Kesimpulan dari tiga premis:

$$p \Rightarrow \sim q$$

$$\sim r \Rightarrow q$$

 $\sim r$

adalah ...

- a. ~*p*
- b. *~q*
- c. q
- 33. $\int (x^2 4x + 5) dx = \dots$

a.
$$\frac{1}{2}x^3 - 4x^2 + 5x + c$$

b.
$$\frac{1}{2}x^3 - 2x^2 + 5x + c$$

c.
$$\frac{1}{3}x^3 - 4x^2 + 5x + c$$

d.
$$\frac{1}{3}x^3 - 3x^2 + 5x + c$$

e.
$$\frac{1}{3}x^3 - 2x^2 + 5x + c$$

- 34. Hasil dari $\int (x + 2)^2 dx = ...$
 - a. $x^2 + 2x + 4 + c$
 - b. $\frac{1}{3}x^3 + 2x^2 + 4x + c$
 - c. $\frac{1}{2}x^2 + x + 4x + c$
 - d. $\frac{1}{3}x^3 + \frac{1}{2}x^2 4x + c$
 - e. $\frac{1}{3}x^3 x^2 4x + c$

- 35. Luas daerah antara y = x 1 dan kurva $y = x^2 3x + 2$ adalah ... satuan luas.
 - a. $\frac{2}{3}$
 - b. $\frac{3}{4}$
 - c. $\frac{4}{3}$
 - d. $4\frac{2}{3}$
 - e. $\frac{1}{2}$
- 36. Jumlah n suku pertama suatu deret aritmetika adalah S = 2n(n-3). Suku ke-6 deret tersebut adalah
 - a. 15
- d. 18
- b. 16
- e. 19
- c. 17
- 37. Seutas pita dibagi menjadi 10 bagian dengan panjang yang membentuk deret aritmetika. Jika pita yang terpendek 20 cm dan yang terpanjang 155 cm, maka panjang pita semula adalah
 - a. 800 cm
- d. 875 cm
- b. 825 cm
- e. 900 cm
- c. 850 cm
- 38. Jumlah uang dari anuitas US\$100 per tahun pada setiap akhir tahun selama 5 tahun dengan tingkat suku bunga 3% dimajemukkan tahunan adalah
 - a. \$112,55
- d. \$103,09
- b. \$109,27
- e. \$530,91
- c. \$106,09
- 39. Seseorang meminjam uang dengan diskon 2,5% setiap bulan. Jika ia hanya menerima sebesar Rp390.000,00 maka besar pinjaman yang harus dikembalikan setelah satu bulan adalah
 - a. Rp380.000,00
 - b. Rp380.000,00
 - c. Rp390.000,00
 - d. Rp399.000,00
 - e. Rp400.000,00

- 40. Iskandar meminjam uang di koperasi sebesar Rp500.000,00. Jika koperasi menghitungkan suku bunga tunggal
 - sebesar $2\frac{1}{2}\%$ setiap bulan, ia harus mengembalikan pinjamannya sebesar Rp550.000,00.

Lama pinjaman adalah

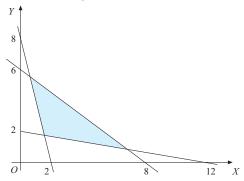
- a. 3 bulan
- b. 4 bulan
- c. 5 bulan
- d. 6 bulan
- e. 8 bulan
- 41. Pak Fuad menyimpan uang di bank Rp20.000.000,00 dengan suku bunga tunggal 12% per tahun selama 6 bulan. Jumlah tabungan Pak Fuad selama 6 tahun adalah
 - a. Rp 34.400.000,00
 - b. Rp22.400.000,00
 - c. Rp21.200.000,00
 - d. Rp20.600.000,00
 - e. Rp18.800.000,00
- 42. Pada tahun pertama seorang karyawan mendapat gaji pokok Rp300.000,00 sebulan. Jika setiap tahun gaji pokoknya dinaikkan sebesar Rp25.000,00 maka jumlah gaji pokok karyawan tersebut selama 10 tahun pertama adalah
 - a. Rp37.125.000,00
 - b. Rp38.700.000,00
 - c. Rp39.000.000,00
 - d. Rp41.125.000,00
 - e. Rp49.500.000,00
- 43. Pandu menabung pada sebuah bank dengan setoran awal Rp20.000,00. Bank tersebut memberikan suku bunga majemuk 12% setiap tahun. Besar tabungan Pandu pada akhir tahun ke-3 adalah
 - a. Rp22.400.000,00
 - b. Rp25.088.000,00
 - c. Rp27.200.000,00
 - d. Rp28.098.000,00
 - e. Rp31.470.000,00

44. Nilai *p* yang memenuhi persamaan matriks:

$$2\begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} + \begin{bmatrix} -6 & 2p \\ 4 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}$$

adalah

- a. -2
- d. 1
- b. -1
- e. 2
- c. 0
- 45. Jika diketahui persamaan matriks


$$\begin{bmatrix} 2x & 4 \\ 7 & y \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 9 & 2 \\ 4 & 3 \end{bmatrix}$$
maka

nilai x dan y berturut-turut adalah

- a. 5 dan 7
- d. 7 dan 5
- b. 6 dan 7
- e. 8 dan 7
- c. 7 dan 8
- 46. Nilai maksimum dari f(x, y) = 10x + 20y dengan kendala $x \ge 0$, $y \ge 0$, $x + 4y \le 120$, $x + y \le 60$ adalah
 - a. 400
- d. 700
- b. 500
- e. 800
- c. 600
- 47. Dengan persediaan kain polos 20 m dan kain bergaris 10 m, seorang penjahit akan membuat 2 model pakaian jadi. Model I memerlukan 1 m kain polos dan 1,5 m kain bergaris. Model II memerlukan 2 m kain polos dan 0,5 m kain bergaris. Bila pakaian tersebut dijual, setiap model I memperoleh untung Rp15.000,00 dan model II memperoleh untung Rp10.000,00. Laba maksimum yang diperoleh adalah sebanyak
 - a. Rp100.000,00
 - b. Rp140.000,00
 - c. Rp160.000,00
 - d. Rp200.000,00
 - e. Rp300.000,00
- 48. Seorang wirausahawan di bidang boga akan membuat kue jenis *A* dan kue jenis *B*. Tiap kue jenis *A* memerlukan 100 gram terigu dan 20 gram mentega, sedangkan kue *B* memerlukan 200 gram

terigu dan 30 gram mentega. Wirausahawan tersebut hanya mempunyai persediaan 26 kg terigu dan 4 kg mentega. Jika x menyatakan banyaknya kue jenis A dan y menyatakan banyaknya kue jenis B maka model matematika yang memenuhi adalah

- a. $x \ge 0, y \ge 0, x + 2y \ge 260;$ $2x + 3y \ge 400$
- b. $x \ge 0, y \ge 0, x + 2y \le 260;$ $2x + 3y \ge 400$
- c. $x \le 0, y \le 0, x + 2y \ge 260;$ $2x + 3y \ge 400$
- d. $x \ge 0, y \ge 0, x + 2y \le 260;$ $2x + 3y \le 400$
- e. $x \ge 0, y \ge 0, x + 2y \ge 260;$ $2x + 3y \le 400$
- 49. Perhatikan gambar berikut.

Daerah yang diarsir memenuhi sistem

a.
$$4x + y \ge 8$$
, $3x + 4y \le 24$, $x + 6y \ge 12$

b.
$$4x + y \ge 8, 4x + 3y \le 24, 6x + y \ge 12$$

c.
$$x + 4y \ge 8$$
, $3x + 4y \le 24$, $x + 6y \ge 12$

d.
$$4x + y \le 8$$
, $3x + 4y \ge 24$, $6x + y \le 12$

e.
$$x + 4y \ge 8$$
, $3x + 4y \ge 24$, $x + 6y \ge 12$

50. Nilai x yang memenuhi sistem persamaan:

$$\begin{cases} y = 5x - 6 \\ y = x^2 - 10x \end{cases}$$

adalah

- a. 2 atau 3
- d. -10 atau 6
- b. 1 atau 6
- e. -10 atau 5
- c. -3 atau -2

Daftar Pustaka

- Ayres, Frank. 1974. *Theory and Problems of Matrics*. New York: McGraw-Hill.
- ____. 1998. *Terjemahan Kalkulus*. Jakarta: Erlangga.
- Bartle, Robert G. 1994. *Introduction to Real Analysis*. New York: John Willey and Sons.
- Howard, R.D. 1993. *Mathematics in Actions*. London: Nelson Blackie, Ltd.
- Isabelle van Welleghem. 2007. *Ensiklopedia Pengetahuan*. Solo: Tiga Serangkai.
- Isroah dan Siti Nurjanah. 2004. *Kompetensi Dasar Akuntansi*, Solo: PT. Tiga Serangkai Pustaka Mandiri.
- Junaedi, Dedi, dkk. 1998. *Intisari Matematika Dasar SMU*. Bandung: Pustaka Setia.
- Kerami, Djati dkk. 2002. *Kamus Matematika*. Jakarta: Balai Pustaka.
- Koesmartono dkk. 1977. *Modul Matematika*. Bandung: Penerbit ITB.
- Koesmartono dkk. 1983. *Pendahuluan Matematika*. Bandung: Penerbit ITB.
- Kreyszig, E. 1988. *Advanced Enginering Mathematics*. New York: John Willey and Sons.
- Negoro, S.T. dkk. 1982. *Ensiklopedia Matematika*. Jakarta: Ghalia Indonesia.
- Neswan, Oki dan Setya Budi, W. 2003. *Matematika 1–3 untuk SMA*. Bandung: Penerbit ITB.
- Pimentall, Ric and Wall, T. 2002. *IGCSE Mathematics*. London: John Murray.
- Purcell, Edwin J. 1987. *Calculus with Analitic Geometry*. London: Prentice-Hall International, Inc.
- Sembiring, Suwah. 2002. *Olimpiade Matematika*. Bandung: YRama Widya.
- Setya Budi, Wono. 2003. *Model Buku Pelajaran Matematika Sekolah Menengah Atas*. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional.
- Siswanto. 1997. *Geometri I.* Surakarta: Universitas Sebelas Maret Press.

- Siswanto. 1997. *Geometri II*. Surakarta: Universitas Sebelas Maret Press.
- Spiegel, Murray R. 2000. *Probability and Statistics* (Second edition). New York: McGraw-Hill.
- Spiegel, Murray. 1972. *Theory and Problems of Statistics*. New York: McGraw-Hill.
- Spiegel, Murray R. 1959. *Theory and Problems of Vector Analysis*. New York: McGraw-Hill.
- Spiegel, Murray R. 1986. *Matematika Dasar (Terjemahan)*. Jakarta: Erlangga.
- Steffenson dan Johnson. 1992. Essential Mathematics for Colledge Students. New York: Harper Collins Publishers.
- Susianto, Bambang. 2004. *Olimpiade Matematika dengan Proses Berpikir*. Jakarta: Grasindo.

Lampiran

TABEL Bunga Majemuk $(1+i)^n$

n	3 %	1%	$1\frac{1}{4}\%$	$1\frac{1}{2}\%$	$1\frac{3}{4}\%$	2%
1	1,0075 0000	1,0100 0000	1,0125 0000	1,0150 0000	1,0175 0000	1,0200 0000
2	1,0150 5625	1,0201 0000	1,0251 5625	1,0302 2500	1,0353 0625	1,0444 0000
3	1,0226 6917	1,0303 1000	1,0379 7070	1,0456 7838	1,0534 2411	1,8612 3116
4	1,0303 3919	1,0406 0401	1,0509 4534	1,0613 6355	1,0718 5903	1,0824 3116
5	1,0380 6673	1,0510 1005	1,0640 8215	1,0772 8400	1,0906 1656	1,1040 0000
6	1,0458 5224	1,0615 2015	1,0773 8318	1,0934 4326	1,1097 0235	1,1261 6242
7	1,0536 9613	1,0721 3535	1,0908 5047	1,1098 4491	1,1291 2215	1,1486 8567
8	1,0615 9885	1,0828 5671	1,1044 8610	1,1264 9259	1,1488 8170	1,1716 3938
9	1,0695 6084	1,0936 8527	1,1182 9218	1,1433 8998	1,1689 8721	1,1950 9257
10	1,0775 8225	1,1046 2213	1,1322 7083	1,1605 4883	1,1894 4449	1,2189 9441
11	1,0856 6441	1,1156 6835	1,1464 2422	1,1779 4894	1,2102 5977	1,2633 7431
12	1,0938 0690	1,1268 2503	1,1607 5452	1,1956 1817	1,2314 3931	1,2682 4179
13	1,1020 1045	1,1380 9328	1,1752 6395	1,2135 5244	1,2529 8950	1,2936 0663
14	1,1102 7553	1,1494 7421	1,1899 5475	1,2317 5573	1,2749 1682	1,3194 7876
15	1,1186 0259	1,1609 6896	1,2048 2918	1,2502 3207	1,2972 2786	1,3455 6834
16	1,1269 9211	1,1725 7864	1.2198 8955	1,2689 8555	1,3199 2935	1.3727 8571
17	1,1354 4455	1,1843 0443	1,2351 3817	1,2880 2033	1,3430 2811	1,4002 4142
18	1,1439 6039	1,1961 4748	1,2505 7739	1,3073 4064	1,3665 3111	1,4282 4625
19	1,1525 4009	1,2081 0895	1,2662 0961	1,3269 5075	1,3904 4540	1,4568 1117
20	1,1611 8414	1,2201 9004	1,2820 3723	1,3468 5501	1,4147 7820	1,4859 4740
21	1,1698 9302	1,2323 9194	1,2980 6270	1,3670 5783	1,4395 3681	1,5156 6634
22	1,1786 6722	1,2447 1586	1,3142 8848	1,3875 6370	1,4647 2871	1,5459 7967
23	1,1875 0723	1,2571 6302	1,3307 1709	1,4083 7715	1,4903 6146	1,5768 9926
24	1.1964 1353	1,2697 3465	1,3473 5105	1,4295 0281	1,5164 4279	1,6084 3725
25	1,2053 8663	1,2824 3200	1,3641 9294	1,4509 4535	1,5429 8054	1,6406 0599
26	1,2144 2703	1,2952 5631	1,3812 4535	1,4727 0953	1,5699 8269	1,6734 1811
27	1,2235 3523	1,3082 0888	1,3985 1092	1,4948 0018	1,5974 5739	1,7068 8648
28	1,2327 1175	1,3212 9097	1,4159 9230	1,5172 2218	1,6254 1290	1,7410 2421
29	1,2419 5709	1,3345 0388	1,4336 9221	1,5399 8051	1,6538 5762	1,7758 4469
30	1,2512 7176	1,3478 4892	1,4516 1336	1,5630 8022	1,6828 0013	1,8113 6158
31	1,2606 5630	1,3613 2740	1,4697 5853	1,5865 2642	1,7122 4913	1,8475 8882
32	1,2701 1122	1,3749 4068	1,4881 3051	1,6103 2432	1,7422 1349	1,8845 4059
33	1,2796 3706	1,3886 9009	1,5067 3214	1,6344 7918	1,7727 0223	1,9222 3140
34	1,2892 3434	1,4025 7699	1,5255 6629	1,6589 9637	1,8037 2452	1,9606 7603
35	1,2989 0359	1,4166 0276	1,5446 3587	1,6838 8132	1,8352 8970	1,9998 8953
36	1,3086 4537	1,4307 6878	1,5639 4382	1,7091 3954	1,8674 0727	2,0398 8734
37	1,3184 6021	1,4450 7647	1,5834 9312	1,7347 7663	1,9000 8689	2,0806 8309
38	1,3283 4866	1,4595 2724	1,6032 8678	1,7607 9828	1,9333 3841	2,1222 9879
39	1,3383 1128	1,4741 2251	1,6233 2787	1,7872 1025	1,9671 7184	2,1647 4477
40	1,3483 4861	1,4888 6373	1,6436 1946	1,8140 1841	2,0015 9734	2,2080 3966
41	1,3584 6123	1,5037 5237	1,6641 6471	1,8412 2868	2,0366 2530	2,2522 0046
42	1,3686 4969	1,5187 8989	1,6849 6677	1,8688 4712	2,0722 6624	2,2972 4447
43	1,3789 1456	1,5339 7779	1,7060 2885	1,8968 7982	2,1085 3090	2,3431 8936
44	1,3892 5642	1,5493 1757	1,7273 5421	1,9253 3302	2,1454 3019	2,3900 5314
45	1,3996 7584	1,5648 1075	1,7489 4614	1,9542 1301	2,1829 7522	2,4378 5421
46	1,4101 7341	1,5804 5885	1,7708 0797	1,9835 2621	2,2211 7728	2,4866 1129
47	1,4207 4971	1,5962 6344	1,7929 4306	2,0132 7910	2,2600 4789	2,5363 4351
48	1,4314 0533	1,6122 2608	1,8153 5485	2,0434 7829	2,2995 9872	2,5870 7039
49	1,4421 4087	1,6283 4834	1,8380 4679	2,0741 3046	2,3398 4170	2,6388 1179
50	1,4529 5693	1,6446 3182	1,8610 2237	2,1052 4242	2,3807 8893	2,6915 8803

TABEL Bunga Majemuk $(1 + i)^n$

n	$2\frac{1}{2}\%$	3%	$3\frac{1}{2}\%$	4%	$4\frac{1}{2}\%$	5%
1	1,025	1,03	1,035	1,04	1,045	1,05
2	1,0506 2500	1,0609	1,0712 25	1,0816	1,0920 25	1,1025
3	1,0768 9063	1,0927 27	1,1087 1788	1,1284 64	1,1411 6613	1,1576 25
4 5	1,1038 1289	1,1255 0881	1,1475 2300	1,1698 5856	1,1925 1860	1,2155 0625
	1,1314 0821	1,1592 7407	1,1876 8631	1,2166 5290	1,2461 8194	1,2762 8156
6	1,1596 9342	1,1940 5230	1,2292 5533	1,2653 1902	1,3022 6012	1,3400 9564
7	1,1886 8575	1,2298 7387	1,2722 7926	1,3159 3178	1,3608 6183	1,4071 0042
8	1,2184 0290	1,2667 7008	1,3168 0904	1,3685 6905	1,4221 0061	1,4774 5544
9	1,2488 6297	1,3047 7318	1,3628 9375	1,4233 1181	1,4860 9514	1,5513 2822
10	1,2800 8454	1,3439 1638	1,4105 9876	1,4802 4428	1,5529 6942	1,6288 9463
11	1,3120 8666	1,3842 3387	1,4599 6972	1,5394 5406	1,6228 5305	1,7103 3926
12	1,3448 8882	1,4257 6089	1,5110 6866	1,6010 3222	1,6958 8143	1,7958 5633
13	1,3785 1104	1,4685 3371	1,5639 5606	1,6650 7351	1,7721 9610	1,8856 4914
14	1,4129 7382	1,5125 8972	1,6186 9452	1,7316 7645	1,8519 4492	1,9799 3166
15	1,4482 9817	1,5579 6742	1,6753 4883	1,8009 4351	1,9352 8224	2,0789 2818
16	1,4845 0562	1,6047 0644	1,7339 9604	1,8729 8125	2,0223 7015	2,1828 7459
17	1,5216 1826	1,6528 4763	1,7946 7555	1,9479 0050	2,1133 7681	2,2920 1832
18	1,5596 5872	1,7024 3306	1,8574 8920	2,0258 1652	2,2084 7877	2,4066 1923
19	1,5986 5019	1,7535 0605	1,9225 0132	2,1068 4918	2,3078 6031	2,5269 5020
20	1,6386 1644	1,8061 1123	1,9897 8886	2,1911 2314	2,4117 1402	2,6532 9771
21	1,6795 8185	1,8602 9457	2,0594 3147	2,2787 6807	2,5202 4116	2,7859 6259
22	1,7215 7140	1,9161 0341	2,1315 1158	2,3699 1879	2,6336 5201	2,9252 6072
23	1,7646 1068	1,9735 8651	2,2061 1145	2,4647 1554	2,7521 6635	3,0715 2376
24	1,8087 7259	2,0327 9411	2,2833 2849	2,5633 0416	2,8760 1383	3,2250 9994
25	1,8539 4410	2,0937 7793	2,3632 4498	2,6658 3633	3,0054 3446	3,3863 5494
26	1,9002 9270	2,1565 9127	2,4459 5856	2,7724 6978	3,1406 7901	3,5556 7269
27	1,9478 0002	2,2212 8901	2,5315 6711	2,8833 6858	3,2820 0956	3,7334 5632
28	1,9964 9502	2,2879 2768	2,6201 1720	2,9987 0332	3,4296 9999	3,9201 2914
29	2,0464 7394	2,3565 6551	2,7118 7798	2,1186 5145	3,5840 3649	4,1161 3560
30	2,0975 6758	2,4272 6247	2,8067 9370	3,2433 9751	3,7453 1813	4,3219 4238
31	2,1500 0068	2,5000 8035	2,9050 3148	3,3731 3341	3,9138 5745	4,5380 3949
32	2,2037 5694	2,5750 8276	3,0067 0759	3,5080 5875	4,0899 8104	4,7649 4147
33	2,2588 5086	2,6523 3524	3,1119 4235	3,6483 8110	4,2740 3018	5,0031 8854
34	2,3153 2213	2,7319 0530	3,2208 6035	3,7943 1634	4,4663 6154	5,2533 4797
35	2,3732 0519	2,8138 6245	3,3355 9045	3,9460 8899	4,6673 4781	5,5160 1537
36	2,4325 3532	2,8982 7833	3,4502 6611	4,1039 3255	4,8773 7846	5,7918 1614
37	2,4933 4870	2,9852 2668	3,5710 2543	4,2680 8986	5,0968 6049	6,0814 0694
38	2,5556 8242	3,0747 8348	3,6960 1131	4,4388 1345	5,3262 1921	6,3854 7729
39	2,6195 7448	3,1670 2698	3,8253 7171	4,6163 6599	5,5658 9908	6,7047 5115
40	2,6850 6384	3,2620 3779	3,9592 5972	4,8010 2063	5,8163 6454	7,0399 8871
41	2,7521 9043	3,3598 9893	4,0978 3381	4,9930 6145	6,0781 0094	7,3919 8815
42	2,8209 9519	3,4606 9489	4,2412 5799	5,1927 8391	6,3516 1584	7,7615 8756
43	2,8915 2007	3,5645 1677	4,3897 0202	5,4004 9527	6,6374 3818	8,1496 6693
44	2,9638 0808	3,6714 5227	4,5433 4160	5,6165 1508	6,9361 2290	8,5571 5028
45	3,0379 0328	3,7815 9584	4,7023 5855	5,8411 7568	7,2482 4843	8,9850 0779
46	3,1138 5086	3,8950 4372	4,8669 4110	6,0748 2271	7,5744 1961	9,4342 5818
47	3,1916 9713	4,0118 9503	5,0372 8404	6,3178 1562	7,9152 6849	9,9059 7109
48	3,2714 8956	4,1322 5188	5,2135 8898	6,5705 2824	8,2714 5557	10,4012 6965
49	3,3532 7680	4,2562 1944	5,3960 6459	6,8333 4937	8,6436 7107	10,9213 3313
50	3,4371 0872	4,3839 0602	5,5849 2686	7,1066 8335	9,0326 3627	11,4673 9979

 ${\bf TABEL} \\ {\bf Bunga\ Majemuk\ } (1+i)^n$

n 5½% 6% 1 1,0550 0000 1,0600 0000 2 1,1130 2500 1,1236 0000 3 1,1742 4138 1,1910 1600 4 1,2388 2465 1,2624 7696 5 1,3069 6001 1,3382 2558 6 1,3788 4281 1,4185 1911 7 1,4546 7916 1,5036 3026 8 1,5346 8651 1,5938 4807 9 1,6190 9427 1,6894 7896 10 1,7081 4446 1,7908 4770	6½% 1,0650 0000 1,1342 2500 1,2079 4963 1,2864 6635 1,3700 8666 1,4591 4230 1,5539 8655 1,6549 9567 1,7625 7039 1,8771 3747 1,9991 5140	1,0700 0000 1,1449 0000 1,2250 4300 1,3107 9601 1,4026 5473 1,5007 3035 1,6057 8148 1,7181 8618 1,8384 5921 1,9671 5136	7½% 1,0750 0000 1,1556 2500 1,2422 9688 1,3354 6914 1,4356 2933 1,5433 0153 1,6590 4914 1,7834 7783 1,9172 3866	1,0800 0000 1,1664 0000 1,2597 1200 1,3604 8896 1,4693 2808 1,5868 7432 1,7138 2427 1,8509 3021
2 1,1130 2500 1,1236 0000 3 1,1742 4138 1,1910 1600 4 1,2388 2465 1,2624 7696 5 1,3069 6001 1,3382 2558 6 1,3788 4281 1,4185 1911 7 1,4546 7916 1,5036 3026 8 1,5346 8651 1,5938 4807 9 1,6190 9427 1,6894 7896 10 1,7081 4446 1,7908 4770	1,1342 2500 1,2079 4963 1,2864 6635 1,3700 8666 1,4591 4230 1,5539 8655 1,6549 9567 1,7625 7039 1,8771 3747	1,1449 0000 1,2250 4300 1,3107 9601 1,4026 5473 1,5007 3035 1,6057 8148 1,7181 8618 1,8384 5921	1,1556 2500 1,2422 9688 1,3354 6914 1,4356 2933 1,5433 0153 1,6590 4914 1,7834 7783	1,1664 0000 1,2597 1200 1,3604 8896 1,4693 2808 1,5868 7432 1,7138 2427
3 1,1742 4138 1,1910 1600 4 1,2388 2465 1,2624 7696 5 1,3069 6001 1,3382 2558 6 1,3788 4281 1,4185 1911 7 1,4546 7916 1,5036 3026 8 1,5346 8651 1,5938 4807 9 1,6190 9427 1,6894 7896 10 1,7081 4446 1,7908 4770	1,2079 4963 1,2864 6635 1,3700 8666 1,4591 4230 1,5539 8655 1,6549 9567 1,7625 7039 1,8771 3747	1,2250 4300 1,3107 9601 1,4026 5473 1,5007 3035 1,6057 8148 1,7181 8618 1,8384 5921	1,2422 9688 1,3354 6914 1,4356 2933 1,5433 0153 1,6590 4914 1,7834 7783	1,2597 1200 1,3604 8896 1,4693 2808 1,5868 7432 1,7138 2427
4 1,2388 2465 1,2624 7696 5 1,3069 6001 1,3382 2558 6 1,3788 4281 1,4185 1911 7 1,4546 7916 1,5036 3026 8 1,5346 8651 1,5938 4807 9 1,6190 9427 1,6894 7896 10 1,7081 4446 1,7908 4770	1,2864 6635 1,3700 8666 1,4591 4230 1,5539 8655 1,6549 9567 1,7625 7039 1,8771 3747	1,3107 9601 1,4026 5473 1,5007 3035 1,6057 8148 1,7181 8618 1,8384 5921	1,3354 6914 1,4356 2933 1,5433 0153 1,6590 4914 1,7834 7783	1,3604 8896 1,4693 2808 1,5868 7432 1,7138 2427
5 1,3069 6001 1,3382 2558 6 1,3788 4281 1,4185 1911 7 1,4546 7916 1,5036 3026 8 1,5346 8651 1,5938 4807 9 1,6190 9427 1,6894 7896 10 1,7081 4446 1,7908 4770	1,3700 8666 1,4591 4230 1,5539 8655 1,6549 9567 1,7625 7039 1,8771 3747	1,4026 5473 1,5007 3035 1,6057 8148 1,7181 8618 1,8384 5921	1,4356 2933 1,5433 0153 1,6590 4914 1,7834 7783	1,4693 2808 1,5868 7432 1,7138 2427
6 1,3788 4281 1,4185 1911 7 1,4546 7916 1,5036 3026 8 1,5346 8651 1,5938 4807 9 1,6190 9427 1,6894 7896 10 1,7081 4446 1,7908 4770	1,4591 4230 1,5539 8655 1,6549 9567 1,7625 7039 1,8771 3747	1,5007 3035 1,6057 8148 1,7181 8618 1,8384 5921	1,5433 0153 1,6590 4914 1,7834 7783	1,5868 7432 1,7138 2427
7 1,4546 7916 1,5036 3026 8 1,5346 8651 1,5938 4807 9 1,6190 9427 1,6894 7896 10 1,7081 4446 1,7908 4770	1,5539 8655 1,6549 9567 1,7625 7039 1,8771 3747	1,6057 8148 1,7181 8618 1,8384 5921	1,6590 4914 1,7834 7783	1,7138 2427
8 1,5346 8651 1,5938 4807 9 1,6190 9427 1,6894 7896 10 1,7081 4446 1,7908 4770	1,6549 9567 1,7625 7039 1,8771 3747	1,7181 8618 1,8384 5921	1,7834 7783	
9 1,6190 9427 1,6894 7896 10 1,7081 4446 1,7908 4770	1,7625 7039 1,8771 3747	1,8384 5921		1,8509 3021
10 1,7081 4446 1,7908 4770	1,8771 3747	1	1,9172 3866	
	· ·	1.9671 5136		1,9990 0463
11 1 0000 0010 1 0000	1 0001 5140	_ ′	2,0610 3156	2,1589 2500
11 1,8020 9240 1,8982 9856	1,7771 3140	2,1048 5195	2,2156 0893	2,3316 3900
12 1,9012 0749 2,0121 9647	2,1290 9624	2,2521 9159	2,3817 7960	2,5181 7012
13 2,0057 7390 2,1329 2826	2,2674 8750	2,4098 8750	2,5604 1307	2,7196 2373
14 2,1160 9146 2,2609 0396	2,4148 7418	2,5785 3415	2,7524 4405	2,9371 9362
15 2,2324 7649 2,3965 5819	2,5718 4101	2,7590 3154	2,9588 7735	3,1721 6911
16 2,3552 6270 2,5403 5168	2,7390 1067	2,9521 6375	3,1807 9315	3,4259 4264
17 2,4848 0215 2,6927 7279	2,9170 4637	3,1588 1421	3,4193 5264	3,7000 1805
18 2,6214 6627 2,8543 3915	3,1066 5438	3,3799 3228	3,6758 0409	3,9960 1950
19 2,7656 4691 3,0255 9950	3,3085 8691	3,6165 2754	3,9514 8940	4,3157 0106
20 2,9177 5749 3,2071 3547	3,5236 4506	3,8696 8446	4,2478 5110	4,6609 5714
21 3,0782 3415 3,3995 6360	3,7526 8199	4,1405 6237	4.5664 3993	5,0338 3372
22 3,2475 3703 3,6035 3742	3,9966 0632	4,4304 0174	4,9089 2293	5,4365 4041
23 3,4261 5157 3,8197 4966	4,2563 8573	4,7405 2986	5,2770 9215	5,8714 6365
24 3,6145 8990 4,0489 3464	4,5330 5081	5,0723 6695	5,6728 7406	6,3411 8074
25 3,8133 9235 4,2918 7072	4,8276 9911	5,4274 3264	6,0983 3961	6,8484 7520
26 4,0231 2893 4,5493 8296	5,1414 9955	5,8073 5292	6,5557 1508	7,3963 5321
27 4,2444 0102 4,8223 4594	5,4756 9702	6,2138 6763	7,0473 9371	7,9880 6147
28 4,4778 4307 5,1116 8670	5,8316 1733	6,6488 3836	7,5759 4824	8,6271 0639
29 4,7241 2444 5,4183 8790	6,2106 7245	7,1142 5705	8,1441 4436	9,3172 7490
30 4,9839 5129 5,7434 9117	6,6143 6616	7,6122 5504	8,7549 5519	10,0626 5689
31 5,2580 6861 6,0881 0064	7,0442 9996	8,1451 1290	9,4115 7683	10,8676 6944
32 5,5472 6238 6,4533 8668	7,5021 7946	8,7152 7080	10,1174 4509	11,7370 8300
33 5,8523 6181 6,8405 8988	7,9898 2113	9,3253 3975	10,8762 5347	12,6760 4964
34 6,1742 4171 7,2510 2528	8,5091 5950	9,9781 1354	11,6919 7248	13,6901 3361
35 6,5138 2501 7,6860 8679	9,0622 5487	10,6765 8184	12,5688 7042	14,7853 4429
36 6,8720 8538 8,1472 5200	9,6513 0143	11,4239 4219	13,5115 3570	15,9681 7184
37 7,2500 5008 8,6360 8712	10,2786 3603	12,2236 1814	14,5249 0088	17,2456 2558
38 7,6488 0283 9,1542 5235	10,9467 4737	13,0792 7141	15,6142 6844	18,6252 7563
39 8,0694 8699 9,7035 0749	11,6582 8595	13,9948 2041	16,7853 3858	20,1152 9768
40 8,5133 0877 10,2857 1794	12,4160 7453	14,9744 5784	18,0442 3897	21,7245 2150
41 8,9815 4076 10,9028 6101	13,2231 1938	16,0226 6989	19,3975 5689	23,4624 8322
42 9,4755 2550 11,5570 3267	14,0826 2214	17,1442 5678	20,8523 7366	25,3394 8187
43 9,9966 7940 12,2504 5463	14,9979 9258	18,3443 5475	22,4163 0168	27,3666 4042
44 10,5464 9677 12,9854 8191	15.9728 6209	19,6284 5959	24.0975 2431	29,5559 7166
45 11,1265 5409 13,7646 1083	17,0110 9813	21,0024 5176	25,9048 3863	31,9204 4939
46 11,7385 1456 14,5904 8748	18,1168 1951	22,4726 2338	27,8477 0153	34,4740 8534
47 12,3841 3287 15,4659 1673	19,2944 1278	24,0457 0702	29,9362 7915	37,2320 1217
48 13,0652 6017 16,3938 7173	20,5485 4961	25,7289 0651	32,1815 0008	40,2105 7314
49 13,7838 4948 17,3775 0403	21,8842 0533	27,5299 2997	34,5951 1259	43,4274 1899
50 14,5419 6120 18,4201 5427	23,3066 7868	29,4570 2506	37,1897 4603	46,9016 1251
50 17,5717 0120 10,4201 3427	23,3000 7000	27,7370 2300	37,1077 4003	-10,7010 1231

Sumber: Kompetensi Dasar Akuntansi, 2005

TABEL Bunga Majemuk $(1+i)^{-n}$

	3 %		.1	. 1	. 3	
n	4 %	1%	$1\frac{1}{4}\%$	$1\frac{1}{2}\%$	$1\frac{3}{4}\%$	2%
1	0,9925 5583	0,9900 9901	0,9876 5432	0,9852 2167	0,9828 0098	0,9803 9216
2	0,9851 6708	0,9802 9605	0,9754 6106	0,9706 6175	0,9658 9777	0,9611 6878
3	0,9778 3333	0,9705 9015	0,9634 1833	0,9563 1699	0,9492 8528	0,9423 2234
4	0,9705 5417	0,9609 8035	0,9515 2428	0,9421 8423	0,9329 5851	0,9238 4543
5	0,9633 2920	0,9514 6569	0,9397 7706	0,9282 6033	0,9169 1254	0,9057 3081
6	0,9561 5802	0,9420 4524	0,9281 7488	0,9145 4219	0,9011 4254	0,8879 7138
7	0,9490 4022	0,9327 1805	0,9167 1593	0,9010 2679	0,8856 4378	0,8705 6018
8	0,9419 7540	0,9234 8322	0,9053 9845	0,8877 1112	0,8704 1157	0,8534 9037
9 10	0,9349 6318 0,9280 0315	0,9143 3982 0,9052 8696	0,8942 2069 0,8831 8093	0,8745 9224 0,8616 6723	0,8554 4135 0,8407 2860	0,8367 5270 0,8203 4830
	ŕ			·		
11	0,9210 9494	0,8963 2372	0,8722 7746	0,8489 3323	0,8262 6889	0,8042 6304
12 13	0,9142 3816 0,9074 3241	0,8874 4923 0,8786 6260	0,8615 0860 0,8508 7269	0,8363 8742 0,8240 2720	0,8120 5788 0,7980 9128	0,7884 9318 0,7730 3253
14	0,9006 7733	0,8699 6297	0,8403 6809	0,8240 2720	0,7843 6490	0,77578 7503
15	0,8938 7254	0,8613 4948	0,8299 9318	0,7998 5151	0,7708 7459	0,7430 1473
16	0,8873 1766	0,8528 2126	0,8197 4635	0,7880 3104	0,7576 1631	0,7284 4581
17	0,8807 1231	0,8328 2120	0,8096 2602	0,7763 8526	0,7445 8605	0,7284 4381
18	0,8741 5614	0,8360 1731	0,7996 3064	0,7649 1159	0,7317 7990	0,7001 5938
19	0,8676 4878	0,8277 3992	0,7897 5866	0,7536 0748	0,7191 9401	0,6864 3076
20	0,8611 8985	0,8195 4447	0,7800 0855	0,7424 7042	0,7068 2458	0,6729 7133
21	0,8547 7901	0,8114 3017	0,7703 7881	0,7314 9795	0,6946 6789	0,6597 7582
22	0,8484 1589	0,8033 9621	0,7608 6796	0,7206 8764	0,6827 2028	0,6468 3904
23	0,8421 0014	0,7954 4179	0,7514 7453	0,7100 3708	0,6709 7817	0,6341 5592
24	0,8358 8314	0,7875 6613	0,7421 9707	0,6995 4392	0,6594 3800	0,6217 2149
25	0,8296 0933	0,7797 6844	0,7330 3414	0,6892 0583	0,6480 9632	0,6095 3087
26	0,8234 3358	0,7720,4796	0,7239 8434	0,6790 2052	0,6369 4970	0,5975 7929
27	0,8173 0380	0,7644 0392	0,7150 4626	0,6689 8574	0,6259 9479	0,5858 6204
28	0,8112 1966	0,7568 3557	0,7062 1853	0,6590 9925	0,6152 2829	0,5743 7455
29 30	0,8051 8080 0,7991 8790	0,7493 4215 0,7419 2292	0,6974 9978 0,6888 8867	0,6493 5887 0,6397 6243	0,6046 4697 0,5942 4764	0,5631 1231 0,5520 7089
				·	·	
31	0,7932 3762	0,7345 7715	0,6803 8387	0,6303 0781	0,5840 2716	0,5412 4597
32 33	0,7873 3262 0,7814 7159	0,7273 0411 0,7201 0308	0,6719 8407 0,6636 8797	0,6209 9292 0,6118 1568	0,5739 8247	0,5306 3333 0,5202 2873
34	0,7756 5418	0,7201 0308	0,6554 9430	0,6027 7407	0,5641 1053 0,5544 0839	0,5202 2875
35	0,7698 8008	0,7059 1420	0,6474 0177	0,5938 6608	0,5448 7311	0,5000 2761
36	0,7641 4896	0,6989 2495	0,6394 0916	0,5850 8974	0,5355 0183	0,4902 2315
37	0,7584 6051	0,6989 2493	0,6394 0916	0,5850 8974 0,5764 4309	0,5355 0185 0,5262 9172	0,4806 1093
38	0,7528 1440	0,6851 5337	0,6237 1873	0,5679 2423	0,5172 4002	0,4711 8719
39	0,7472 1032	0,6783 6967	0,6160 1850	0,5595 3126	0,5083 4400	0,4619 4822
40	0,7416 4796	0,6716 5314	0,6084 1334	0,5512 6232	0,4996 0098	0,4528 9042
41	0,7361 2701	0,6650 0311	0,6009 0206	0,5431 1559	0,4910 0834	0,4440 1021
42	0,7306 4716	0,6584 1892	0,5934 8352	0,5350 8925	0,4825 6348	0,4353 0413
43	0,7252 0810	0,6581 9992	0,5861 5656	0,5271 8153	0,4742 6386	0,4267 6875
44	0,7198 0952	0,6454 4547	0,5789 2006	0,5193 9067	0,4661 0699	0,4184 0074
45	0,7144 5114	0,6390 5492	0,5717 7290	0,5117 1494	0,4580 9040	0,4101 9680
46	0,7091 3265	0,6327 2764	0,5647 1397	0,5041 5265	0,4502 1170	0,4021 5373
47	0,7038 5374	0,6264 6301	0,5577 4220	0,4967 0212	0,4424 6850	0,3942 6836
48 49	0,6986 1414 0,6934 1353	0,6202 6041 0,6141 1921	0,5508 5649 0,5440 5579	0,4893 6170 0,4821 2975	0,4348 5848 0,4273 7934	0,3865 3761 0,3789 5844
50	0,6882 5165	0,6080 3883	0,5373 3905	0,4821 2973	0,4200 2883	0,3789 3844 0,3715 2788
50	3,0002 2102	2,0000	3,55.5 5705	3,23 0 100	0,.200.2000	5,5.15 2700

TABEL Bunga Majemuk $(1+i)^{-n}$

n	$2\frac{1}{2}\%$	3%	$3\frac{1}{2}\%$	4%	$4\frac{1}{2}\%$	5%
1	0,9756 0976	0,9708 7379	0,9661 8357	0,9615 3846	0,9569 3780	0,9523 8095
2	0,9518 1440	0,9425 9591	0,9335 1070	0,9245 5621	0,9157 2995	0,9070 2948
3	0,9285 9941	0,9151 4166	0,9019 4271	0,8889 9636	0,8762 9660	0,8638 3760
4	0,9059 5064	0,8884 8705	0,8714 4223	0,8548 0419	0,8385 6134	0,8227 0247
5	0,8838 5429	0,8626 0878	0,8419 7317	0,8219 2711	0,8024 5105	0,7835 2617
6	0,8622 9687	0,8374 8426	0,8135 0064	0,7903 1453	0,7678 9574	0,7462 1540
7	0,8412 6524	0,8130 9151	0,7859 9096	0,7599 1781	0,7348 2846	0,7106 8133
8	0,8207 4657	0,7894 0923	0,7594 1156	0,7306 9021	0,7031 8513	0,6768 0892
9	0,8007 2836	0,7664 1673	0,7337 3097	0,7025 8674	0,6729 0443	0,6446 0892
10	0,7811 9840	0,7440 9391	0,7089 1881	0,6755 6417	0,6439 2768	0,6139 1325
11	0,7621 4478	0,7224 2128	0,6849 4571	0,6495 8093	0,6161 9874	0,5846 7929
12	0,7435 5589	0,7013 7988	0,6617 8330	0,6245 9705	0,5896 6386	0,5563 3742
13	0,7254 2038	0,6809 5134	0,6394 0415	0,6005 7409	0,5642 7164	0,5303 2135
14	0,7077 2720	0,6611 1781	0,6177 8179	0,5774 7508	0,5399 7286	0,5050 6795
15	0,6904 6556	0,6418 6195	0,5968 9062	0,5552 6450	0,5167 2044	0,4810 1710
16	0,6736 2493	0,6231 6694	0,5767 0591	0,5339 0818	0,4944 6932	0,4581 1152
17	0,6571 9506	0,6050 1645	0,5572 0378	0,5133 7325	0,4731 7639	0,4362 9669
18	0,6411 6591	0,5873 9461	0,5383 6114	0,4936 2812	0,4528 0037	0,4155 2065
19	0,6255 2772	0,5702 8603	0,5201 5569	0,4746 4242	0,4333 0179	0,3957 3396
20	0,6102 7094	0,5536 7575	0,5025 6588	0,4563 8695	0,4146 4246	0,3768 8948
21	0,5653 8629	0,5375 4928	0,4855 7090	0,4388 3360	0,3967 8743	0,3589 4236
22	0,5808 6467	0,5218 9250	0,4691 5063	0,4219 5539	0,3797 0089	0,3418 4987
23	0,5666 9724	0,5066 9175	0,4532 8563	0,4057 2633	0,3633 5013	0,3255 7131
24	0,5528 7535	0,4919 3374	0,4379 5713	0,3901 2147	0,3477 0347	0,3100 6791
25	0,5393 9059	0,4776 0557	0,4231 4699	0,3751 1680	0,3327 3060	0,2953 0277
26	0,5262 3472	0,4636 9473	0,4088 3767	0,3606 8923	0,3184 0248	0,2812 4073
27	0,5133 9973	0,4501 8906	0,3950 1224	0,3468 1657	0,3046 9137	0,2678 4832
28	0,5008 7778	0,4370 7675	0,3816 5434	0,3334 7747	0,2915 7069	0,2550 9364
29	0,4886 6125	0,4243 4636	0,3687 4815	0,3206 5141	0,2790 1502	0,2429 4632
30	0,4767 4269	0,4119 8676	0,3562 7841	0,3083 1867	0,2670 0002	0,2313 7745
31	0,4651 1481	0,3999 8715	0,3442 3035	0,2964 6026	0,2555 0241	0,2203 5947
32	0,4537 7055	0,3883 3703	0,3325 8971	0,2850 5794	0,2444 9991	0,2098 6617
33	0,4427 0298	0,3770 2625	0,3213 4271	0,2740 9417	0,2339 7121	0,1998 7254
34	0,4319 0534	0,3660 4490	0,3104 7605	0,2635 5209	0,2238 9589	0,1903 5480
35	0,4213 7107	0,3553 8340	0,2999 7686	0,2534 1547	0,2142 5444	0,1812 9029
36	0,4110 9372	0,3450 3243	0,2898 3272	0,2436 6872	0,2050 2817	0,1726 5741
37	0,4010 6705	0,3349 8294	0,2800 3161	0,2342 9685	0,1961 9921	0,1644 3563
38	0,3912 8492	0,3252 2615	0,2705 6194	0,2252 8543	0,1877 5044	0,1566 0536
39	0,3817 4139	0,3157 5355	0,2614 1250	0,2166 2061	0,1796 6549	0,1491 4797
40	0,3724 3062	0,3065 5684	0,2525 7247	0,2082 8904	0,1719 2870	0,1420 4568
41	0,3633 4695	0,2976 2800	0,2440 3137	0,2002 7793	0,1645 2507	0,1352 8160
42	0,3544 8483	0,2889 5922	0,2357 7910	0,1925 7493	0,1574 4026	0,1288 3962
43	0,3458 3886	0,2805 4294	0,2278 0590	0,1851 6820	0,1506 6054	0,1227 0440
44	0,3374 0376	0,2723 7178	0,2201 0231	0,1780 4635	0,1441 7276	0,1168 6133
45	0,3291 7440	0,2644 3862	0,2126 5924	0,1711 9841	0,1379 6437	0,1112 9651
46	0,3211 4576	0,2567 3653	0,2054 6787	0,1646 1386	0,1320 2332	0,1059 9668
47	0,3133 1294	0,2492 5876	0,1985 1968	0,1582 8256	0,1263 3810	0,1009 4921
48	0,3056 7116	0,2419 9880	0,1918 0645	0,1521 9476	0,1208 9771	0,0961 4211
49 50	0,2982 1576 0,2909 4221	0,2349 5029 0,2281 0708	0,1853 2024 0,1790 5337	0,1463 4112 0,1407 1262	0,1156 9158 0,1107 0965	0,0915 6391 0,9872 0373
30	0,2909 4221	0,2201 0700	0,1790 3337	0,140/1202	0,1107 0903	0,7014 0313

TABEL Bunga Majemuk $(1+i)^{-n}$

n	$5\frac{1}{2}\%$	6%	$6\frac{1}{2}\%$	7%	$7\frac{1}{2}\%$	8%
,,	2 70	0 70	0 2 /6	7 70	7 2 70	0 70
1	0,9478 6730	0,9433 9623	0,9389 6714	0,9345 7944	0,9302 3256	0,9259 2593
2	0,8984 5242	0,8899 9644	0,8816 5928	0,8734 3873	0,8653 3261	0,8573 3882
3	0,8516 1366	0,8396 1928	0,8278 4909	0,8162 9788	0,8049 6057	0,7938 3224
4	0,8072 1674	0,7920 9366	0,7773 2309	0,7628 9521	0,7488 0053	0,7350 2986
5	0,7651 3435	0,7472 5817	0,7298 8084	0,7129 8618	0,6965 5863	0,6805 8320
6	0,7252 4583	0,7049 6054	0,6853 3412	0,6663 4222	0,6479 6152	0,6301 6963
7	0,6874 3681	0,6650 5711	0,6435 0621	0,6227 4974	0,6027 5490	0,5834 9040
8	0,6515 9887	0,6274 1237	0,6042 3119	0,5820 0910	0,5607 0223	0,5402 6888
9	0,6176 2926	0,5918 9846	0,5673 5323	0,5439 3374	0,5215 8347	0,5002 4897
10	0,5854 3058	0,5583 9478	0,5327 2604	0,5083 4929	0,4851 9393	0,4631 9349
11	0,5549 1050	0,5267 8753	0,5002 1224	0,4750 9280	0,4513 4319	0,4288 8286
12	0,5259 8152	0,4969 6936	0,4696 8285	0,4440 1196	0,4198 5413	0,3971 1376
13	0,4985 6068	0,4688 3902	0,4410 1676	0,4149 6445	0,3905 6198	0,3676 9792
14	0,4725 6937	0,4423 0096	0,4141 0025	0,3878 1724	0,3633 1347	0,3404 6104
15	0,4479 3305	0,4172 6506	0,3888 2652	0,3624 4602	0,3379 6602	0,3152 4170
16	0,4245 8190	0,3936 4628	0,3650 9533	0,3387 3460	0,3143 8699	0,2918 9047
17	0,4024 4653	0,3713 6442	0,3428 1251	0,3165 7439	0,2924 5302	0,2702 6895
18	0,3814 6590	0,3503 4379	0,3218 8969	0,2958 6392	0,2720 4932	0,2502 4903
19	0,3615 7906	0,3305 1301	0,3022 4384	0,2765 0833	2530 6913	0,2317 1206
20	0,3427 2896	0,3118 0473	0,2837 9703	0,2584 1900	0,2354 1315	0,2145 4821
21	0,3248 6158	0,2941 5540	0,2664 7608	0,2415 1309	0,2189 8897	0,1986 5575
22	0,3079 2567	0,2775 0510	0,2502 1228	0,2257 1317	0,2037 1067	0,1839 4051
23	0,2918 7267	0,2617 9726	0,2349 4111	0,2109 4688	0,1894 5830	0,1703 1528
24	0,2766 5656	0,2469 7855	0,2206 0198	0,1971 4662	0,1762 7749	0,1576 9934
25	0,2622 3370	0,2329 9863	0,2071 3801	0,1842 4918	0,1639 7906	0,1460 1790
26	0,2485 6275	0,2198 1003	0,1944 9679	0,1721 9549	0,1525 3866	0,1352 0176
27	0,2356 0405	0,2073 6795	0,1826 2515	0,1609 3037	0,1418 9643	0,1251 8682
28	0,2233 2181	0,1956 3014	0,1714 7902	0,1504 0221	0,1319 9668	0,1159 1372
29	0,2116 7944	0,1845 5674	0,1610 1316	0,1405 6282	0,1227 8761	0,1073 2752
30	0,2006 4402	0,1741 1013	0,1511 8607	0,1313 6712	0,1142 2103	0,0993 7733
31	0,1901 8390	0,1642 5484	0,1419 5875	0,1227 7301	0,1062 5212	0,0920 1605
32	0,1802 6910	0,1549 5740	0,1332 9460	0,1147 4113	0,0988 3918	0,0852 0005
33	0,1708 7119	0,1461 8622	0,1251 5925	0,1072 3470	0,0919 4343	0,0788 8893
34	0,1619 6321	0,1379 1153	0,1175 2042	0,1002 1934	0,0855 2877	0,0730 4531
35	0,1535 1936	0,1301 0622	0,1103 4781	0,0936 6294	0,0795 6164	0,0676 3454
36	0,1455 1624	0,1227 4077	0,1036 1297	0,0875 3546	0,0740 1083	0,0626 2458
37	0,1379 3008	0,1157 9318	0,0972 8917	0,0818 0884	0,0688 4729	0,0579 8572
38	0,1307 3941	0,1092 3885	0,0913 5134	0,0764 5686	0,0640 4399	0,0536 9048
39	0,1239 2362	0,1030 5552	0,0857 7590	0,0714 5501	0,0595 7580	0,0497 1314
40	0,1174 6314	0,0972 2219	0,0805 4075	0,0667 8038	0,0554 1935	0,0460 3093
41	0,1113 3947	0,0917 1905	0,0756 2512	0,0624 1157	0,0515 5288	0,0426 2123
42	0,1055 3504	0,0865 2740	0,0710 0950	0,0583 2857	0,0479 5617	0,0394 6411
43	0,1000 3322	0,0816 2962	0,0666 7559	0,0545 1268	0,0446 1039	0,0365 4084
44 45	0,0948 1822 0,0898 7509	0,0770 0908 0,0726 5007	0,0626 0619 0,0587 8515	0,0509 4643 0,0476 1349	0,0414 9804 0,0386 0283	0,0338 3411 0,0313 2788
	·		·	·	ĺ í	
46	0,0851 8965	0,0685 3781	0,0551 9733	0,0444 9859	0,0359 0961	0,0290 0730
47	0,0807 4849	0,0646 5831 0,0609 9840	0,0518 2848	0,0415 8747	0,0334 0428	0,0268 5861
48 49	0,0765 3885 0,0725 4867	0,0609 9840	0,0486 6524 0,0456 9506	0,0388 6679 0,0363 2410	0,0310 7375 0,0289 0582	0,0248 6908 0,0230 2693
50	0,0723 4867 0,0687 6652	0,0542 8836	0,0429 0616	0,0363 2410	0,0268 8913	0,0230 2693
50	0,0007 0032	0,0542 0050	0,0429 0010	0,03394110	0,0200 0913	0,0213 2123
					Sumber: Kompetens	Danas Almatana: 2004

Sumber: Kompetensi Dasar Akuntansi, 2004

Nilai Anuitas
$$\frac{1}{\sum_{t=1}^{n} (1 + i)^{-t}}$$

n	$1\frac{1}{2}\%$	2%	$2\frac{1}{2}\%$	3%	$3\frac{1}{2}\%$
1	1,0150 0000	1,0200 0000	1,0250 0000	1,0300 0000	1,0350 0000
2	0,5112 7792	0,5150 4950	0,5188 2716	1,5226 1084	0,5264 0049
3	0,3433 8296	0,3467 5467	0,3501 3717	0,3535 3036	0,3569 3418
4	0,2594 4479	0,2626 2375	0,2658 1788	0,2690 2705	0,2722 5114
5	0,2090 8932	0,2121 5839	0,2152 4686	0,2183 5457	0,2214 8137
6	0,1755 2521	0,1785 2581	0,1815 4997	0,1845 9750	0,1876 6821
7	0,1515 5616	0,1545 1196	0,1574 9543	0,1605 0635	0,1635 4449
8	0,1335 8402	0,1365 0980	0,1394 6735	0,1424 5639	0,1454 7665
9	0,1196 0982	0,1225 1544	0,1254 5689	0,1284 3386	0,1314 4601
10	0,1084 3418	0,1113 2653	0,1142 5876	0,1172 3051	0,1202 4137
11	0,0992 9384	0,1021 7794	0,1051 0596	0,1080 7745	0,1110 9197
12	0,0916 7999	0,0945 5960	0,0974 8713	0,1004 6209	0,1034 8395
13	0,0852 4036	0,0881 1835	0,0910 4827	0,0940 2954	0,0970 6157
14	0,0797 2332	0,0826 0197	0,0855 3652	0,0885 2634	0,0915 7073
15	0,0749 4436	0,0778 2547	0,0807 6646	0,0837 6658	0,0868 2507
16	0,0707 6508	0,0736 5013	0,0765 9899	0,0796 1085	0,0826 8483
17	0,0670 7966	0,0699 6984	0,0729 2777	0,0759 5253	0,0790 4313
18	0,0638 0578	0,0667 0210	0,0696 7008	0,0727 0870	0,0758 1684
19	0,0608 7847	0,0637 8177	0,0667 6062	0,0698 1388	0,0729 4033
20	0,0582 4574	0,0611 5672	0,0641 4713	0,0672 1571	0,0703 6108
21	0,0558 6550	0,0587 8477	0,0617 8833	0,0648 7178	0,0680 3659
22	0,0537 0332	0,0566 3140	0,0596 4661	0,0627 4739	0,0659 3207
23	0,0517 3075	0,0546 6810	0,0576 9638	0,0608 1390	0,0640 1880
24	0,0499 2410	0,0528 7110	0,0559 1282	0,0590 4742	0,0622 7283
25	0,0482 6345	0,0512 2044	0,0542 7592	0,0574 1787	0,0606 7404
26	0,0467 3196	0,0496 9923	0,0527 6875	0,0559 3829	0,0592 0540
27	0,0453 1527	0,0482 9309	0,0513 7687	0,0545 6421	0,0578 5241
28	0,0440 0108	0,0469 8967	0,0500 8793	0,0532 9323	0,0566 0265
29	0,0427 7878	0,0457 7836	0,0488 9127	0,0521 1467	0,0554 4538
30	0,0416 3919	0,0446 4992	0,0477 7764	0,0510 1926	0,0543 7133
31	0,0405 7430	0,0435 9635	0,0567 3900	0,0499 9893	0,0533 7240
32	0,0395 7710	0,0426 1061	0,0457 6831	0,0490 4662	0,0524 4150
33	0,0386 4144	0,0416 8653	0,0448 5938	0,0481 5612	0,0515 7242
34	0,0337 6189	0,0408 1867	0,0440 0675	0,0478 2196	0,0557 5966
35	0,0369 3363	0,0400 0221	0,0432 0558	0,0465 3929	0,0599 9835
36	0,0361 5240	0,0392 3285	0,0424 5158	0,0458 0379	0,0492 8416
37	0,0354 1437	0,0385 0678	0,0417 4090	0,0451 1162	0,0486 1325
38	0,0347 1613	0,0378 2057	0,0410 7012	0,0444 5934	0,0479 8214
39	0,0340 5463	0,0371 7114	0,0404 3615	0,0438 4385	0,0473 8775
40	0,0334 2710	0,0365 5575	0,0398 3623	0,0432 6238	0,0468 2728
41	0,0328 3106	0,0359 7188	0,0392 6786	0,0427 1241	0,0462 9822
42	0,0322 6426	0,0354 1729	0,0387 2876	0,0421 9167	0,0457 9828
43	0,0317 2465	0,0348 8993	0,0382 1688	0,0416 9811	0,0453 2539
44	0,0312 1038	0,0343 8794	0,0377 3037	0,0412 2985	0,0448 7768
45	0,0307 1976	0,0339 0962	0,0372 6751	0,0407 8518	0,0444 5343
46	0,0302 5125	0,0334 5342	0,0368 2676	0,0403 6254	0,0440 5108
47	0,0298 0342	0,0330 1792	0,0364 0669	0,0399 6051	0,0436 6919
48	0,0293 7500	0,0326 0184	0,0360 0599	0,0395 7777	0,0433 0646
49	0,0289 6478	0,0322 0396	0,0356 2348	0,0392 1314	0,0429 6167
50	0,0285 7168	0,0318 2321	0,0352 5806	0,0388 6549	0,0426 3371

Nilai Anuitas
$$\frac{1}{\sum_{t=1}^{n} (1 + i)^{-t}}$$

1 1,0400 0000 1,0450 0000 1,0500 0000 1,0550 0000 1,0600 0000 2 0,5301 9088 0,5339 9756 0,5378 0488 0,5416 1800 0,5454 3689 3 0,3603 4854 0,3637 7336 0,2672 0856 0,3706 5407 0,3741 0981 4 0,0754 9005 0,2787 4365 0,2820 11 83 0,2852 9449 0,2885 9149 5 0,2246 2771 0,2277 9164 0,2309 7480 0,2341 7644 0,2373 9640 6 0,1907 6190 0,1938 7839 0,1970 1747 0,2001 7895 0,2033 6263 7 0,1666 0961 0,1697 0147 0,1728 1982 0,1759 6442 0,1791 3502 8 0,1485 2783 0,1516 0965 0,1547 2181 0,1578 6401 0,1610 3594 9 0,1344 9299 0,1375 7447 0,1406 9008 0,1438 3946 0,1470 2224 10 0,1232 9094 0,1263 7882 0,1295 0457 0,1326 6777 0,1358 6796 11 0,1141 4904 0,1172 4818 0,120 954 449 0,1263 7882 0,126 7924 12 <th>n</th> <th>4%</th> <th>$4\frac{1}{2}\%$</th> <th>5%</th> <th>5 1/2 %</th> <th>6%</th>	n	4%	$4\frac{1}{2}\%$	5%	5 1/2 %	6%
2 0,3301 9608 0,5339 9756 0,5378 0488 0,5416 1800 0,5454 3689 3 0,3603 4854 0,3637 7336 0,3672 0856 0,3706 5407 0,3741 0981 4 0,0754 9005 0,2787 4365 0,280 11 83 0,2852 9449 0,2885 9149 5 0,2246 2771 0,2277 9164 0,2309 7480 0,2341 7644 0,2373 9640 6 0,1907 6190 0,1938 7839 0,1970 1747 0,2001 7895 0,2033 6263 7 0,1666 0961 0,1697 0147 0,1728 1982 0,1759 6442 0,1791 3502 8 0,1485 2783 0,1516 0965 0,1547 2181 0,1578 6401 0,1610 3594 9 0,1344 9299 0,1374 9244 0,1065 3782 0,1267 9294 0,1263 7882 0,1257 77 0,1358 6796 11 0,1141 4904 0,1172 4818 0,1203 8889 0,1235 7065 0,1267 9294 12 0,1065 5217 0,1096 6619 0,1128 2541 0,1160 2923 0,1192 703 13 0,1014 373 0,1032 7535 0,1062 5577 0,1094 216 0,	1	1.0400 0000	1.0450 0000	1.0500 0000	1.0550 0000	1.0600 0000
3 0,3603 4854 0,3673 7336 0,3672 0856 0,3706 5407 0,3741 0981 4 0,0754 9005 0,2787 4365 0,2820 11 83 0,2852 9449 0,2885 9149 5 0,2246 2771 0,2277 9164 0,2309 7480 0,2341 7644 0,2333 9640 6 0,1907 6190 0,1938 7839 0,1970 1747 0,2001 7895 0,2033 6263 7 0,1666 0961 0,1697 0147 0,1728 1882 0,1759 6442 0,1791 3502 8 0,1485 2783 0,1516 0965 0,1547 2181 0,1578 6401 0,1610 3594 9 0,1344 9299 0,1375 7447 0,1406 9008 0,1438 3946 0,1470 2224 10 0,1232 9094 0,1263 7882 0,1295 0457 0,1326 6777 0,1386 6796 11 0,114 4904 0,1172 4818 0,1203 8889 0,1235 7065 0,1267 2924 12 0,1065 5217 0,1096 6619 0,1128 2541 0,1160 2923 0,1192 27703 13 0,1001 4373 0,1032 7535 0,1062 5577 0,1096 8426 0,1172 91703 14 </td <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td>			· · · · · · · · · · · · · · · · · · ·			
4 0,0754 9005 0,2278 7365 0,2320 7480 0,2341 7644 0,2373 9649 6 0,1907 6190 0,1938 7839 0,1970 1747 0,2001 7895 0,2033 6263 7 0,1666 0961 0,1697 0147 0,1728 1982 0,1759 6442 0,1791 3502 8 0,1485 2783 0,1516 0965 0,1547 2181 0,1578 6401 0,1610 3594 9 0,1344 9299 0,1375 7447 0,1406 9008 0,1438 3946 0,1470 2224 10 0,1232 9094 0,1263 7882 0,1295 0457 0,1326 6777 0,1358 6796 11 0,1141 4904 0,1172 4818 0,1203 8889 0,1235 7065 0,1267 9294 12 0,1065 5217 0,1096 6619 0,1128 2541 0,1160 9223 0,1192 7033 13 0,1001 4373 0,1032 7535 0,1062 5577 0,1096 8426 0,1129 6011 14 0,0994 68897 0,0978 2032 0,1010 2397 0,1042 7912 0,1075 8491 15 0,0999 4110 0,0931 1381 0,0963 4229 0,0996 2560 0,1029 6276 16<				· ·		
6 0,1907 6190 0,1938 7839 0,1970 1747 0,2001 7895 0,2033 6263 7 0,1666 0961 0,1697 0147 0,1728 1982 0,1759 6442 0,1791 3502 8 0,1485 2783 0,1516 0965 0,1547 2181 0,1578 6401 0,1610 3593 9 0,1348 4929 0,1375 7447 0,1406 9008 0,1438 3946 0,1470 2224 10 0,1232 9094 0,1263 7882 0,1295 0457 0,1326 6777 0,1358 6796 11 0,1141 4904 0,1172 4818 0,1203 8889 0,1235 7065 0,1267 9294 12 0,1065 5217 0,1096 6619 0,1128 2541 0,1160 2923 0,1192 7703 13 0,1001 4373 0,1032 7535 0,1062 5577 0,1096 8426 0,1129 6011 14 0,0946 6897 0,0978 2032 0,1010 2397 0,1042 7912 0,1075 8491 15 0,0999 4110 0,0931 1381 0,0963 4229 0,0996 2560 0,1029 6276 16 0,0858 2000 0,0890 1537 0,0922 6991 0,0955 8254 0,0998 5214 177 0,0821 9852 0,0854 1758 0,0886 9914 0,0920 4197 0,0954 4480 18 0,0789 9333 0,0822 3690 0,0855 4622 0,0889 1992 0,0923 5654 19 0,0761 3862 0,0794 0734 0,0827 4501 0,0861 5006 0,0896 2086 20 0,0738 8175 0,0768 7614 0,0820 4259 0,0836 7933 0,0871 8456 20 0,0712 8011 0,0746 0057 0,0779 9611 0,0814 6478 0,0850 0455 0,0673 0906 0,0706 8249 0,0741 3682 0,0776 6965 0,0817 8456 0,0799 7051 0,0794 7123 0,0830 4557 23 0,0673 0906 0,0760 8249 0,0741 3682 0,0776 6965 0,0817 8456 0,0759 7051 0,0794 7123 0,0830 4557 23 0,0673 0906 0,0760 8249 0,0741 3682 0,0776 6965 0,0817 8456 22 0,0691 9881 0,0725 4565 0,0759 7051 0,0794 7123 0,0830 4557 23 0,0673 0906 0,0706 8249 0,0741 3682 0,0776 6965 0,0817 7848 24 0,0655 8683 0,0689 8703 0,0724 7090 0,0760 3580 0,0796 7900 255 0,0640 1196 0,0674 3903 0,0509 5246 0,0745 4935 0,0782 2672 266 0,0625 6738 0,0669 2137 0,0669 6432 0,0773 19307 0,0769 935 200 0,0578 3010 0,0613 9154 0,0660 4551 0,0697 6857 0,0776 9655 0,0779 7910 234 0,0558 8688 0,0689 8703 0,0724 7990 0,0568 8533 0,0624 1461 0,0660 4551 0,0697 6857 0,0775 9911 0,0695 6432 0,0776 9655 0,0774 7922 0,0588 7993 0,0624 1461 0,0660 4551 0,0660 3544 0,0660 1298 0,0635 2081 0,0671 2253 0,0705 1900 0,0763 8943 0,0551 3037 0,0587 4453 0,0669 2184 0,0660 3544 0,0663 3469 0,07745 2955 0,0664 4345 0,0655 8489 0,0595 6320 0,0632 8042 0,0679 1959 0,0710 0234 0		· ·	0,2787 4365		· · · · · · · · · · · · · · · · · · ·	
7 0,1666 0961 0,1697 0147 0,1728 1982 0,1759 6442 0,1791 3502 8 0,1485 2783 0,1516 0965 0,1547 2181 0,1578 6401 0,1610 3592 9 0,1344 9299 0,1375 7447 0,1406 9008 0,1438 3946 0,1470 2224 10 0,1232 9094 0,1263 7882 0,1295 0457 0,1326 6777 0,1358 6796 11 0,1141 4904 0,1172 4818 0,1203 8889 0,1233 7065 0,1267 9294 12 0,1065 5217 0,1096 6619 0,1128 2541 0,1160 2923 0,1192 7703 13 0,1001 4373 0,1032 7535 0,1062 5577 0,1096 8426 0,1129 6011 14 0,094 66897 0,0978 2032 0,1010 2397 0,1042 7912 0,1075 8491 15 0,0999 4110 0,0931 1381 0,0963 4229 0,0996 2560 0,1129 6276 16 0,0858 2000 0,0891 1537 0,0922 6991 0,0955 8254 0,0998 5214 17 0,082 19852 0,0854 1758 0,0886 9914 0,0920 4197 0,0944 4848 18				· ·		0,2373 9640
8 0,1485 2783 0,1516 0965 0,1547 2181 0,1578 6401 0,1610 3594 9 0,1344 9299 0,1375 7447 0,1406 9008 0,1438 3946 0,1470 2224 11 0,1141 4904 0,1263 7882 0,1295 0457 0,1325 7065 0,1267 9294 12 0,1065 5217 0,1096 6619 0,1128 2541 0,1160 2923 0,1192 7703 13 0,1001 4373 0,1032 7535 0,1062 5577 0,1096 8426 0,1129 6011 14 0,0946 6897 0,0978 2032 0,1010 2397 0,1042 7912 0,1075 8491 15 0,0999 4110 0,0931 1381 0,0963 4229 0,0996 2560 0,1029 6276 16 0,0858 2000 0,0854 1758 0,0886 9914 0,0920 4197 0,0954 48480 18 0,0789 9333 0,0822 3690 0,0855 4622 0,0889 1992 0,0993 5654 19 0,0761 3862 0,0794 0734 0,0827 4501 0,0865 7038 0,0871 8456 21 0,0712 8011 0,0766 87614 0,0802 4259 0,0836 7933 0,0871 8456 <td< td=""><td>6</td><td>0,1907 6190</td><td>0,1938 7839</td><td>0,1970 1747</td><td>0,2001 7895</td><td>0,2033 6263</td></td<>	6	0,1907 6190	0,1938 7839	0,1970 1747	0,2001 7895	0,2033 6263
9	7	0,1666 0961	0,1697 0147	0,1728 1982	0,1759 6442	0,1791 3502
10 0,1232 9094 0,1263 7882 0,1295 0457 0,1326 6777 0,1358 6796 11 0,1141 4904 0,1172 4818 0,1203 8889 0,1235 7065 0,1267 9294 12 0,1065 5217 0,1096 6619 0,1128 2541 0,1160 2923 0,1192 7703 13 0,1001 4373 0,1032 7535 0,1062 5577 0,1096 8426 0,1129 6011 14 0,0946 6897 0,0978 2032 0,1010 2397 0,1042 7912 0,1075 8491 15 0,0999 4110 0,0931 1381 0,0963 4229 0,0996 2560 0,1029 6276 16 0,0858 2000 0,0890 1537 0,0922 6991 0,0955 8254 0,0998 5214 17 0,0821 9852 0,0854 1758 0,0886 9914 0,0924 1497 0,0954 4489 18 0,0789 9333 0,0823 6690 0,0855 4622 0,0881 9092 0,0923 5654 19 0,0761 3862 0,0794 0734 0,0824 959 0,0836 7933 0,0871 8456 21 0,0712 8011 0,0766 7614 0,0802 4259 0,0836 7933 0,0871 8456	8	0,1485 2783	0,1516 0965	0,1547 2181	0,1578 6401	0,1610 3594
11 0,1141 4904 0,1172 4818 0,1203 8889 0,1235 7065 0,1267 9294 12 0,1065 5217 0,1096 6619 0,1128 2541 0,1160 2923 0,1192 7703 13 0,1001 4373 0,1032 7535 0,1062 5577 0,1096 8426 0,1129 6011 14 0,0946 6897 0,0978 2032 0,1010 2397 0,1042 7912 0,1075 8491 15 0,0999 4110 0,0931 1381 0,0963 4229 0,0996 2560 0,1029 6276 16 0,0858 2000 0,0890 1537 0,0922 6991 0,0955 8254 0,0998 5214 17 0,0821 9852 0,0854 1758 0,0886 9914 0,0920 4197 0,0954 4480 18 0,0789 9333 0,0822 3690 0,0855 4622 0,0881 5902 0,0923 5654 19 0,0761 3862 0,0794 0734 0,0827 4501 0,0861 5006 0,0896 2086 20 0,0735 8175 0,0768 7614 0,0802 4259 0,0836 7933 0,0871 8436 21 0,0712 8011 0,0746 0057 0,0779 7051 0,0814 6478 0,0850 0455 <td< td=""><td>9</td><td>0,1344 9299</td><td>0,1375 7447</td><td></td><td>0,1438 3946</td><td>0,1470 2224</td></td<>	9	0,1344 9299	0,1375 7447		0,1438 3946	0,1470 2224
12 0,1065 5217 0,1096 6619 0,1128 2541 0,1160 2923 0,1192 7703 13 0,1001 4373 0,1032 7535 0,1062 5577 0,1098 4266 0,1129 6011 14 0,0946 6897 0,0978 2032 0,1010 2397 0,1042 7912 0,1075 8491 15 0,0999 4110 0,0931 1381 0,0963 4229 0,0996 2560 0,1029 6276 16 0,0858 2000 0,0890 1537 0,0922 6991 0,0955 8254 0,0998 5214 17 0,0821 9852 0,0854 1758 0,0886 9914 0,0920 4197 0,0954 4480 18 0,0789 9333 0,0822 3690 0,0855 4622 0,0881 1992 0,0923 5654 19 0,0761 3862 0,0794 0734 0,0827 4501 0,0861 5006 0,0896 2086 20 0,0735 8175 0,0768 7614 0,0802 4259 0,0836 7933 0,0871 8456 21 0,0712 8011 0,0746 0057 0,0779 9611 0,0814 6478 0,0850 0455 22 0,0691 9881 0,0726 5455 0,0759 7051 0,0794 7123 0,0830 4557 <td< td=""><td>10</td><td>0,1232 9094</td><td>0,1263 7882</td><td>0,1295 0457</td><td>0,1326 6777</td><td>0,1358 6796</td></td<>	10	0,1232 9094	0,1263 7882	0,1295 0457	0,1326 6777	0,1358 6796
13 0,1001 4373 0,1032 7535 0,1062 5577 0,1096 8426 0,1129 6011 14 0,0946 6897 0,0978 2032 0,1010 2397 0,1042 7912 0,1075 8491 15 0,0999 4110 0,0931 1381 0,0963 4229 0,0996 2560 0,1029 6276 16 0,0858 2000 0,0890 1537 0,0922 6991 0,0955 8254 0,0985 5214 17 0,0821 9852 0,0854 1758 0,0886 9914 0,0920 4197 0,0954 4480 18 0,0789 9333 0,0822 3690 0,0855 4622 0,0889 1992 0,0923 5654 19 0,0761 3862 0,0794 0734 0,0827 4501 0,0861 5006 0,0896 2086 20 0,0735 8175 0,0768 7614 0,0802 4259 0,0836 7933 0,0871 8456 21 0,0712 8011 0,0746 0057 0,0779 9611 0,0814 6478 0,0850 0455 22 0,0691 9881 0,0725 4565 0,0759 7051 0,0794 7123 0,0830 4557 23 0,0673 0906 0,0706 8249 0,0741 3682 0,0776 6965 0,0812 7848 <td< td=""><td>11</td><td>0,1141 4904</td><td>0,1172 4818</td><td>0,1203 8889</td><td>0,1235 7065</td><td>0,1267 9294</td></td<>	11	0,1141 4904	0,1172 4818	0,1203 8889	0,1235 7065	0,1267 9294
14 0,0946 6897 0,0978 2032 0,1010 2397 0,1042 7912 0,1075 8491 15 0,0999 4110 0,0931 1381 0,0963 4229 0,0996 2560 0,1029 6276 16 0,0858 2000 0,0890 1537 0,0922 6991 0,0955 8254 0,0998 5214 17 0,0821 9852 0,0854 1758 0,0886 9914 0,0920 4197 0,0954 4480 18 0,0789 9333 0,0822 3690 0,0855 4622 0,0889 1992 0,0923 5654 19 0,0761 3862 0,0794 0734 0,0827 4501 0,0881 5006 0,0896 2086 20 0,0735 8175 0,0768 7614 0,0802 4259 0,0836 7933 0,0871 8456 21 0,0712 8011 0,0746 0057 0,0779 9611 0,0814 6478 0,0850 0455 22 0,0691 9881 0,0725 4565 0,0759 7051 0,0794 7123 0,0830 4557 23 0,0673 0906 0,0768 8249 0,0741 3682 0,0776 9665 0,0812 7848 24 0,0655 8683 0,0688 703 0,0724 7090 0,0760 3580 0,0778 7990	12	0,1065 5217	0,1096 6619	0,1128 2541	0,1160 2923	0,1192 7703
15 0,0999 4110 0,0931 1381 0,0963 4229 0,0996 2560 0,1029 6276 16 0,0858 2000 0,0890 1537 0,0922 6991 0,0955 8254 0,0998 5214 17 0,0821 9852 0,0854 1758 0,0886 9914 0,0920 4197 0,0954 4480 18 0,0789 9333 0,0822 3690 0,0855 4622 0,0881 1992 0,0923 5654 19 0,0761 3862 0,0794 0734 0,0827 4501 0,0861 5006 0,0896 2086 20 0,0735 8175 0,0768 7614 0,0802 4259 0,0836 7933 0,0871 8456 21 0,0712 8011 0,0746 0057 0,0779 9611 0,0814 6478 0,0850 0455 22 0,0691 9881 0,0725 4565 0,0759 7051 0,0794 7123 0,0830 4557 23 0,0673 0906 0,0706 8249 0,0741 3682 0,0776 6965 0,0812 7848 24 0,0655 8683 0,0689 8703 0,0724 7090 0,0760 3580 0,0792 7900 25 0,0640 1196 0,0674 3903 0,0509 5442 0,0719 5228 0,0782 2672 <td< td=""><td>13</td><td>0,1001 4373</td><td>0,1032 7535</td><td>0,1062 5577</td><td>0,1096 8426</td><td>0,1129 6011</td></td<>	13	0,1001 4373	0,1032 7535	0,1062 5577	0,1096 8426	0,1129 6011
16 0,0858 2000 0,0890 1537 0,0922 6991 0,0955 8254 0,0998 5214 17 0,0821 9852 0,0854 1758 0,0886 9914 0,0920 4197 0,0954 4480 18 0,0789 9333 0,0822 3690 0,0855 4622 0,0889 1992 0,0923 5654 19 0,0761 3862 0,0794 0734 0,0827 4501 0,0861 5006 0,0896 2086 20 0,0735 8175 0,0766 7614 0,0802 4259 0,0836 7933 0,0871 8456 21 0,0712 8011 0,0746 0057 0,0779 9611 0,0814 6478 0,0830 4557 22 0,0691 9881 0,0725 4565 0,0759 7051 0,0794 7123 0,0830 4557 23 0,0673 0906 0,0706 8249 0,0741 3682 0,0776 6965 0,0812 7848 24 0,0655 8683 0,0689 8703 0,0724 7090 0,0760 3580 0,0796 7900 25 0,0640 1196 0,0674 3903 0,0595 6432 0,0731 9307 0,0769 0435 27 0,0612 3854 0,0660 2137 0,0682 9186 0,0719 5228 0,0756 9717 <td< td=""><td>14</td><td>0,0946 6897</td><td>0,0978 2032</td><td>0,1010 2397</td><td>0,1042 7912</td><td>0,1075 8491</td></td<>	14	0,0946 6897	0,0978 2032	0,1010 2397	0,1042 7912	0,1075 8491
17 0,0821 9852 0,0854 1758 0,0886 9914 0,0920 4197 0,0954 4480 18 0,0789 9333 0,0822 3690 0,0855 4622 0,0881 9992 0,0923 5654 19 0,0761 3862 0,0794 0734 0,0827 4501 0,0861 5006 0,0896 2086 20 0,0735 8175 0,0768 7614 0,0802 4259 0,0836 7933 0,0871 8456 21 0,0712 8011 0,0746 0057 0,0779 9611 0,0814 6478 0,0850 0455 22 0,0691 9881 0,0725 4565 0,0759 7051 0,0776 6965 0,0812 7848 24 0,0655 8683 0,0689 8703 0,0724 7090 0,0760 3580 0,0796 7900 25 0,0640 1196 0,0674 3903 0,0595 5446 0,0745 4935 0,0782 2672 26 0,0625 6738 0,0660 2137 0,0695 6432 0,0731 9307 0,0769 0435 27 0,0612 3854 0,0647 1946 0,0682 9186 0,0719 5228 0,0756 9717 28 0,0600 1298 0,0635 2081 0,0671 2253 0,0708 1440 0,0745 9255 <td< td=""><td>15</td><td>0,0999 4110</td><td>0,0931 1381</td><td>0,0963 4229</td><td>0,0996 2560</td><td>0,1029 6276</td></td<>	15	0,0999 4110	0,0931 1381	0,0963 4229	0,0996 2560	0,1029 6276
18 0,0789 9333 0,0822 3690 0,0855 4622 0,0889 1992 0,0923 5654 19 0,0761 3862 0,0794 0734 0,0827 4501 0,0861 5006 0,0896 2086 20 0,0735 8175 0,0768 7614 0,0802 4259 0,0836 7933 0,0871 8456 21 0,0712 8011 0,0746 0057 0,0779 9611 0,0814 6478 0,0830 4557 22 0,0691 9881 0,0725 4565 0,0759 7051 0,0774 1223 0,0830 4557 23 0,0673 0906 0,0706 8249 0,0741 3682 0,0776 6965 0,0812 7848 24 0,0655 8683 0,0689 8703 0,0724 7090 0,0760 3580 0,0799 67900 25 0,0640 1196 0,0674 3903 0,0509 5246 0,0731 9307 0,0769 0435 27 0,0612 3854 0,0660 2137 0,0695 6432 0,0731 9307 0,0769 9435 27 0,0512 3854 0,0647 1946 0,0682 9186 0,0719 5228 0,0756 9717 28 0,0600 1298 0,0635 2081 0,0671 2253 0,0708 1440 0,0745 9255 <t< td=""><td>16</td><td>0,0858 2000</td><td>0,0890 1537</td><td>0,0922 6991</td><td>0,0955 8254</td><td>0,0998 5214</td></t<>	16	0,0858 2000	0,0890 1537	0,0922 6991	0,0955 8254	0,0998 5214
18 0,0789 9333 0,0822 3690 0,0855 4622 0,0889 1992 0,0923 5654 19 0,0761 3862 0,0794 0734 0,0827 4501 0,0861 5006 0,0896 2086 20 0,0735 8175 0,0768 7614 0,0802 4259 0,0836 7933 0,0871 8456 21 0,0712 8011 0,0746 0057 0,0779 9611 0,0814 6478 0,0830 4557 22 0,0691 9881 0,0725 4565 0,0759 7051 0,0774 1223 0,0830 4557 23 0,0673 0906 0,0706 8249 0,0741 3682 0,0776 6965 0,0812 7848 24 0,0655 8683 0,0689 8703 0,0724 7090 0,0760 3580 0,0799 67900 25 0,0640 1196 0,0674 3903 0,0509 5246 0,0731 9307 0,0769 0435 27 0,0612 3854 0,0660 2137 0,0695 6432 0,0731 9307 0,0769 9435 27 0,0512 3854 0,0647 1946 0,0682 9186 0,0719 5228 0,0756 9717 28 0,0600 1298 0,0635 2081 0,0671 2253 0,0708 1440 0,0745 9255 <t< td=""><td>17</td><td>0,0821 9852</td><td>0,0854 1758</td><td>0,0886 9914</td><td>0,0920 4197</td><td>0,0954 4480</td></t<>	17	0,0821 9852	0,0854 1758	0,0886 9914	0,0920 4197	0,0954 4480
19 0,0761 3862 0,0794 0734 0,0827 4501 0,0861 5006 0,0896 2086 20 0,0735 8175 0,0768 7614 0,0802 4259 0,0836 7933 0,0871 8456 21 0,0712 8011 0,0746 0057 0,0779 9611 0,0814 6478 0,0850 0455 22 0,0691 9881 0,0725 4565 0,0759 7051 0,0794 7123 0,0830 4557 23 0,0673 0906 0,0706 8249 0,0741 3682 0,0776 6965 0,0812 7848 24 0,0655 8683 0,0689 8703 0,0724 7090 0,0760 3580 0,0796 7900 25 0,0640 1196 0,0674 3903 0,0590 5246 0,0745 4935 0,0782 2672 26 0,0625 6738 0,0660 2137 0,0695 6432 0,0731 9307 0,0769 0435 27 0,0612 3854 0,0647 1946 0,0682 9186 0,0719 5228 0,0756 9717 28 0,0600 1298 0,0635 2081 0,0671 2253 0,0708 1440 0,0745 9255 29 0,0588 7993 0,0624 1461 0,0660 4551 0,0697 6857 0,0735 7961 <td< td=""><td>18</td><td>0,0789 9333</td><td></td><td>0,0855 4622</td><td>0,0889 1992</td><td>0,0923 5654</td></td<>	18	0,0789 9333		0,0855 4622	0,0889 1992	0,0923 5654
21 0,0712 8011 0,0746 0057 0,0779 9611 0,0814 6478 0,0850 0455 22 0,0691 9881 0,0725 4565 0,0759 7051 0,0794 7123 0,0830 4557 23 0,0673 0906 0,0706 8249 0,0741 3682 0,0776 6965 0,0812 7848 24 0,0655 8683 0,0689 8703 0,0724 7090 0,0760 3580 0,0796 7900 25 0,0640 1196 0,0674 3903 0,0509 5246 0,0745 4935 0,0782 2672 26 0,0625 6738 0,0660 2137 0,0695 6432 0,0731 9307 0,0769 0435 27 0,0612 3854 0,0647 1946 0,0682 9186 0,0719 5228 0,0756 9717 28 0,0600 1298 0,0635 2081 0,0671 2253 0,0708 1440 0,0745 9255 29 0,0588 7993 0,0624 1461 0,0660 4551 0,0697 6857 0,0735 7961 30 0,0578 3010 0,0613 9154 0,0650 5144 0,0688 0539 0,0726 4891 31 0,0568 5535 0,0604 4345 0,0541 3212 0,0679 91665 0,0717 9222 <t< td=""><td>19</td><td>0,0761 3862</td><td>0,0794 0734</td><td></td><td>0,0861 5006</td><td>0,0896 2086</td></t<>	19	0,0761 3862	0,0794 0734		0,0861 5006	0,0896 2086
22 0,0691 9881 0,0725 4565 0,0759 7051 0,0794 7123 0,0830 4557 23 0,0673 0906 0,0706 8249 0,0741 3682 0,0776 6965 0,0812 7848 24 0,0655 8683 0,0689 8703 0,0724 7090 0,0760 3580 0,0796 7900 25 0,0640 1196 0,0674 3903 0,0509 5246 0,0745 4935 0,0782 2672 26 0,0625 6738 0,0660 2137 0,0695 6432 0,0731 9307 0,0769 0435 27 0,0612 3854 0,0647 1946 0,0682 9186 0,0719 5228 0,0756 9717 28 0,0600 1298 0,0635 2081 0,0671 2253 0,0708 1440 0,0745 9255 29 0,0588 7993 0,0624 1461 0,0660 4551 0,0697 6857 0,0735 7961 30 0,0578 3010 0,0613 9154 0,0650 5144 0,0688 0539 0,0719 2222 32 0,0559 4859 0,0595 6320 0,0632 8042 0,0679 1665 0,0717 9222 32 0,0559 4859 0,0587 4453 0,0624 9004 0,0663 3469 0,0720 7293 <td< td=""><td>20</td><td>0,0735 8175</td><td>0,0768 7614</td><td>0,0802 4259</td><td>0,0836 7933</td><td>0,0871 8456</td></td<>	20	0,0735 8175	0,0768 7614	0,0802 4259	0,0836 7933	0,0871 8456
23 0,0673 0906 0,0706 8249 0,0741 3682 0,0776 6965 0,0812 7848 24 0,0655 8683 0,0689 8703 0,0724 7090 0,0760 3580 0,0796 7900 25 0,0640 1196 0,0674 3903 0,0509 5246 0,0745 4935 0,0782 2672 26 0,0625 6738 0,0660 2137 0,0695 6432 0,0731 9307 0,0769 0435 27 0,0612 3854 0,0647 1946 0,0682 9186 0,0719 5228 0,0756 9717 28 0,0600 1298 0,0635 2081 0,0671 2253 0,0708 1440 0,0745 9255 29 0,0588 7993 0,0624 1461 0,0660 4551 0,0697 6857 0,0735 7961 30 0,0578 3010 0,0613 9154 0,0650 5144 0,0688 0539 0,0726 4891 31 0,0568 5535 0,0604 4345 0,0541 3212 0,0679 1665 0,0717 9222 32 0,0559 4859 0,0595 6320 0,0632 8042 0,0670 9519 0,0710 0234 33 0,0551 0357 0,0587 4453 0,0624 9004 0,0663 3469 0,0720 7293 <td< td=""><td></td><td>0,0712 8011</td><td>0,0746 0057</td><td>0,0779 9611</td><td>0,0814 6478</td><td>0,0850 0455</td></td<>		0,0712 8011	0,0746 0057	0,0779 9611	0,0814 6478	0,0850 0455
24 0,0655 8683 0,0689 8703 0,0724 7090 0,0760 3580 0,0796 7900 25 0,0640 1196 0,0674 3903 0,0509 5246 0,0745 4935 0,0782 2672 26 0,0625 6738 0,0660 2137 0,0695 6432 0,0731 9307 0,0769 0435 27 0,0612 3854 0,0647 1946 0,0682 9186 0,0719 5228 0,0756 9717 28 0,0600 1298 0,0635 2081 0,0671 2253 0,0708 1440 0,0745 9255 29 0,0588 7993 0,0624 1461 0,0660 4551 0,0697 6857 0,0735 7961 30 0,0578 3010 0,0613 9154 0,0650 5144 0,0688 0539 0,0726 4891 31 0,0568 5535 0,0604 4345 0,0541 3212 0,0679 1665 0,0717 9222 32 0,0559 4859 0,0595 6320 0,0632 8042 0,0670 9519 0,0710 0234 33 0,0551 0357 0,0574 4453 0,0624 9004 0,0663 3469 0,0720 7293 34 0,0543 1477 0,0579 8191 0,0610 7171 0,0649 7493 0,0698 7386 <td< td=""><td></td><td>0,0691 9881</td><td>0,0725 4565</td><td>0,0759 7051</td><td>0,0794 7123</td><td>0,0830 4557</td></td<>		0,0691 9881	0,0725 4565	0,0759 7051	0,0794 7123	0,0830 4557
25 0,0640 1196 0,0674 3903 0,0509 5246 0,0745 4935 0,0782 2672 26 0,0625 6738 0,0660 2137 0,0695 6432 0,0731 9307 0,0769 0435 27 0,0612 3854 0,0647 1946 0,0682 9186 0,0719 5228 0,0756 9717 28 0,0600 1298 0,0635 2081 0,0671 2253 0,0708 1440 0,0745 9255 29 0,0588 7993 0,0624 1461 0,0660 4551 0,0697 6857 0,0735 7961 30 0,0578 3010 0,0613 9154 0,0650 5144 0,0688 0539 0,0726 4891 31 0,0568 5535 0,0604 4345 0,0541 3212 0,0679 1665 0,0717 9222 32 0,0559 4859 0,0595 6320 0,0632 8042 0,0670 9519 0,0710 0234 33 0,0551 0357 0,0587 4453 0,0624 9004 0,0663 3469 0,0720 7293 34 0,0543 1477 0,0579 8191 0,0617 7545 0,0656 2958 0,0699 7886 36 0,0528 8688 0,0566 0578 0,0604 3446 0,0663 6635 0,0683 9483 <td< td=""><td>23</td><td>0,0673 0906</td><td>0,0706 8249</td><td></td><td>0,0776 6965</td><td>0,0812 7848</td></td<>	23	0,0673 0906	0,0706 8249		0,0776 6965	0,0812 7848
26 0,0625 6738 0,0660 2137 0,0695 6432 0,0731 9307 0,0769 0435 27 0,0612 3854 0,0647 1946 0,0682 9186 0,0719 5228 0,0756 9717 28 0,0600 1298 0,0635 2081 0,0671 2253 0,0708 1440 0,0745 9255 29 0,0588 7993 0,0624 1461 0,0660 4551 0,0697 6857 0,0735 7961 30 0,0578 3010 0,0613 9154 0,0650 5144 0,0688 0539 0,0726 4891 31 0,0568 5535 0,0604 4345 0,0541 3212 0,0679 1665 0,0717 9222 32 0,0559 4859 0,0595 6320 0,0632 8042 0,0670 9519 0,0710 0234 33 0,0551 0357 0,0587 4453 0,0624 9004 0,0663 3469 0,0720 7293 34 0,0543 1477 0,0579 8191 0,0617 5545 0,0656 2958 0,0698 7386 36 0,0528 8688 0,0566 0578 0,0604 3446 0,0663 6635 0,0683 9483 37 0,0522 3957 0,0554 0169 0,0592 8423 0,0632 7217 0,0673 5812 <td< td=""><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td></td<>				· · · · · · · · · · · · · · · · · · ·		
27 0,0612 3854 0,0647 1946 0,0682 9186 0,0719 5228 0,0756 9717 28 0,0600 1298 0,0635 2081 0,0671 2253 0,0708 1440 0,0745 9255 29 0,0588 7993 0,0624 1461 0,0660 4551 0,0697 6857 0,0735 7961 30 0,0578 3010 0,0613 9154 0,0650 5144 0,0688 0539 0,0726 4891 31 0,0568 5535 0,0604 4345 0,0541 3212 0,0679 1665 0,0717 9222 32 0,0559 4859 0,0595 6320 0,0632 8042 0,0670 9519 0,0710 0234 33 0,0551 0357 0,0587 4453 0,0624 9004 0,0663 3469 0,0720 7293 34 0,0543 1477 0,0579 8191 0,0617 5545 0,0656 2958 0,0695 9843 35 0,0535 7732 0,0572 7045 0,0610 7171 0,0649 7493 0,0698 7386 36 0,0528 8688 0,0566 0578 0,0604 3446 0,0663 6635 0,0683 9483 37 0,0522 3957 0,0554 0169 0,0592 8423 0,0632 7217 0,0673 5812 <td< td=""><td>25</td><td>0,0640 1196</td><td>0,0674 3903</td><td>0,0509 5246</td><td>0,0745 4935</td><td>0,0782 2672</td></td<>	25	0,0640 1196	0,0674 3903	0,0509 5246	0,0745 4935	0,0782 2672
28 0,0600 1298 0,0635 2081 0,0671 2253 0,0708 1440 0,0745 9255 29 0,0588 7993 0,0624 1461 0,0660 4551 0,0697 6857 0,0735 7961 30 0,0578 3010 0,0613 9154 0,0650 5144 0,0688 0539 0,0726 4891 31 0,0568 5535 0,0604 4345 0,0541 3212 0,0679 1665 0,0717 9222 32 0,0559 4859 0,0595 6320 0,0632 8042 0,0670 9519 0,0710 0234 33 0,0551 0357 0,0587 4453 0,0624 9004 0,0663 3469 0,0720 7293 34 0,0543 1477 0,0579 8191 0,0617 5545 0,0656 2958 0,0695 9843 35 0,0535 7732 0,0572 7045 0,0610 7171 0,0649 7493 0,0698 7386 36 0,0528 8688 0,0566 0578 0,0604 3446 0,0663 6635 0,0683 9483 37 0,0522 3957 0,0554 0169 0,0598 3979 0,0637 9993 0,0678 5743 38 0,0516 3192 0,0548 5567 0,0587 6462 0,0627 7991 0,0668 9377 <td< td=""><td>26</td><td>0,0625 6738</td><td>0,0660 2137</td><td>0,0695 6432</td><td>0,0731 9307</td><td></td></td<>	26	0,0625 6738	0,0660 2137	0,0695 6432	0,0731 9307	
29 0,0588 7993 0,0624 1461 0,0660 4551 0,0697 6857 0,0735 7961 30 0,0578 3010 0,0613 9154 0,0650 5144 0,0688 0539 0,0726 4891 31 0,0568 5535 0,0604 4345 0,0541 3212 0,0679 1665 0,0717 9222 32 0,0559 4859 0,0595 6320 0,0632 8042 0,0670 9519 0,0710 0234 33 0,0551 0357 0,0587 4453 0,0624 9004 0,0663 3469 0,0720 7293 34 0,0543 1477 0,0579 8191 0,0617 5545 0,0656 2958 0,0695 9843 35 0,0535 7732 0,0572 7045 0,0610 7171 0,0649 7493 0,0698 7386 36 0,0528 8688 0,0566 0578 0,0604 3446 0,0663 6635 0,0683 9483 37 0,0522 3957 0,0559 8402 0,0598 3979 0,0637 9993 0,0678 5743 38 0,0516 3192 0,0554 0169 0,0592 8423 0,0622 7217 0,0673 5812 39 0,0510 6083 0,0548 5567 0,0587 6462 0,0623 2034 0,0664 6154 <td< td=""><td>27</td><td>0,0612 3854</td><td>0,0647 1946</td><td>0,0682 9186</td><td>0,0719 5228</td><td>0,0756 9717</td></td<>	27	0,0612 3854	0,0647 1946	0,0682 9186	0,0719 5228	0,0756 9717
30 0,0578 3010 0,0613 9154 0,0650 5144 0,0688 0539 0,0726 4891 31 0,0568 5535 0,0604 4345 0,0541 3212 0,0679 1665 0,0717 9222 32 0,0559 4859 0,0595 6320 0,0632 8042 0,0670 9519 0,0710 0234 33 0,0551 0357 0,0587 4453 0,0624 9004 0,0663 3469 0,0720 7293 34 0,0543 1477 0,0579 8191 0,0617 5545 0,0656 2958 0,0695 9843 35 0,0535 7732 0,0572 7045 0,0610 7171 0,0649 7493 0,0698 7386 36 0,0528 8688 0,0566 0578 0,0604 3446 0,0663 6635 0,0683 9483 37 0,0522 3957 0,0559 8402 0,0598 3979 0,0637 9993 0,0678 5743 38 0,0516 3192 0,0554 0169 0,0592 8423 0,0632 7217 0,0673 5812 39 0,0510 6083 0,0548 5567 0,0587 6462 0,0623 2034 0,0664 6154 40 0,0505 2349 0,0543 4315 0,0582 7816 0,0623 2034 0,0664 6154			· · · · · · · · · · · · · · · · · · ·			
31 0,0568 5535 0,0604 4345 0,0541 3212 0,0679 1665 0,0717 9222 32 0,0559 4859 0,0595 6320 0,0632 8042 0,0670 9519 0,0710 0234 33 0,0551 0357 0,0587 4453 0,0624 9004 0,0663 3469 0,0720 7293 34 0,0543 1477 0,0579 8191 0,0617 5545 0,0656 2958 0,0695 9843 35 0,0535 7732 0,0572 7045 0,0610 7171 0,0649 7493 0,0698 7386 36 0,0528 8688 0,0566 0578 0,0604 3446 0,0663 6635 0,0683 9483 37 0,0522 3957 0,0559 8402 0,0598 3979 0,0637 9993 0,0678 5743 38 0,0516 3192 0,0554 0169 0,0592 8423 0,0632 7217 0,0673 5812 39 0,0510 6083 0,0548 5567 0,0587 6462 0,0623 2034 0,0664 6154 40 0,0505 2349 0,0543 4315 0,0582 7816 0,0623 2034 0,0664 6154				· ·		
32 0,0559 4859 0,0595 6320 0,0632 8042 0,0670 9519 0,0710 0234 33 0,0551 0357 0,0587 4453 0,0624 9004 0,0663 3469 0,0720 7293 34 0,0543 1477 0,0579 8191 0,0617 5545 0,0656 2958 0,0695 9843 35 0,0535 7732 0,0572 7045 0,0610 7171 0,0649 7493 0,0698 7386 36 0,0528 8688 0,0566 0578 0,0604 3446 0,0663 6635 0,0683 9483 37 0,0522 3957 0,0559 8402 0,0598 3979 0,0637 9993 0,0678 5743 38 0,0516 3192 0,0554 0169 0,0592 8423 0,0632 7217 0,0673 5812 39 0,0510 6083 0,0548 5567 0,0587 6462 0,0627 7991 0,0668 9377 40 0,0505 2349 0,0543 4315 0,0582 7816 0,0623 2034 0,0664 6154	30	0,0578 3010	0,0613 9154	0,0650 5144	0,0688 0539	0,0726 4891
33 0,0551 0357 0,0587 4453 0,0624 9004 0,0663 3469 0,0720 7293 34 0,0543 1477 0,0579 8191 0,0617 5545 0,0656 2958 0,0695 9843 35 0,0535 7732 0,0572 7045 0,0610 7171 0,0649 7493 0,0698 7386 36 0,0528 8688 0,0566 0578 0,0604 3446 0,0663 6635 0,0683 9483 37 0,0522 3957 0,0559 8402 0,0598 3979 0,0637 9993 0,0678 5743 38 0,0516 3192 0,0554 0169 0,0592 8423 0,0632 7217 0,0673 5812 39 0,0510 6083 0,0548 5567 0,0587 6462 0,0627 7991 0,0668 9377 40 0,0505 2349 0,0543 4315 0,0582 7816 0,0623 2034 0,0664 6154	31	0,0568 5535	0,0604 4345	0,0541 3212	0,0679 1665	0,0717 9222
34 0,0543 1477 0,0579 8191 0,0617 5545 0,0656 2958 0,0695 9843 35 0,0535 7732 0,0572 7045 0,0610 7171 0,0649 7493 0,0698 7386 36 0,0528 8688 0,0566 0578 0,0604 3446 0,0663 6635 0,0683 9483 37 0,0522 3957 0,0559 8402 0,0598 3979 0,0637 9993 0,0678 5743 38 0,0516 3192 0,0554 0169 0,0592 8423 0,0632 7217 0,0673 5812 39 0,0510 6083 0,0548 5567 0,0587 6462 0,0627 7991 0,0668 9377 40 0,0505 2349 0,0543 4315 0,0582 7816 0,0623 2034 0,0664 6154		0,0559 4859	0,0595 6320	0,0632 8042	0,0670 9519	0,0710 0234
35 0,0535 7732 0,0572 7045 0,0610 7171 0,0649 7493 0,0698 7386 36 0,0528 8688 0,0566 0578 0,0604 3446 0,0663 6635 0,0683 9483 37 0,0522 3957 0,0559 8402 0,0598 3979 0,0637 9993 0,0678 5743 38 0,0516 3192 0,0554 0169 0,0592 8423 0,0632 7217 0,0673 5812 39 0,0510 6083 0,0548 5567 0,0587 6462 0,0627 7991 0,0668 9377 40 0,0505 2349 0,0543 4315 0,0582 7816 0,0623 2034 0,0664 6154	33	0,0551 0357	0,0587 4453	0,0624 9004	0,0663 3469	0,0720 7293
36 0,0528 8688 0,0566 0578 0,0604 3446 0,0663 6635 0,0683 9483 37 0,0522 3957 0,0559 8402 0,0598 3979 0,0637 9993 0,0678 5743 38 0,0516 3192 0,0554 0169 0,0592 8423 0,0632 7217 0,0673 5812 39 0,0510 6083 0,0548 5567 0,0587 6462 0,0627 7991 0,0668 9377 40 0,0505 2349 0,0543 4315 0,0582 7816 0,0623 2034 0,0664 6154			· · · · · · · · · · · · · · · · · · ·			
37 0,0522 3957 0,0559 8402 0,0598 3979 0,0637 9993 0,0678 5743 38 0,0516 3192 0,0554 0169 0,0592 8423 0,0632 7217 0,0673 5812 39 0,0510 6083 0,0548 5567 0,0587 6462 0,0627 7991 0,0668 9377 40 0,0505 2349 0,0543 4315 0,0582 7816 0,0623 2034 0,0664 6154	35	0,0535 7732	0,0572 7045	0,0610 7171	0,0649 7493	0,0698 7386
38 0,0516 3192 0,0554 0169 0,0592 8423 0,0632 7217 0,0673 5812 39 0,0510 6083 0,0548 5567 0,0587 6462 0,0627 7991 0,0668 9377 40 0,0505 2349 0,0543 4315 0,0582 7816 0,0623 2034 0,0664 6154	36	0,0528 8688	0,0566 0578	0,0604 3446	0,0663 6635	0,0683 9483
39 0,0510 6083 0,0548 5567 0,0587 6462 0,0627 7991 0,0668 9377 40 0,0505 2349 0,0543 4315 0,0582 7816 0,0623 2034 0,0664 6154		0,0522 3957	0,0559 8402		0,0637 9993	0,0678 5743
40 0,0505 2349 0,0543 4315 0,0582 7816 0,0623 2034 0,0664 6154						0,0673 5812
	39	0,0510 6083	0,0548 5567	· ·	0,0627 7991	0,0668 9377
41 0.0500 1738 0.0538 6158 0.0578 2220 0.0018 0000 0.0660 5886	40	0,0505 2349	0,0543 4315	0,0582 7816	0,0623 2034	0,0664 6154
	41	0,0500 1738	0,0538 6158	0,0578 2229	0,0918 9090	0,0660 5886
42 0,0495 4020 0,0534 0868 0,0573 9471 0,0614 8927 0,0656 8342				0,0573 9471		0,0656 8342
43 0,0490 8989 0,0529 8235 0,0569 9333 0,0611 1337 0,0653 3312		0,0490 8989		0,0569 9333	0,0611 1337	
44 0,0486 6454 0,0525 8071 0,0566 1625 0,0607 6128 0,0650 0606		· ·	,			,
45 0,0482 6246 0,0522 0202 0,0562 6173 0,0604 3127 0,0647 0050	45	0,0482 6246	0,0522 0202	0,0562 6173	0,0604 3127	0,0647 0050
46 0,0478 8205 0,0518 4471 0,0559 2820 0,0601 2175 0,0644 1485	46	0,0478 8205	0,0518 4471	0,0559 2820	0,0601 2175	0,0644 1485
47 0,0475 2189 0,0515 0734 0,0556 1421 0,0598 3129 0,0641 4768	47	,	0,0515 0734		0,0598 3129	0,0641 4768
48 0,0471 8065 0,0511 8858 0,0553 1843 0,0595 5854 0,0638 9765		,	0,0511 8858		0,0595 5854	0,0638 9765
49 0,0468 5712 0,0508 8722 0,0550 3965 0,0593 0230 0,0636 6356				· ·		
50 0,0465 5020 0,0506 0215 0,0547 7674 0,0590 6145 0,0634 4429	50	0,0465 5020	0,0506 0215	0,0547 7674	0,0590 6145	0,0634 4429

Sumber: Kompetensi Dasar Akuntansi, 2004

Glosarium

Barisan : susunan angka-angka yang

memiliki ciri khusus, 155

Barisan aritmetika : suatu barisan dengan selisih dari

satu suku ke suku berikutnya yang

berurutan selalu tetap, 159

Barisan geometri : suatu barisan dengan perban-

dingan dari satu suku terhadap suku berikutnya yang berurutan

selalu tetap, 169

Beda : selisih tetap dalam barisan arit-

metika, 160

Deret aritmetika : suatu deret yang diperoleh dengan

penjumlahan suku-suku barisan

aritmetik, 164

Deret geometri tak hingga: suatu deret geometri (biasanya

konvergen) yang mempunyai banyak suku tak hingga, 179

Deret geometri : suatu deret yang diperoleh dari

penjumlahan suku-suku barisan

geometri, 174

Deret konvergen : suatu deret yang mempunyai

pembanding bernilai antara 0 dan

1, 179

Deret : jumlahan suku-suku dari suatu

barisan, 157

Diskriminan : pembeda; suatu nilai yang me-

mungkinkan adanya jenis-jenis akar pada persamaan kuadrat, 34

Fungsi objektif : suatu fungsi dalam program linear

yang akan dicari nilai maksimum

atau nilai minimumnya, 58

Integral parsial : mengintegralkan dengan cara se-

bagian-sebagian, 25

Integral substitusi : pengintegralan yang cara penyele-

saiannya menggunakan pemisalan sebagai pengganti sementara fungsi yang akan diintegralkan, 20 Integral tak tentu : integral yang tanpa disertai ba-

tasan-batasan (batas atas maupun

batas bawah), 4

Integral tertentu : integral dengan batas atas dan

batas bawah, 10

Integral : operasi invers (balikan) dari

turunan, 3

Invers matriks : balikan suatu matriks, 112

Konstanta : lambang yang digunakan untuk

mewakili anggota tertentu, 4

Matriks identitas : matriks persegi dengan elemen-

elemen diagonal utama bernilai 1,

86

Matriks nol : suatu matriks yang semua elemen-

elemennya nol, 87

Matriks persegi : matriks yang mempunyai ordo

 $n \times n$, 86

Matriks : suatu model penyusunan bilangan-

bilangan yang membentuk persegi panjang, di mana elemen-elemennya dibatasi tanda kurung, 81

Notasi sigma : notasi yang digunakan dalam

operasi penjumlahan, 188

Optimasi : mengoptimalkan (memaksimum-

kan atau meminimumkan) suatu

permasalahan, 63

Ordo : derajat; tingkat; ukuran, 83

Pemodelan matematika: proses membentuk sistem per-

tidaksamaan sebagai kendala (konstrain) dalam program linear,

58

Persamaan kuadrat : persamaan yang memuat variabel

berpangkat, dengan pangkat ter-

tingginya dua, 34

Persamaan linear : persamaan yang derajat tertinggi

dari variabelnya satu, 128

Persamaan matriks : persamaan yang memuat bentuk

matriks, 124

Rasio : pembanding yang nilainya selalu

tetap dalam barisan geometri, 169

Skalar : suatu besaran yang hanya memi-

liki besar (panjang), 101

Substitusi: menggantikan, 24

Transpose matriks : suatu operasi matriks yang

menukar elemen-elemen baris menjadi elemen-elemen kolom

atau sebaliknya, 87

Variabel : peubah; notasi pemisalan yang

belum diketahui nilainya, 53

Volume benda putar : volume suatu benda hasil pemutaran

suatu bidang menurut sumbu tertentu dan batasan tertentu, 37

Indeks Subjek

Adjoin (adj), 121	Kurva, 8, 13		
Anuitas, 206	Limit, 11, 179		
Asosiatif, 97, 108	Matriks, 81		
Aturan Sarrus, 113	baris, 85		
Aturan Tanzalin, 28	determinan (det), 113, 116		
Barisan aritmetika, 159	elemen, 82		
Barisan bilangan, 155	identitas, 86		
suku (<i>U</i>), 156	invers, 112, 117		
Barisan geometri, 169	lawan, 95		
Beda (b), 160	nol, 87		
Bidang Cartesius, 30	nonsingular, 117		
Bunga, 198	ordo, 83		
majemuk, 202	pengurangan, 95		
tunggal, 198	penjumlahan, 93		
Deret aritmetika, 164	perkalian, 105		
Deret bilangan, 157	persamaan, 124		
Deret divergen, 179	persegi, 86		
Deret geometri, 174	singular, 117		
tak berhingga, 179	transpose, 87		
Deret konvergen, 179	Metode garis selidik, 64, 68		
Diagonal utama, 86	Metode grafik, 53		
Diferensiabel, 25	Metode minor-kofaktor, 114		
Diskriminan (D), 34	Metode uji titik sudut, 64		
Distributif, 108	Model matematika, 58		
Fungsi objektif, 58, 63	Program linear, 53		
Fungsi sasaran (tujuan) 58	Pythagoras, 169		
Garis selidik, 68	Rasio (pembanding), r, 169		
Integral, 3	Riemann, Bernhard, 11, 19		
parsial, 25	Sigma (∑), 188		
sifat-sifat, 15	Sistem persamaan linear, 128–130		
substitusi, 20	Sistem pertidaksamaan linear, 53		
tak tentu, 4	Skalar, 100		
tertentu, 10	Titik potong, 54, 65		
Integran, 5	Transformasi baris elementer, 122		
Jumlah n suku (S_n) , 164	Volume benda putar, 37		
Kofaktor (kof), 114	r r		
Komutatif, 97, 108			

Kunci Soal-Soal Terpilih

Bab I

Soal Kompetensi 6

- 1. a. $12\frac{1}{2}$ satuan luas
 - c. $10\frac{2}{3}$ satuan luas
- 3. a. $4\frac{1}{6}$ satuan luas

Soal Kompetensi 7

- 1. a. (a) $6\frac{2}{5}\pi$ satuan volume
 - b. (a) $21\frac{1}{3}\pi$ satuan volume

Bab II

Soal Kompetensi 1

- 3. 3x + 8y = 8.200 dan 4x + 5y = 7.800
- 6. $5x + 4y \le 200 \operatorname{dan} 2x + 3y \le 160$

Soal Kompetensi 2

- 1. Nilai maks = 42, nilai min = 0
- 8. Rokok jenis A = 0, rokok jenis B = 21, keuntungan = Rp15.750,00

Bab III

Soal Kompetensi 1

- 1. a. 1) $a_{11} = 5, -6, 8, -4$
 - 5) $a_{13} = 8$
- 3. a. $P_{2x3}^{(1)}$ d. 4

Soal Kompetensi 2

- 1. A dengan E, B dengan C
- 3. a. a = 1, b = 2
 - b. $a = 2, b = -4\sqrt{3}$

Soal Kompetensi 3

- 4. a. a = 8
 - b = -4 c = -8
- 6. a. x = 3, y = 2

Soal Kompetensi 6

- 1. a. 7
 - d. $3x^2$
- 3. a. a = 3
 - d. a = 2
- 7. a. x = -4 atau x = 2

Soal Kompetensi 7

- 1. a. $\{(1,-1)\}$
- 3. a. $\{(2,3)\}$

Bab IV

Soal Kompetensi 1

- 1. a. -1, 3, 7, 11, 15
 - e. $\frac{9}{5}$, $\frac{21}{20}$, $\frac{41}{45}$, $\frac{69}{80}$, $\frac{21}{25}$
- 3. a. $U_n = 2n + 1$, $U_{20} = 41$, $U_{30} = 61$

Soal Kompetensi 2

- a. barisan aritmetika
 - e. barisan aritmetika
- 3. a. 503
 - e. -2

Soal Kompetensi 3

- 1. a. 590
 - c. 1.140
- 3. a. m = 35
- 6. 11.000

Soal Kompetensi 4

- 1. a. 15.309
- 4. 12, 36, 108
- 5. 1.638.400 bakteri

Khazanah Matematika B

Buku Khazanah Matematika diperuntukkan bagi siswa SMA dan MA yang ingin mengembangkan kemampuan bernalar dan berlogika secara cermat. Buku ini disusun secara sistematis dan terstruktur dengan menggunakan pendekatan pembelajaran kontekstual (*Contextual Teaching and Learning*). Metode penyajian yang digunakan dalam buku ini sangat menarik tetapi sederhana, baik dari segi materi, kebahasaan, maupun kegrafikaannya. Dalam pembelajarannya, siswa dituntut untuk bertindak aktif sebagai subjek pembelajaran, bukan sekadar objek yang hanya menerima konsepkonsep atau rumus-rumus matematika melainkan siswa diharapkan mampu mengonstruksi sendiri konsep matematika. Dengan demikian, diharapkan buku ini dapat memandu siswa untuk lebih akrab dengan matematika dan mampu mengaplikasikannya dalam kehidupan sehari-hari.

Inilah Komponen Pelengkap dalam Buku

- Peta Konsep membantu kalian untuk mengetahui alur pembahasan materi pada bab bersangkutan.
- Kata Kunci berisi kata-kata penting yang dapat digunakan untuk memahami konsep yang disajikan dalam bab yang bersangkutan.
- Aktivitas berupa kegiatan yang dapat digunakan untuk meningkatkan pemahaman konsep yang kalian dipelajari.
- Mari Berdiskusi berisi tugas yang harus kalian kerjakan secara berkelompok sehingga terbentuk sikap saling membantu, saling menghargai, dan saling melengkapi.
- Soal Kompetensi berisi soal sebagai penerapan konsep yang kalian pelajari.
- Tes Kemampuan Bab berupa soal yang dapat digunakan untuk mengevaluasi ketercapaian pembelajaran setelah mempelajari satu bab.
- Jendela Informasi berisi informasi tambahan yang dapat menambah wawasan kalian.
- Tantangan berisi soal-soal yang relatif sulit dan biasanya memiliki tipikal khusus dalam pengerjaannya.
- Kuis berisi soal-soal yang disarikan dari soal-soal yang sering diujikan, seperti UN, SPMB, ujian masuk perguruan tinggi ternama, dan soalsoal kompetisi daerah maupun nasional.
- Glosarium berisi kata-kata penting yang disertai artinya.
- Indeks membantu kalian dalam mencari kata-kata penting yang ada dalam buku ini.

ISBN: 978-979-068-858-2 (No. jil lengkap)

ISBN: 978-979-068-862-9

Buku ini telah dinilai oleh Badan Standar Nasional Pendidikan (BSNP) dan telah dinyatakan layak sebagai buku teks pelajaran berdasarkan Peraturan Menteri Pendidikan Nasional Republik Indonesia Nomor: 81 Tahun 2008 Tanggal 11 Desember 2008 tentang Penetapan Buku Teks Pelajaran yang Memenuhi Syarat Kelayakan untuk Digunakan dalam Proses Pembelajaran.

Harga Eceran Tertinggi: Rp12.744,-