
���
Environment for Translating�����	��
����� to POSTSCRIPT

Shimon Yanai and Daniel M. Berry

Abstract

This paper describes a program, mf2ps, that translates
a ��������������� font definition into a definition for the
same font in the POSTSCRIPT language. mf2ps is con-
structed out of the part of the ��������������� program that
extracts the envelopes of the letters; these envelopes are
converted into POSTSCRIPT outlines.

1 Introduction

This paper describes a program, mf2ps, that takes from
a ������������� � [10, 11] program for a font all the neces-
sary information in order to create an equivalent POST-
SCRIPT [1] font definition. The program makes use of
the front end of the ������������� � program to extract the
envelopes of the letters to produce the POSTSCRIPT out-
lines. What makes this process natural is that both
��������������� and POSTSCRIPT make liberal use of Bézier
curves to describe non-circular curves.

By producing this translator, it is hoped to be able
to produce from ��������������� fonts POSTSCRIPT outline
fonts which are more compact than the bitmapped fonts
produced by the ������������� � program. Certainly the out-
line fonts are more easily scaled to other magnifications
and possibly even other design sizes than are bitmaps.
Moreover, doing so makes fonts heretofore available
only on TEX [9] and other DVI-based formatters, avail-
able on ditroff [8] and other formatters which have
evolved, or have been designed, for use with POST-
SCRIPT printers. This paper, which is typeset by ditroff,
uses a POSTSCRIPT version of the logo font in order to
print the word “ ������������� � ” in the same appearance as
in TEX-generated documents. Moreover, these new
POSTSCRIPT outline fonts can be used in TEX also! One
needs only the TEXPS [3] software.

The organization of this paper is as follows. Sec-
tion 2 presents the background of this work. Section 3
explains the rationale behind building the translator and
describes a previous attempt at writing the translator
and an approach to avoid. The software engineering
aspect of the translator is described also in Section 3.
The details of the implementation are exposed in Sec-
tion 4. Section 5 describes the operation of the pro-
gram. Section 6 evaluates the results. Finally Section 7
describes improvements to the translator that are left for
future work.

2 Background

Typesetter formatting systems such as TEX and ditroff

use fonts as raw material. The formatters accept mixed
text and commands as input and produce output, which,
if sent to the laser printers or typesetters, yields format-
ted text printed on pages. The laser printers and
typesetters use fonts, i.e., sets of printable patterns, one
per character, in various representations in order to
cause the desired characters to appear on the printed
form. For some printers, bitmaps are used, with 1’s
representing inked dots and 0’s representing non-inked
dots. Other printers accept commands that cause draw-
ing of the characters, the printer providing the inked
dots according to the drawing commands. One such
popular command language is POSTSCRIPT, and its
usual use is to specify the outline of the character with
the interpreting printer filling in the outline with ink.
One popular method of describing fonts is with the
��������������� language, in which declarative definitions of
how to paint the characters are given in terms of pen
path and pen shape. Another popular method is the
same POSTSCRIPT that many printers accept. The prime
difference is that the ��������������� program translates the
font definitions into bitmaps prior to sending the font to
the printer while a POSTSCRIPT printer translates the
outlines into bitmaps at the time of printing. Interest-
ingly, both the ��������������� language and the POSTSCRIPT
language use Bézier curves for describing the curves
followed by the pen or the outlines. As usually
configured these days, TEX uses bitmapped fonts in the
Computer Modern family generated by ��������������� , and
ditroff uses POSTSCRIPT outline fonts supplied by
Adobe.

The subsequent subsections delve deeper into
these issues in order to be able to state the goal of this
paper in the next section.

2.1 Fonts, design sizes, and magnifications. As
mentioned, fonts are the raw material of typesetting. A
font is a set of printable patterns, one for each charac-
ter, that causes printing of that character in a particular
recognizable style on the page. As mentioned, these
patterns can be represented by bitmaps or drawing
instructions.

Characters come in various sizes. There are two
independent notions of sizing for fonts, point size or
design size and magnification. The design size is the
size at which the character is designed to be used and
is, in well-designed text, the size in which the character
appears in final, printed copy. Design size is usually
expressed in units of points, which are each approxi-
mately 1/72 of an inch. Most normal text in books,
newspapers, and magazines is printed in 10 point type.
Headlines are larger, perhaps as large as 30 points. The
magnification of a font is the inverse of the ratio

1

between the design size of the character and the size of
the character as it emerges on the printer, the assump-
tion being that the final copy is a photo reduction of the
printed copy. Thus, if photo reduction halves linear
dimensions, one prints with magnification 2. If every-
thing is done right, then after reduction, the letter
appears at its design size.

A 10 point design sized font printed at magnifica-
tion 2 is similar to but not quite the same as a 20 point
version of the same font. For example, the serifs on a
large point size are smaller than they would be if strict
linear magnification were used. Other proportions, e.g.,
of x-height to cap-height and of width to height, are
also different. While many purists, Knuth included,
insist on using a different pattern for each design size,
many people accept magnification as yielding accept-
able fonts at other point sizes. If the unit of
magnification is not too big the results are acceptable
even to many purists.

2.2 Problems with bitmapped fonts. A bitmap for a
character is a rectangular array of bits covering the so-
called bounding box or frame that exactly contains a
letter. Figure 1 shows a low resolution bit map for the
letter “N” in a sans serif font. The inked squares or pix-
els are denoted by “1” bits and the uninked pixels are
denoted by “0” bits.

Figure 1

The low resolution example of Figure 1 illustrates a
major problem with bitmapped fonts. Curved lines and
straight lines that are neither vertical nor horizontal
cannot be represented exactly by a rectangular pattern
of pixels. One is forced to approximate them with rec-
tangular steps. At high resolution, e.g. above 1000 or
so, the human eye cannot see the steps, but at low

resolution the steps are quite apparent. Visible steps
are called “jaggies” after the jagged edges.

Bitmaps for a font must be built for each design
size, magnification, and resolution. If the resolution is
fixed, as is the case on most printers, a bitmap must be
built for each design size and magnification. An attempt
to use a given bitmap at a larger design size or
magnification by just enlarging the area of each dot
yields a bad case of jaggies.

2.3 !�"�#�$�%�&�'�# and its environment. !�"�#�$�%�&�'�# , a
language for the specification of fonts or typefaces, has
been used to provide fonts for the TEX family of
typesetting systems. A !�"�#�$�%�&�'�# user writes a pro-
gram for each letter or symbol of an alphabet. These
programs are different from the usual computer pro-
grams, because they are essentially declarative rather
than imperative, using an algebraic language to
describe the center stroke or edges of the characters.
The description of a letter in !�"�#�$�%�&�'�# is a set of equa-
tions describing the strokes. When combined with
parameters describing the pen shape and size, one gets
a full description of a letter. Sizes and shapes of pen
nibs can be varied in !�"�#�$�%�&�' # and the characters can
be built up in such a way that the outlines of each
stroke are precisely controlled. Herein lies the advan-
tage of !�"�#�$�%�&�'�# ; a font is easily specified and varia-
tions are obtained by varying parameters.

Currently, the program that converts a set of
!�"�#�$�%�&�'�# font descriptions into a bitmapped font
translates the description of a letter combined with a
point size and a magnification into a bitmap. This bit-
map can be sent to the printer to get a letter on the page.
Herein lies a disadvantage of !�"�#�$�%�&�' # ; a bit map
must be kept for each point size and magnification, and
this can require a lot of space.

2.4 The POSTSCRIPT language. The POSTSCRIPT
language is an interpretive programming language with
graphics capabilities. POSTSCRIPT’s extensive page
description capabilities are embedded into a general-
purpose programming language framework. The
language includes a conventional set of data types such
as numbers, arrays, and strings, control primitives such
as conditionals, loops and procedures, and some
unusual features such as dictionaries. In most POST-
SCRIPT fonts, each letter is described by an imperative
program tracing the outline of the letter. This tracing
may include curves given as Bézier curves, straight
lines, arcs, etc. A POSTSCRIPT printer interprets this
outline program to draw and fill in the letters on the
page. Some consider the imperative nature of POST-
SCRIPT to be a disadvantage in comparison to !�"�#�$�(

2

)�*�+�, ’s declarative nature. The main advantage of
POSTSCRIPT relative to -�. ,�/�)�*�+ , is that one needs to
keep only the outline. If, as in the usual case, the out-
line is specified in terms of a fixed path through
Euclidean two-space, this outline may be scaled arbi-
trarily to yield any magnification. The scaling is done
by the POSTSCRIPT interpreter at the printer. Thus the
different magnifications do not require any additional
storage space. Actually, the outlines are kept as if they
were for the Adobe-standard 1000 dots per emm, which
at a design size of 10 points amounts to 7200 dpi.
Because a typical phototypesetter has a maximum reso-
lution of about 2500 dpi, the outlines are said to be
arbitrarily scaleable. If the outlines are kept, as are
many -�. ,�/�)�*�+�, definitions, as paths through points
calculated by the outline program, then it is possible to,
say, make serifs grow more slowly than linearly. It
would then be possible to have one POSTSCRIPT font
scaleable to all design sizes. Generally, outline fonts
are not written this way, so that strictly speaking they
are scaleable only to all magnifications.

In addition, the POSTSCRIPT language has a way to
work with bitmapped fonts. While the POSTSCRIPT
printer can scale them before printing, the end result is
that each of the fixed number of dots in the bitmap is
made larger or smaller. Since the human will see larger
dots as jagged lines, such fonts are not really con-
sidered scaleable.

2.5 Bézier curves. Both -�. ,�/�)�*�+�, and POSTSCRIPT
use Bézier cubics to specify curves. For the Bézier
form, four points are used, the start point, the end point,
and two control points, as shown in the top half of Fig-
ure 2. The tangent vectors of the endpoints are deter-
mined from the line segments P1P2 and P3P4. The
mathematical introduction of the Bézier form when
given four points P1, P2, P3, and P4 is

z (t) = (1−t)3P1 + 3t (t −1)2P2 + 3t 2(1−t)P3 + t 3P4,

for 0 ≤ t ≤ 1.
Two characteristics of the Bézier form tend to

make it widely used in graphics. First, by choosing the
control points one can easily mold the curve to a
desired shape. Second, the four control points taken in
another order define a convex polygon, P1 P2 P4 P3 P1
in this case, the convex hull, which bounds the Bézier
curve. The convex hull is useful in clipping a curve
against a window.

When a -�. ,�/�)�*�+ , user specifies a path, -�. ,�/�0)�*�+�, creates a list of knots and control points for the
associated cubic spline curves. If the user has not
specified the control points explicitly, -�. ,�/�)�*�+�, itself

finds some for the splines of a curve, while POSTSCRIPT
requires all the four points to be explicitly given.

P4

7

6

5

3P

1P

2P P

4P

P

P

P1

P2

P3

Figure 2

3 -�. ,�/�)�*�+�, to POSTSCRIPT compiler—
why and how

This section describes a major performance problem
with -�. ,�/�)�*�+�, -generated fonts that perhaps can be
solved by translating them into POSTSCRIPT fonts. The
goals of this translation are established. Based on these
goals, a particular approach is adopted to engineer the
software largely from existing components.

3.1 A problem with -�. ,�/�)�*�+�, -generated bit-
mapped fonts. In -�. ,�/�)�*�+�, , one gets one bitmap per
point size and magnification. The size of these bitmaps

3

grows as the square of product of the design size and
the magnification and requires a large storage space.
Files that are sent to the printer will be large, especially
if lots of different point sizes or magnifications are
used. In POSTSCRIPT with outline fonts, there is one
outline per character which can be scaled arbitrarily to
any magnification that might be needed. Moreover,
POSTSCRIPT outline fonts are generally more compact
than bitmapped fonts. For example, an enclosed rectan-
gle is represented by its four corner points rather than
by all the bits enclosed by the rectangle.

Certainly the outline fonts are more easily scaled
to other magnifications. By scaling the bitmapped fonts
downward, too much information is lost, and scaling
upward introduces the jaggies. Moreover, the pixel
array is device dependent; it is valid for output devices
of only one particular resolution and one choice of pos-
sible data values per pixel. Scaleable fonts have a great
advantage — you need only one font description file for
all magnifications of that font. Actually, POSTSCRIPT
outline fonts are more scaleable even than the 1�2�3�4�56�7�8 3 originals for another reason. In [9], it is said,
“Caution: before using this ‘at’ feature (i.e. scaling
downward or upward) you should check to make sure
that your typesetter supports the font at the size in ques-
tion; TEX will accept any 〈desired size〉 that is positive
and less than 2048 points, but the final output will not
be right unless the scaled font really is available on
your printing device.” Getting POSTSCRIPT outline ver-
sions of 1�2�3�4 6�7�8 3 fonts is possible since both are
based on Bézier curves. Doing so makes fonts hereto-
fore available only on TEX and other DVI-based for-
matters available on ditroff and other formatters which
have evolved to or have been designed for use with
POSTSCRIPT printers.

3.2 Goals. Based on the observations of Section 3.1,
the goal of this research is to produce a 1�2�3�4 6�7�8 3 to
POSTSCRIPT compiler, mf2ps. Its operational require-
ments are items 1 through 5:

1. It must be possible to translate any legitimate
1�2�3�4 6�7�8 3 font definition at any given design size
into a POSTSCRIPT outline font.

2. The resulting POSTSCRIPT outline font should be
arbitrarily scaleable.

3. The resulting fonts should look like the bitmapped
fonts when printed on the same printer.

4. The resulting POSTSCRIPT outline font should be
more compact when sent to the printer than a
POSTSCRIPT version of the 1�2�3�4 6�7�8 3 -generated
bitmapped font.

The fourth requirement deserves a bit of explanation
and qualification. First note that what is compared is
what is sent to the printer. Certainly there are
compressed versions of the bitmapped fonts that reduce
the disk storage requirements of the bitmapped fonts.
However, they must be uncompressed before sending
them to most printers. It is the printer’s storage that is
limited; generally disk space is in abundance. However,
since printers these days are general purpose comput-
ers, what a printer accepts may in fact be a compression
that it has been programmed to undo.

Now for the case in which disk space is of con-
cern, the comparison should still be relative to printable
versions. There exist algorithms, e.g. that of Lempel
and Ziv [13] that can be used to compress POSTSCRIPT
outline fonts which are, after all, just ASCII files.
Therefore, in order not to have a contest between
compression algorithms, the uncompressed versions are
compared. Furthermore, in order not to have a contest
between different kinds of printers that may have
differing font representations, POSTSCRIPT outline fonts
are compared to POSTSCRIPT bitmapped fonts. When
considering disk space, the fact that one bitmapped font
is needed for each magnification is taken into account.
Thus, the interest is in comparing the size of a scaleable
outline font to the total storage for the bitmapped fonts
for all magnifications of a given design size.

5. The resulting POSTSCRIPT outline font should be
more compact than the total of the sizes of the
POSTSCRIPT versions of the 1�2�3�4 6�7�8 3 -generated
bitmapped fonts at each available magnification.
Even this comparison is not completely fair since
only specific magnifications are provided, while
the POSTSCRIPT font is arbitrarily scaleable.

Observe finally, that the comparison is against
magnifications of a single design size since purists
would argue that there should be a different outline font
for each design size. Since there are those that do not
require this purity, the various design sizes will be com-
pared also.

The software engineering goal is item 6.

6. mf2ps should be written as much as possible using
the existing 1�2�3�4 6�7�8 3 program both to save work
and to ensure that all 1�2�3�4 6�7�8 3 -acceptable font
definitions are handled.

The evaluation of the results will be done relative to
these goals.

3.3 Previous attempts. Leslie Carr wrote a collection
of programs to produce POSTSCRIPT outline fonts from
1�2�3�4 6�7�8 3 fonts in 1987. Carr’s programs take as input

4

the log output file of 9�:�;�<�=�>�?�; which contains a
description of all the paths that 9�:�;�<�=�>�?�; traces out in
drawing a character.

Carr has problems of information loss as a result
of not having entered into the 9�:�;�<�=�>�? ; program. This
is the reason why Carr’s characters are poor looking. In
[5], Carr observes, “In the cmr10 font, the crisp pen
has diameter zero, so serifs have square corners. In the
cmtt10 font, crisp is set to a larger value and the
serifs end in semicircles. Because the shape of the
current pen can NOT be taken into account in POST-
SCRIPT, these differences in the characters shapes will
not be seen. This is a fundamental problem: given a
path p and a pen q (whose shape is also an arbitrary
path), 9�:�;�<�=�>�?�; effectively envelopes p with respect to
the shape of q; POSTSCRIPT can do nothing other than
stroke it to produce a line of constant width. This
incompatibility comes to light when the width of the
pen is significant to the shape of the character”.

In order to avoid this problem, mf2ps finds the
internally generated envelope, which is used as the
boundaries of the inked region, and uses this envelope
as the outline. It does not matter, then, what the pen
path and the pen shape are.

More recently, during the time that the work
described herein was being done, there were other
efforts with similar goals.

Doug Henderson [6] obtained outline font charac-
ters by modifying the endchar macro, which is called
for each character after the bitmap is generated, to take
the bitmap for the character and white out all but the
bits on the edge. The number of bits left on the edge is
varied according to the resolution of the bitmap. These
outlines, being bitmapped, are just as unscaleable as are
the bitmaps for the filled-in characters.

Neil Raine and Graham Toal [12] have developed
software that takes the bitmaps and rediscovers the out-
lines by tracing the pixels. The outlines that are used as
the basis for POSTSCRIPT fonts are, for the most part,
generated from bitmaps at 2400 dpi. They first generate
RISC OS outline fonts which are screen fonts for
Acorn’s Archimedes RISC computer. These are true
scaleable outlines. Then, these outlines are converted
into POSTSCRIPT format. Toal says that the the quality
of the fonts produced is not too great at low resolutions
because of shortcomings in Adobe’s rendering algo-
rithm. He adds that at 1200 dpi on a phototypesetter,
they are indistinguishable from 9�:�;�<�=�>�?�; -generated
bitmapped fonts. These authors suspect that information
that is critical for good appearance is lost when tracing
an outline on a bitmap generated from a mathematically
described envelope. Better results should be obtainable
using the original envelope.

John Hobby [7] has developed a program called
MetaPost, which translates from an extension of 9�:�;�<�@
=�>�?�; into POSTSCRIPT cubic splines and commands.
His goal was to turn 9�:�;�<�=�>�?�; into a system for
typesetting general graphics, including embedded text.
His approach, similar to ours, was to modify the 9�:�;�<�@
=�>�?�; program into what he desired. Befitting his more
general goals, besides modifying the output, he has
added new commands to the input language. Moreover,
his translation appears to be a direct mapping from a
9�:�;�<�=�>�?�; command sequence to a POSTSCRIPT com-
mand sequence. The result is a program more powerful
than mf2ps. It will be interesting to compare fonts pro-
duced by MetaPost and mf2ps for appearance and per-
formance.

3.4 Methodology. There are a number of ways to
build the compiler. They include

1. writing the whole compiler from 9�:�;�<�=�>�?�; to
POSTSCRIPT from scratch: This has the advantage
that one does not have to get into another person’s
software, which is not very pleasant when the
software is so big. On the other hand, one would
have to treat the whole job of turning mathemati-
cal equations and any arbitrary pen shape into out-
lines.

2. using the 9�:�;�<�=�>�?�; output as was done by Leslie
Carr [5]: This has the advantage of not requiring
delving into another’s software, but the generated
information is not enough if one wants no devia-
tions from the originals.

3. getting into the 9�:�;�<�=�>�?�; program: This requires
examining the internals of the 9�:�;�<�=�>�?�; program.
However, 9�:�;�<�=�>�?�; and POSTSCRIPT make
liberal use of Bézier curves to describe non-
circular curves. This fact makes the translation
process natural. For each specified path, 9�:�;�<�@
=�>�?�; creates control points for the associated
cubic spline curves before calculating the bit map.
9�:�;�<�=�>�?�; also calculates the edge offsets implied
by the pen shape. Using the necessary information
one can get a new set of control points that define
Bézier curves and lines that are needed to build the
POSTSCRIPT outline fonts.

3.5 Software engineering of solution. The idea is to
split the 9�:�;�<�=�>�?�; program into front end and back
end. The front end takes 9�:�;�<�=�>�?�; specification of a
character, magnification, and point size, and produces
the envelope, i.e., the outline of the character, and the
back end fills the envelope with bits. Taking the exist-
ing front end and writing a new back end that converts

5

the envelope into a POSTSCRIPT specification of an out-
line is our method of producing mf2ps. The bit-filling
process will be done by the printer.

In order to make POSTSCRIPT fonts arbitrarily
scaleable, we have to ask the mf2ps program to use a
very large magnification, at least to try to match the
grid on which Adobe plots the points of its outlines.
Adobe plots its characters on a 1000 × 1000 grid. Thus,
Adobe’s resolution is 1000 dpm (dots per em), which
for design size 10 points is 7200 dpi. Unfortunately,A�B�C�D�E�F�G�C , and thus mf2ps accepts resolutions only up
to 3000 dpi. The results should be sufficient to produce
fonts scaleable up to magnification 7 or 8, which is a
reasonable range in typesetting.

This approach helps meet goal 6 because the origi-
nal unchanged A�B�C�D�E�F�G�C program is used. Thus,
exactly the same input is accepted as in the A�B�C�D�E�F�G�C
program. There is some extra frosting obtained by the
chosen approach. The program for translating A�B�C�D�H
E�F�G�C to POSTSCRIPT is actually a bit of an interactive
environment because the new back end is an extension
of the existing one. This existing back-end provides an
interpreter that executes a A�B�C�D�E�F�G�C character
definition and displays the defined character on the
screen. Figure 3 shows the dump of a screen containing
several windows, one showing a A�B�C�D�E�F�G C definition,
another showing the result of its interpretation, and a
third containing the POSTSCRIPT translation of the
definition in the first window. If software to interpret
POSTSCRIPT definitions were available here, a fourth
window could be set up showing the result of interpret-
ing the translation of the third window. This would
allow comparison of the character’s appearances
without having to print them on paper.

4 The program

In the following discussion, the A�B�C�D�E�F�G�C program is
often called just “ A�B�C�D�E�F�G�C ”.

The A�B�C�D�E�F�G�C program has been written so that it
can be made to run efficiently in a wide variety of
operating environments by making comparatively few
changes. Such flexibility is possible because the pro-
gram is written in the WEB language which is at a
higher level than Pascal. The preprocessing step that
converts WEB to Pascal is able to introduce most of the
necessary refinements. Semiautomatic translation to
other languages is also feasible, because the program
does not make extensive use of features that are pecu-
liar to Pascal.

The program has two important variations: First,
there is a long and slow version called INIMF, which
does the extra calculations needed to initialize A�B�C�D�H
E�F�G�C ’s internal tables. It has to be run first. It initializes

everything from scratch without reading a base file, and
it has the capability of dumping a base file. Secondly,
there is a shorter and faster production version called
VIRMF, which cuts the initialization to a bare minimum.
It is a virgin program that needs to input a base file in
order to get started. VIRMF typically has more memory
capacity than INIMF, because it does not need the space
consumed by the dumping and undumping routines, etc.

In order to generate a compiler that translatesA�B�C�D�E�F�G�C to POSTSCRIPT, additional external pro-
cedures and functions were added to the A�B�C�D�E�F�G�C
program so that it runs exactly the same except that
when it asks for an output file name, it asks for an addi-
tional name, for the extra output file that is to contain
the POSTSCRIPT outlines. Those changes were made on
the Pascal version of the VIRMF, and were compiled
later with A�B�C�D�E�F�G C ’s library files. (It was a complete
oversight on our part not to have modified the WEB ver-
sion of VIRMF.) A few extra lines were added to the
macro file, plain.mf. These act as flags, identifying
that A�B�C�D�E�F�G�C has entered some of the macros.

4.1 Basic idea. To specify a character in A�B�C�D�E�F�G�C ,
one specifies either an envelope (outline) or a center-
line path and a pen head. For the former, A�B�C�D�E�F�G�C
just fills the envelope with bits. For the latter, A�B�C�D�H
E�F�G�C pretends that it is drawing the character with a
pen of specified head shape following the specified
path, i.e., the center of the head stays on the path. The
distance from the center-line path and outer edge of ink
trail left by pen head is called the offset. So, for a char-
acter, A�B�C�D�E�F�G�C follows the center-line path to calcu-
late the path of offset points, i.e., the envelope, and then
fills the envelope with bits. In either case, A�B�C�D�E�F�G�C
ends up filling an envelope.

We need to break A�B�C�D�E�F�G�C into a front end and a
back end at the point just after the envelope has been
calculated. Then we provide a new back end that con-
verts the envelope into POSTSCRIPT instead of filling
the envelope with bits. Note then that the POSTSCRIPT
printer will fill in the envelope with bits as it fills the
path obtained from the envelope.

The following subsections describe the data and
the calculations involved in the new back end.

4.2 Data structures. The main data structures thatA�B�C�D�E�F�G�C keeps for a character are the center-line
path, the pen shape, and the envelope path. There are a
few operations that can be performed on paths, called
transformations.

4.2.1 A�B�C�D�E�F�G�C ’s path representation. When aA�B�C�D�E�F�G�C user specifies a path, A�B�C�D�E�F�G�C creates a
list of knots and control points for the associated cubic

6

spline curves. If the knots are z 0, z 1, . . . , zn, there are
control points zk

+ and zk +1
− such that the cubic splines

between the knots zk and zk +1 are defined by the Bézier
formula

z (t) = B (zk, zk
+ ,zk +1

− ,zk +1;t)
= (1 − t)3zk + 3t (t − 1)2zk

+

+ 3t 2(1 − t)zk +1
− + t 3zk +1,

for 0 ≤ t ≤ 1.
There is a 7-word node for each knot zk , contain-

ing one word of control information and six words for
the x and y coordinates of zk

− and zk and zk
+ . The control

information appears in the left_type and right_type
fields and they specify properties of the curve as it
enters and leaves the knot. There is also a link field,
which points to the following knot. Before the Bézier
control points have been calculated, the memory space
they will ultimately occupy is taken up by information
that can be used to compute them. The I�J�K�L�M�N�O�K
make_choices procedure chooses angles and control
points for the splines of a curve when the user has not
specified them explicitly.

4.2.2 I�J�K�L�M�N�O�K ’s path transformation. When
I�J�K�L�M�N�O�K digitizes a path, it reduces the problem to
the special case of paths that travel in the first octant
directions; i.e., each cubic z (t) = (x (t),y (t)) being digi-
tized will have the property that 0 ≤ y ′(t) ≤ x ′(t). This
assumption makes digitizing simpler and faster than if
the direction of motion has to be tested repeatedly.
When z (t) is cubic, x ′(t) and y ′(t) are quadratic, hence
each of the four polynomials, x ′(t), y ′(t), x ′(t)−y ′(t),
and x ′(t)+y ′(t), crosses through 0 at most twice. If we
subdivide the given cubic at these places, we get at
most nine subintervals. In each of these intervals each
of x ′(t), y ′(t), x ′(t)−y ′(t), and x ′(t)+y ′(t) has a constant
sign. The curve can be transformed in each of these
subintervals so that it travels entirely in first octant
directions, if we exchange x and −x, y and −y, and x and
y as necessary.

4.3 Pens and envelopes. There are two kinds of pen
heads that may be used, polygonal and elliptic. There
are a number of trade-offs involved in their use. The
first subsection treats the case of an n-vertex polygonal
pen shape and the second treats the case of an elliptical
pen shape. Both describe the influence of pen shape on
the envelope of the font.

4.3.1 Polygonal pens. Suppose that the vertices
of a polygon are w 0, w 1, . . . , wn −1, wn = w 0 in coun-
terclockwise order. A convexity condition requires that
each vertex turns left when one proceeds from w 0 to
w 1

. . . to wn. The envelope is obtained if we offset a

given curve z (t) by wk when that curve is traveling in a
direction z′(t) lying between the directions wk−wk −1
and wk +1−wk . At times t when the curve direction z′(t)
increases past wk +1−wk , I�J�K�L�M�N�O K temporarily stops
plotting the offset curve and inserts a straight line from
z (t)+wk to z (t)+wk +1; notice that this straight line is
tangent to the offset curve. Similarly, when the curve
direction decreases past wk−wk −1, I�J�K�L�M�N�O�K stops plot-
ting and inserts a straight line from z (t)+wk to
z (t)+wk −1; the latter line is actually a retrograde step,
which will not be part of the final envelope under
I�J�K�L�M�N�O�K ’s assumptions. The result of this considera-
tion is a continuous path that consists of alternating
curves and straight line segments. The segments are
usually so short, in practice, that they blend with the
curves.

4.3.2 Elliptical pens. To get the envelope of a
cyclic path with respect to an ellipse, I�J�K�L�M�N�O�K calcu-
lates the envelope with respect to a polygonal approxi-
mation to the ellipse. This has two important advan-
tages over trying to obtain the exact envelope:

1. Polygonal envelopes give better results, because
the polygon has been designed to counteract prob-
lems that arise from digitization; the polygon
includes sub-pixel corrections to an exact ellipse
that make the results essentially independent of
where the path falls on the raster.

2. Polygonal envelopes of cubic splines are cubic
splines. Hence it is not necessary to introduce
completely different routines. By contrast, exact
envelopes of cubic splines with respect to ellipses
are complicated curves, more difficult to plot than
cubics.

4.4 Taking out data. After I�J�K�L�M�N�O�K has calculated
the paths and the offsets, it is ready to send the values to
the make_moves procedure which generates discrete
moves for any four points that represent a Bézier curve.
This is done for each one of the cyclic paths from
which the letter is built. When the offsets are zero, this
is done by the fill_spec procedure. Otherwise this is
done by the fill_envelope procedure. In the latter case,
the line segments, which were discussed earlier, should
be taken out also in order to get smooth connections
between the different curves that the cyclic path is built
from. Because POSTSCRIPT describes any shape in
terms of curves and lines, this is the point to take
advantage of I�J�K�L�M�N�O�K ’s calculations, i.e., when
I�J�K�L�M�N�O�K calls the make_moves procedure and when
I�J�K�L�M�N�O�K draws line segments for offset corrections.

4.5 Processing the data. The generated data are not

8

ready yet to be used. First, we should unskew, i.e.,
transform from the first octant back to the original, the
paths according to the octant that the paths were trav-
eled in before they were skewed. This unskewing is
done by taking out the octant number at the moment
that the make_moves procedure is called and then usingP�Q�R�S�T�U�V�R ’s unskew procedure that sets values x ′ and
y ′ to the original coordinate values of a point, given an
octant code and coordinates (x,y) after they have been
mapped into the first octant and skewed; the new values
are sent to the send_p_s procedure. This procedure has
eight formal parameters that are all used when sending
a curve. When sending a line, only four parameters are
used, two to denote the start point and two to denote the
end point; the remaining four parameters are sent as
zeros so send_p_s can distinguish whether a line was
sent or a curve. In the next step, send_p_s unscales the
numbers because P�Q�R�S�T�U�V�R works with units of scaled
points, of which there are 216 in an ordinary point.
While unscaling, the values are transformed in order to
send them to the POSTSCRIPT dictionary FontBBox
command. After this pre-processing, the data are sent to
a temporary file.

4.5.1 Getting more information. When P�Q�R�S�W
T�U�V�R calls the make_moves procedure, it does not have
any information on the role that this path is going to
play, whether the current cyclic path is going to be
filled or whether it will act as a boundary of a region to
be erased.

In order to distinguish between the cases, more
information has to be taken. This is done by copying
the plain.mf file into a new file named
myplain.mf and adding a few lines to it. The addi-
tional code was added in order to identify P�Q�R�S�T�U�V R ’s
use of the macros. P�Q�R�S�T�U�V R uses the variables for date
only once, when the program is started, so it was
decided to use them in the rest of the program. The
year is changed to −1 when P�Q�R�S�T�U�V R ’s
pen_stroke macro is applied on a cyclic path, i.e., in
the characters such as “o”, “O”, and “Q”, and to −2
when the erase macro is called. The month is
changed when the fill macro is called. There are
three kinds of paths:

1. paths to be filled are processed using the POST-
SCRIPT fill command.

2. paths to be stroked are processed using the POST-
SCRIPT eofill command.

3. paths to be erased are processed using specialized
procedures which will be discussed later.

A letter cannot always be treated as one unit by
means of the fill and eofill commands. For

instance, the letter “Q” is built of two different paths,
the first of which is stroked and the second of which is
filled. Generating the letter using the POSTSCRIPT
eofill command causes a hole in the image (see Fig-
ure 4).

Figure 4

So while generating a letter, fill mode can be changed
for each cyclic path. Moreover, when generating a
letter whose paths should be filled, it is not always pos-
sible to use just one fill command (see Figure 5).

Figure 5

When a POSTSCRIPT fill command is applied to a
path that is composed of more than one subpath, say
two for the sake of simplicity, and one subpath is inside
the other and is drawn in a direction opposite to the
external one, the internal path is considered a hole and
is not filled (see Figure 6). So, if several paths are to be
filled in this manner, the description of each one of
them should be ended with the fill command. There
is one more benefit to using this strategy: The POST-
SCRIPT current path stack becomes empty after
encountering any kind of fill command. Therefore,
using the fill command after each path can help
avoid stack overflow errors if all paths
together are too long.

4.5.2 Treating erasing paths. There are three
methods of handling the problem of paths that should
be erased by mf2ps itself:

1. filling with white: Because erasing paths are built
in order to erase an existing filled area and POST-
SCRIPT overlaps paths (i.e., a region is shown in
the color that was drawn last), erasing paths can be
implemented by filling those paths with white.
This solution is the easiest, but it works only if the
background is white and the letter is drawn in
some level of gray. If one wants to draw a letter
with background other than white, the resulting

9

Figure 6

appearance will not be correct.

2. calculating new paths resulting from subtracting
the erasing paths from the previous filled paths:
Such a solution can be global. However, it costs a
lot in terms of processing time and accuracy,
because paths are given implicitly by four points,
and in order to calculate the new paths, one should
find the intersection points of Bézier curves, i.e., to
find points that lie on both Bézier curves, and then
calculate new curves, which are difficult to calcu-
late from those points.

3. using the POSTSCRIPT eoclip command: Be-
cause the letters are bounded in a 1000 ×1000 box,
a primary square path whose segments are 1000
units long should be declared and after it all the
erasing paths should be listed. After relocating the
erasing paths we are ready to declare eoclip,
which means that the clipping path is the external
primary one and the internal paths, the erasing
paths, are holes. This is an elegant solution that
uses the power of the language and is available in
simple situations in which there is no intersection
between the erasing paths (see Figure 7). If there
were intersections, a little more sophisticated use
of the eoclip command would be needed. Relo-
cation of the erasing paths is done by the pro-
cedure doarrange.

Figure 7

There are other problems caused by the erasing
paths. Because the erasing paths have segments in com-
mon with paths to be filled, POSTSCRIPT must decide
whether the common segments are in the clipping path
or not. POSTSCRIPT does not seem to have a consistent
policy on that and it seems to be that the decision is
taken arbitrarily (see Figure 8).

Figure 8

An attempt to resolve the clipping path problem led to
the first author sending the following electronic mes-
sage (obviously, not as nicely formatted as herein) to
Glenn Reid of Adobe Systems, Inc.

From simon Tue Mar 21 13:22:32 1989
To: greid@adobe.com
Subject: Problem in PostScript

Dear Mr. Reid

I have got a problem in understanding the
PostScript policy in determining “what is in
the clipping path”. I think there is a problem
in the boundaries. Here is an example that
shows that problem:

gsave
initclip
newpath

0 0 moveto
0 1000 lineto
1000 1000 lineto
1000 0 lineto
0 0 lineto

300 100 moveto
700 100 lineto
700 300 lineto
300 300 lineto

10

300 100 lineto

700 900 moveto
300 900 lineto
300 700 lineto
700 700 lineto
700 900 lineto

eoclip

newpath
100 100 moveto
900 100 lineto
900 900 lineto
100 900 lineto
100 100 lineto
fill
grestore

As you see, the problem is that on top of the
shape, the line which belongs to the upper
“hole” in the clipping path and to the current
path (to be filled) is drawn, and on bottom of
the shape it is not.

This is happening both on the Apple Laser
printer and on the QMS-80.

I would be glad to have a reply from you.

Thanks in advance
Shimon Yanai
C.S Dep.
Technion

What Mr. Reid saw when he printed the POSTSCRIPT
commands contained in the message is reproduced in
Figure 9.

Figure 9

Mr. Reid replied with the following:

From: greid@adobe.com (Glenn Reid)
To: Shimon Yanai <simon@techunix>
Cc: greid@adobe.com
Subject: Re: Problem in PostScript
In-Reply-To: Your message of Wed, 22 Mar 89 ...
Date: Wed, 22 Mar 89 11:41:35 PST

The problem is that the path you are filling
falls exactly on the edge of the clipping path.
This produces a zero-width area to fill, and
unfortunately it sometimes fills and some-
times does not with the current fill algorithm.
I believe that it is related to the direction of
the paths; if the paths are going in opposite
directions along the same line, it will fill with
a one-pixel area, but if they are going in the
same direction, it will not fill. I believe this
has been fixed to be more consistent in
Display PostScript, for what it’s worth.

Glenn Reid
Adobe Systems

The idea of using opposite directions had been
checked before sending the letter, so the problem had to
be solved within the back end of mf2ps. The erasing
paths near the top of the letter had their y coordinates
increased by 0.8 points, and those near the bottom had
their y coordinates decreased by the same amount. This
shift is invisible to the human eye because the font
definitions are in terms of hundreds of points (see Fig-
ure 10). This solution was designed to work with most
existing X�Y�Z�[�\�]�^�Z fonts. It is possible that there will be
fonts that are not treated well by this solution.

Figure 10

4.6 Optimization. Optimization is done in order to
make the description of the fonts shorter and to save
work in the POSTSCRIPT interpreter. This is done in
three ways:

1. not printing lines with length zero. As was said
earlier, the X�Y�Z�[�\�]�^�Z program prints lines to con-
nect offset points. There are times that after round-
ing or truncating the output data, the start point
and the end point are equal. In such cases, the lines
are eliminated.

2. checking if the Bézier curve acts as a line. From
the definition of the Bézier curve, it is known that
if the two control points lie on the line that con-
nects the start point and the end point, the curve is
of degree one. In such cases mf2ps generates a
command to print a line from the start point to the
end point, thus saving space and avoiding redun-
dant calculations for the POSTSCRIPT interpreter.

11

3. checking if a series of consecutive line segments
are in the same line. This is done by storing the
segments in a buffer and checking whether a new
segment is collinear with the last stored.

4.7 Changed or added routines. The following is a
list of routines that were changed or added in order to
build mf2ps from _�`�a�b�c�d�e�a .

printchar was modified to get character names.

fixdateandtime was modified to initialize variables
that were used as flags in the macros.

fillspec was modified to send out data on splines.

skewlineedges was modified to send out offset lines.

dualmoves was modified to send out offset lines.

fillenvelope was modified to send out data on
splines.

dostatement was modified to identify tokens that are
strings.

main was modified to call the mf2ps procedure in
the beginning and ending of the program.

sendcurve was added to unskew spline values and to
send them to the next process.

sendline was added to unskew line values and to
send them to the next process.

ok was added to check if two lines are collinear.

restore was added to restore the parameters of the
last line.

recall was added to recall values from the buffer.

us was added to convert the _�`�a�b�c�d�e�a scale so that
a letter would fit the Adobe standard 1000 × 1000
bounding box.

send_p_s was added to create a POSTSCRIPT file of
lines and curves.

makemoves was modified to send out spline data.

dump was added to append information from the file
named f to the file named g.

checkerase was added to identify the file that con-
tains “erase” commands, and their position within
the file.

doarrange was added to put erasing paths at the
beginning of the file.

print_start was added to signal the beginning of a
new cyclic path to be processed.

print_end was added to signal the end of the current
cyclic path.

init_ps was added to make initializations.

makenewdef was added to make initializations when
more than one character occurs in the input.

closeolddef was added to close the last definition.

tini_ps was added to handle the ending of the pro-
cess.

auxprintchar was added to print characters.

auxprint was added to print strings.

5 Operation of mf2ps in a UNIX environment

When invoked, mf2ps first asks for an output file
name. For the example this file is called ex1. mf2ps
then asks,

“Are you creating the whole dic-
tionary (y/n)?”.

If the answer is other than “y” or “Y”, it is considered
“no”. If the answer is “y” or “Y”, then the whole dic-
tionary is created. This means that mf2ps creates a
POSTSCRIPT dictionary that includes entries for all the
characters that are in the input, e.g., cmr10 set. This
dictionary needs additional definitions such as left side
bearing, width, bounding box, etc. These definitions
need information on character features that must be cal-
culated within the program. Otherwise, the whole dic-
tionary is not created and the program treats the input
as a single character definition that is to be translated
into a POSTSCRIPT outline definition. After mf2ps
prompts “**”, we are in the _�`�a�b�c�d�e a environment.
Now the user inputs

\mode=hires;\nodisplays;\input cmr10;↵

After mf2ps has finished, the resulting POSTSCRIPT
font dictionary can be used to print text. In order to
print text, the font dictionary should be installed in
some formatter’s font source directory, and then it can
be loaded through the formatter’s commands. The dic-
tionary followed by appropriate show and showpage
commands can also be sent directly to the printer.

6 Evaluation of results

This section evaluates the mf2ps program relative to
goals established in section 3.2. The program was pro-
duced as a variation of _�`�a�b�c�d�e�a and it accepts any
_�`�a�b�c�d�e�a font definition and produces a POSTSCRIPT

12

outline font scaleable up to magnification 8, or to point
size 80 if you are not a purist. Thus goals 6 and 1 have
been entirely met and goal 2 is partially met. To meet
goal 2 fully the program must be modified to allow
large enough arrays to handle magnifications up to
7200; this is left to future work.

It remains to evaluate the appearance and sizes of
the outline fonts relative to the bitmapped fonts to see if
goals 3, 4, and 5 have been met.

6.1 Appearance. In order to compare appearances,
the outline font (Subsubfigure P) and and the 300 dpi
bitmapped font (Subsubfigure M) generated from the
same f�g�h�i�j�k�l�h definition are used to print similar sen-
tences at one, two, or three different sizes or
magnifications on three devices of differing resolutions.
The sentences are printed in the cmr (Subfigure R),
cmtt (Subfigure T), and lasy (Subfigure S)
typefaces. The bitmapped fonts may be printed at
design sizes 7, 8, 10, or 12, and the outline fonts may
be printed at magnifications .7, .8, 1.0, or 1.2. Finally,
the three devices are the 300 dpi LaserWriterII (Figure
11-LW300), the 600 dpi Varityper (Figure 11-VT600),
and the 1270 dpi Linotronic 300 (Figure 11-LT1270).
The bitmapped font examples are formatted with TEX
while the outline font examples are hand-coded POST-
SCRIPT files sent directly to the printer. Since the for-
matter with which this paper is printed can use arbitrary
POSTSCRIPT fonts, half of the examples could have
been done in-line without pasting in. However, for fair-
ness in the comparison, all examples were cut out and
pasted in.

There are visible differences due to differences in
the formatting software. TEX squeezes the letters closer
together than does the POSTSCRIPT engine. Moreover,
the interword space is constant in the POSTSCRIPT dic-
tionary but is varied by TEX according to the line struc-
ture. These differences are not the differences that are
at issue here.

On the 300 dpi device, the characters from the bit-
mapped fonts print thinner than are those of the outline
fonts. However, the edges of both sets are equally
smooth or jagged as the case may be in all sizes.
Overall, then, the appearance of the characters of the
bitmapped fonts is crisper than that of the outline fonts.
On the higher resolution devices, the thicknesses of the
characters are closer to being equal at all sizes. Thus,
the f�g�h�i�j�k�l�h program does a better job of building a
correctly sized bitmap at 300 dpi than does the 300 dpi
POSTSCRIPT engine of the LaserWriterII. The latter
seems to round up too much. However, both seem to
get the edges equally smooth even at low sizes and low
resolutions.

At the two higher resolutions, the outline fonts are
significantly better than the outline fonts at lower reso-
lutions and are significantly better than the bitmapped
fonts at the same resolution of printing. However, this
latter is true because the bitmapped fonts were gen-
erated by the f�g�h�i�j�k�l�h program specifically to be
printed at 300 dpi. When a 300-dpi bitmap is printed
with no scaling at 600 or 1270 dpi, it remains a 300-dpi
bitmap. As expected, the 300-dpi bitmapped fonts print
better at 300 dpi than they do at the two higher resolu-
tions.

The generated outlines are not fine-tuned for print-
ing at low resolutions, such as 300 dpi, as are the f�g�h�i�m
j�k�l�h -generated bitmaps. It might be useful to make use
of the POSTSCRIPT facilities for hinting to improve the
appearance of the characters printed from the outlines
at low resolutions.

Figure 12 shows samples of similar sentences
printed on the same three devices using the standard
Helvetica, Times Roman, and Courier POSTSCRIPT out-
line fonts built into most POSTSCRIPT-executing laser
printers. It appears to these authors that the standard
POSTSCRIPT fonts are significantly better than those
generated from f�g�h�i�j�k�l h fonts. However, this is not
surprising. Adobe uses a grid of 1000 × 1000 for its
character definitions, resulting in a resolution of 7200
dpi for characters printed at point size 10. Because of
size limitations of the f�g�h�i�j�k�l�h program the f�g�h�i�m
j�k�l�h outline fonts are using a resolution of 3,000 points
per inch. However, when using the letters in small sizes
such as from 10 to 70, quality differences are hardly
visible especially when working with printers that have
a resolution of 300 points per inch such as the Apple
LaserWriter. Moreover, Adobe makes liberal use of
hinting to improve the appearance of its fonts at low
resolutions. We completely ignored hinting, as we did
not see any way to automatically generate the hints.

6.2 Sizes of fonts. Recall that it is necessary to com-
pare the size of the POSTSCRIPT outline font for a par-
ticular f�g�h�i�j�k�l h definition to the sizes of the bit-
mapped fonts in POSTSCRIPT fonts for the individual
and all magnifications.

This comparison is made in this section for the
cmr10 font at the standard set of six magnifications 1,
1.095, 1.2, 1.44, 1.728, and 2.07 (which are approxima-
tions of 1.2 raised to the powers 0, .5, 1, 2, 3, and 4,
respectively). In addition, as a gesture to those who are
not purists and accept magnifications of the 10 point
design size as different point sizes, the comparison
includes the cmr font at point size 5, 6, 7, 8, 9, 10, 12,
and 17, the standard eight design sizes maintained for
use with TEX.

13

Table 1 shows the sizes in bytes. Thus it is clear
that the POSTSCRIPT outline font is bigger than any bit-
mapped font and that goal 4 fails. Moreover, it is clear
that the outline font is bigger than the sum over all
magnifications of one design size and than the sum over
all standard design sizes. Thus goal 5 fails. In fact, this
failure is the reason that the samples of Figure 11
involve only upper case letters. Samples with complete
fonts with both cases often overloaded the printer avail-
able to the students at the time this work was done.

Font Design Magni- Bitmap Outlines
size fication (size in (size in

bytes) bytes)n n�n
cmr 10 1.0 22,812 245,000
" 10 1.095 24,231 "
" 10 1.2 26,044 "
" 10 1.44 31,892 "
" 10 1.728 39,614 "
" 10 2.07 50,578 "
cmr 5 1.0 16,729 "
" 6 1.0 17,757 "
" 7 1.0 18,820 "
" 8 1.0 20,041 "
" 9 1.0 21,580 "
" 12 1.0 25,658 "
" 17 1.0 37,140 "n n�n

Total 352,896 245,000
Table 1

However, do note that the outline font is smaller
than the sum over all design sizes and magnifications
thereof.

So in terms of disk space for the non-purists, the
outline font represents a savings. Again notice that not
all magnifications of the bitmapped fonts are main-
tained and the outline font is arbitrarily scaleable.
Moreover, as the magnification grows the size of the
bitmap grows even more rapidly.

The disappointment with respect to saving printer
and disk memory says that it is important to spend more
effort to optimize the outline font.

All is not lost, though! As this paper was being
prepared for publication in TUGboat, one reviewer,
Nelson Beebe, pointed out something that we can only
kick ourselves for not noticing. The POSTSCRIPT outline
fonts that are generated by mf2ps are horrendously
wasteful in space. They use original, built-in command
names and absolute coordinates. A significant reduction
in size can be obtained by definition and use in the out-
lines of single-character command names, e.g., “M” for
“moveto”, and by use of relative versions of these
commands with operands of fewer digits after the initial

absolute moveto of any character. A simple filter was
written to obtain new compressed versions of the POST-
SCRIPT outline fonts. The appearances of the output
when printing with these new versions is unchanged,
but what is sent to the printer is significantly smaller,
about 37.7% smaller. The reduction on a per-letter basis
is about 45%. Table 2 shows the information of Table
1 for the new versions of the outline fonts.

Font Design Magni- Bitmap Outlines
size fication (size in (size in

bytes) bytes)n n�n
cmr 10 1.0 22,812 152,670
" 10 1.095 24,231 "
" 10 1.2 26,044 "
" 10 1.44 31,892 "
" 10 1.728 39,614 "
" 10 2.07 50,578 "
cmr 5 1.0 16,729 "
" 6 1.0 17,757 "
" 7 1.0 18,820 "
" 8 1.0 20,041 "
" 9 1.0 21,580 "
" 12 1.0 25,658 "
" 17 1.0 37,140 "n n�n

Total 352,896 152,670
Table 2

There are still better compressions that can be
achieved. According to Beebe [4], Toal and Raine’s
outline representation of cmr at 10 points requires
about twice the space needed for bitmaps of the same;
at 14 to 16 points, the outlines and the bitmaps occupy
about the same amount of space; above 16 points, the
outlines are smaller than the bitmaps. It is clear that
better encodings exist than we explored and these must
be explored for any future version of mf2ps.

One such better encoding appears to be that used
by Adobe for its own proprietary fonts; fonts encoded
this way have a FontType of 1. User defined fonts have
a FontType of 3. Beebe [4] says that type 1 fonts are
handled with greater efficiency than type 3 fonts on
most existing POSTSCRIPT interpreters, especially those
that are based on Adobe-licensed code. Adobe has
recently published specifications for the type 1 font
encoding [2], thus allowing anyone to produced type 1
fonts. Beebe believes that the market forces will drive
other companies to encode their fonts as type 1. More-
over, as more and more windowing systems based on
POSTSCRIPT, e.g., NeWS and NeXT, appear, the attrac-
tion of POSTSCRIPT outline fonts will increase, as then
the same font can be used for both printing and pre-
viewing. Thus, the incentive will be to convert o�p�q�r�s

16

t�u�v�w fonts into type 1 POSTSCRIPT outline fonts.
Ultimately, the tradeoff is between the size of the

font sent to the printer, and the time it takes for the
printer to decode the program for the characters. How-
ever, with proper cacheing, a big enough cache, and a
not very fancy document, the decoding is done only
once per character for the document!

7 Future work

For the future, there are a number of improvements that
can be made. Currently, each letter of the POSTSCRIPT
outline fonts is described as a set of cyclic paths. When
all are filled or stroked, one gets the desired letter.
Some of those cyclic paths have a common boundary
that is inside the letter and is not necessary for the out-
line description of the letter as a whole. Eliminating
these paths and creating one outline for the letter will
save space. Today this can be done manually, and is
worth the effort because the translation process is done
only once. From that time on, the font is used the way it
is.

As was demonstrated by Beebe’s rescue of our
result, closer attention should be paid to obtaining more
compact representations of character outlines, represen-
tations for which POSTSCRIPT routines can be written to
interpret them into standard outline drawing commands.
Collapsing commands into single characters and using
relative movements saved significant amounts of space.
Perhaps, even more dramatic savings can be obtained
by giving coordinates and distances in hexadecimal.

More effort can be spent on modifying the pro-
gram in order to allow magnifications up to 7200
points. Thus, no jaggies will be seen, as occasionally
happens when using higher magnifications, e.g., in our
translated fonts at magnification 8. This could be done
by enlarging the program arrays to handle characters
based on 7200 points. A sophisticated solution is
required if one wants to save room while compiling the
input font. In such a case, any linear translation which
is done within the POSTSCRIPT program is with a factor
less than 1.x�y w�z�t�u�v�w was changed for TEX 3.0. It is neces-
sary to build a new version of mf2ps based on this
latest version of x�y w�z�t�u�v�w . As the changes to thex�y w�z�t�u�v�w program deal mainly with ligatures and
kerning, the calculation of envelopes is probably not
affected. Therefore, it is likely that the portion of x�y w�z�{
t�u�v�w up to the calculation of the envelope can still be
used as a front end for mf2ps with very little change in
the portion of the program we wrote.

Finally, it might be worthwhile, for the sake of
portability to other systems and enhanceability by other

humans, to rewrite or to write the next version of
mf2ps with WEB.

Acknowledgments

The authors thank the TUGboat editors, and Nelson
Beebe for their help, sharp comments, and result-saving
ideas. Dealing with their comments made this a better
paper.

References
1. POSTSCRIPT Language Reference Manual,

Adobe Systems Incorporated, Addison-Wesley,
Reading, MA (1985).

2. “Adobe Type 1 Font Format,” Part No.
LPS0064, Adobe Systems, Inc. (March, 1990).

3. S. von Bechtolsheim, “The TEX PostScript
Software Package,” TUGboat 10(1), p. 25–27
(1989).

4. N. Beebe, Private communication, via electronic
mail. (1990).

5. L. Carr, “Of Metafont and PostScript,”
TEXniques 5, p. 141–152 (August, 1987).

6. D. Henderson, “Outline fonts with x�y w�z�t�u�v�w ,”
TUGboat 10(1), p. 36–38 (1989).

7. J.D. Hobby, “A x�y w�z�t�u�v�w -like System with
PostScript Output,” TUGboat 10(4), p. 505–512
(1989).

8. B.W. Kernighan, “A Typesetter-independent
TROFF,” Computing Science Technical Report
No. 97, Bell Laboratories, Murray Hill, NJ
07974 (March, 1982).

9. D.E. Knuth, The TEXbook, Addison-Wesley,
Reading, MA (1984).

10. D.E. Knuth, The x�y w�z�t�u�v w book, Addison-
Wesley, Reading, MA (1986).

11. D.E. Knuth, x�y w�z�t�u�v�w : The Program,
Addison-Wesley, Reading, MA (1987).

12. G. Toal, Private communication, via electronic
mail. (1990).

13. J. Ziv and A. Lempel, “A Universal Algorithm
for Sequential Data Compression,” IEEE Trans-
actions on Information Theory 3, p. 337–343
(May, 1977).

◊ Shimon Yanai
IBM Science and Technology

Center
Technion City

17

Haifa 32000
Israel
yanai@israearn.bitnet

◊ Daniel M. Berry
Computer Science
Technion
Haifa 32000
Israel
dberry@cs.technion.ac.il

18

