
LATEX News
Issue 41, June 2025 — DRAFT version for upcoming release (LATEX release 2025-06-01)

Contents

Introduction 1

Replacement for the legacy mark mechanism 1

Configurable output routine 2

News from Tagged PDF project 3
Socket declarations for tagging support 3
Promoting PDF 2.0 3
Extended support for pictures 3
New user keys to activate tagging 3
New value latest for testphase key 3
Setting up math tagging 4
The use of $$...$$ for displays math 4
Fixing the spacing after display math 4
Local changes to the spacing around display

math . 4

New or improved commands 4
Socket and plug conditionals 4
Accessing the current counter 5
Collecting environment bodies verbatim 5

Code improvements 5
Refinement of \MakeTitlecase 5
Tab character as a special 5
Refinement of v specification category codes . . 5
Logging text command and symbol declarations 5
Improvement of the NFSS font series

management 5
Supporting the ssc and sw shapes 5
Improving the handling of \label, \index,

and \glossary 6
Tracing lost characters 6
Always use the extended pool 6
A version of \input for expansion contexts . . 6

Bug fixes 6
Fix the use of localmathalpabets 6
docstrip: Error if .ins file is problematical . . . 6
Prevent cmd hook from defining an undefined

command 6
Process global options once per package 6
Make \label, \index, and \glossary truely

invisible in running headers 7
Correct the float placement algorithm 7

Correct \CheckEncodingSubset 7
Avoid problems with page breaks in the

middle of a verbatim-like environment . . 7
Fully expand the arguments of

\counterwithin and \counterwithout . 7
Ensure that late \write commands aren’t lost 7

Documentation 8
Clarifying space handling of \textcolor 8

Changes to packages in the amsmath category 8
\numberwithin is now an alias for

\counterwithin 8

Changes to packages in the graphics category 8
More accessibility keys in graphicx 8

Changes to packages in the tools category 8
multicol: Full support for extended marks . . . 8
array: Improve preamble setup code for p and

friends . 8
varioref: How to make \reftex... empty . . . 8

Changes to files in the L3 programming layer 8

Introduction
to write

Replacement for the legacy mark mechanism
LATEX’s legacy mechanism only supported two classes
(left and right marks) and setting the left mark (with
\markboth) always altered the state of the right mark as
well, i.e., they were far from independent. For generating
running headers with “chapter titles” on the left and
“section titles” on the right they work reasonably well
but without much flexibility, e.g., \leftmark always
generated the first “left”-mark on the page, while
\rightmark always generated the last “right”-mark.

A few releases ago [6] we therefore introduced a new
mark mechanism for LATEX that supports arbitrary many
truly independent mark classes and also offers querying
the state at the top of the page, something that wasn’t
available in LATEX at all.

Up to now, both mechanisms coexisted with com-
pletely separate implementations. With this release we
have retired the legacy code and instead implement
its public interfaces by using the new concepts, i.e.,

LATEX News, and the LATEX software, are brought to you by the LATEX Project Team; Copyright 2025 — DRAFT version for upcoming release, all rights reserved.

\markboth, \markright, \leftmark, and \rightmark
remain supported but internally use \InsertMark,
etc. Existing document classes or documents using
the interfaces will therefore continue to work without
any modifications but use a single underlying imple-
mentation and new documents can benefit from the
additional flexibility, e.g., by displaying not only the last
right-mark (\leftmark or \LastMark{2e-right}) but
also the first right-mark (\FirstMark{2e-right}) or
the top right-mark (\TopMark{2e-right}), etc.

See [11] for details on the extended functionality.

Configurable output routine
For nearly 40 years LATEX’s output routine (the mech-
anism to paginate the document and attach footnotes,
floats and headers & footers) was a largely hardwired
algorithm with a limited number of configuration pos-
sibilities. Packages that attempted to alter one or the
other aspect of the process had to overwrite the internals
with the usual problems: incompatibilities and out of
date code whenever something was changed in LATEX.

To improve this situation and to support the
production of accessible PDF documents we started
to refactor the output routine and added a number of
hooks and sockets, so that packages that want to adjust
the output routine can do so safely without the dangers
associated with that in the past.

For packages, we implemented the following hooks:

build/page/before, build/page/after These two
hooks enable packages to prepend or append code to
the page processing in the output routine. They are
implemented as mirrored hooks.

Technically, they are executed at the start and the
end of the internal LATEX 2ε \@outputpage command,
respectively. A number of packages alter that command
to place code in exactly these two places—they can now
simply add their code to the hooks instead.
build/page/reset Packages that set up special
conventions for text in the main galley (such as catcode
changes, etc.) can use this hook to undo these changes
within the output routine, so that they aren’t applied to
unrelated material, e.g., the text for running header or
footers.
build/column/before, build/column/after These
two hooks enable packages to prepend or append code
to the column processing in the output routine. They
are implemented as mirrored hooks.

Technically, they are executed at the start and the
end of the internal LATEX 2ε \@makecol command,
respectively. A number of packages alter \@makecol to
place code in exactly these two places—they can now
simply add their code to the hooks instead.

We also added a number of sockets for configuring
the algorithm and to support tagging. Three of these
sockets are of interest for use in class files but also for
users in the document preamble.

The first one is build/column/outputbox. It defines
how the column text, the column floats (top and bottom)
and the footnotes are combined, i.e. their order and
spacing. To change the layout all one has to do is to
assign a different predefined plug to the socket with
\AssignSocketPlug{build/column/outputbox}

{⟨plug-name⟩}
The predeclared plugs are the following:

space-footnotes-floats After the galley text there is
a vertical \vfil followed by the footnotes, followed by
the bottom floats, if any.
footnotes-space-floats As before but the \vfil is
between footnotes and floats.
floats-space-footnotes Floats are directly after the
text, then a \vfil and then footnotes at the bottom.
space-floats-footnotes Both floats and footnotes
are pushed to the bottom with footnotes coming last.1

floats-footnotes All excess space is distributed
across the existing glue on the page, e.g., within the
text galley, the separation between blocks, etc. The
order is text, floats, footnotes.
footnotes-floats As the previous one but floats and
footnotes are swapped. This is the LATEX default for
newer documents, i.e., this plug is assigned to the
socket when \DocumentMetadata is used.
footnotes-floats-legacy As the previous one but
LATEX’s bottom skip bug is not corrected, i.e., in ragged
bottom designs where footnotes are supposed to be
directly attached to the text, they suddenly appear at
the bottom of the page when the page is ended with
\newpage or \clearpage. While this is clearly a bug, it
was the case since the days of LATEX 2.09; thus for
compatibility we continue to support this behavior.

By default the separation between the last line of text
and the footnotes (\skip\footins) is not measured from
the baseline of the last text line but from its bottom.
This goes back to plain TEX where it is done in the
same way. Similarly, \textfloatsep is added between
text and bottom floats not starting from the baseline
of the last text line. Typographically speaking this is
suboptimal because it means that with \flushbottom in
effect, the position of the last textline when followed by
footnotes or floats depends on whether or not it contains
characters with descenders.

1There are two more permutations, but neither of them has ever
been requested so they aren’t set up by default — doing that in a
class would be trivial though.

–2

For this reason there is now the socket
build/column/baselineattach. It can be assigned the
plug on in which case the attachment of footnotes/floats
is measured from the baseline of the last text line. To
mimic the behavior in old documents, it is by default set
to off. For new documents using \DocumentMetadata
on will probably become the default.

There are more configuration possibilities, mainly for
class developers; more documentation on those can be
found in [12, §54 ltoutput.dtx].

News from Tagged PDF project
write intro

Socket declarations for tagging support
A lot of the tagging support in packages is handled
through the socket and plug mechanism that we
introduced in LATEX 2023-11-01 [8]. Sockets offer an easy
to use interface for package developers to inject special
code at defined places that can be changed from the
outside, for example, to alter the processing.

For the tagging support we use a special set of sockets
that are executed through \UseTaggingSocket instead
of the normal \UseSocket call. This allows us to turn
tagging off or on at high speed with \SuspendTagging
and \ResumeTagging without the need to individually
assign different plugs to the many tagging sockets [9].
This is sometimes necessary, for example, when trial
typesetting some material several times.

In the current release we now offer also dedicated
declaration commands for the tagging socket (instead
of using the underlying general socket interface
directly), because this better supports the special
conventions used for tagging sockets. So we now have
\NewTaggingSocket, \NewTaggingSocketPlug, and
\AssignTaggingSocketPlug.

Promoting PDF 2.0
PDF 2.0 is a requirement for accessible PDF containing
math, since the MathML namespace isn’t supported by
earlier PDF versions. LATEX will therefore set PDF 2.0
as the default version if \DocumentMetadata is used. A
different PDF version can be set with the pdfversion
key.

Extended support for pictures
todo: write more about the user options

The tagging of graphics has been reimplemented
and now uses tagging sockets. The options have been
extended to allow document authors to choose between
four tagging variants: as illustrative figures, as artifacts
(decorations), as replacement for symbols, as normal
text (for example todo notes).

The code also supports graphics made with
the tikz packages and todo notes made with the
todonotes package. The extended documentation in

latex-lab-graphics.pdf describes what authors of
other graphic package can do to to make their packages
tagging aware.

New user keys to activate tagging
Up to now users had to activate tagging by loading
modules from latex-lab with the help of the testphase
key. Further configuration of the tagging then had to
be done with the \tagpdfsetup command. We now
offer keys for this that do not use “test” in their
names, reflecting the fact that producing tagged PDF
documents is production ready.2

The tagging key allows to activate and deactivate
the tagging support. It accepts the three values on,
off and draft. When the key is used with any value
it loads the tagpdf package and all modules from
the testphase=latest set. tagging=off deactivates
in the class/before hook the tagging commands.
tagging=draft leaves the tagging commands active and
preserves warnings and errors from the tagging but it
deactivates the writing of the structure tree at the end
of the compilation. This can save time when drafting a
longer document.

The tagging-setup key allows to configure the
tagging. It accepts as value all keys that can also be
used in \tagpdfsetup, for example the math/setup
key described below. It knows the key modules, that
allows to overwrite the set of loaded modules and the key
extra-modules, that allow to load experimental modules
that aren’t in the latest set yet. The tagging-setup
key implies tagging=on, i.e., if the key is used it is not
necessary to also set the tagging key unless you want
to turn tagging off or set it to draft.

With these new keys a standard setup could look like
this:

\DocumentMetadata{
pdfstandard={UA-2,A-4f},
tagging=on,
tagging-setup=

{math/setup=mathml-SE,
extra-modules=verbatim-alt}

}

New value latest for testphase key
With the new keys for enabling tagging the use of the
testphase key is now of minor importance and mainly of
interest for developers and for backwards compatibility.

With this release it also supports the value latest.
This will load all modules that we recommend so that
it is not necessary to specify a long list of individual
modules. The list of loaded modules will be adjusted as

2Production ready as long as one uses only compatible packages
and classes as listed in the tables at https://latex3.github.io/
tagging-project/tagging-status/.

–3

https://latex3.github.io/tagging-project/tagging-status/
https://latex3.github.io/tagging-project/tagging-status/

needed when the project progresses. For reference, it is
also written to the log.

Setting up math tagging
With the LuaTEX engine there are now various
options for accessible math described in full detail in
latex-lab-math.pdf. To simplify the setup a new key
math/setup can be used in the document preamble
that accepts a comma list with the values mathml-SE
(add MathML structure element), mathml-AF (attach
MathML associated file) or tex-AF (attach the TEX
source).

The use of $$...$$ for displays math
In LATEX using the plain TEX method $$...$$ to mark
up a display math formula is not officially supported
because it produces a fixed visual result that it not
receptive to style changes such as the fleqn option.
Instead, the recommended way is to use \[... \] or
the displaymath environment. However, many users
used this input method in their documents, so we do
our best to support it when accessible PDFs are to be
produced; but one should be aware that it has some
limitations.

In contrast, using $$ in environment definitions
for special math environments (like those defined in
amsmath) makes it impossible to use such environments
in documents that are tagged. Therefore, the kernel now
contains these two commands: \dollardollar@begin
and \dollardollar@end. These new commands must be
used by packages and classes to specify where a display
math formula starts and ends: their use is essential in
order to make the package or a class compatible with
tagging and allowing it to be used when producing
accessible documents.

Package and class developer can very easily prepare
their code in this respect by using
\providecommand\dollardollar@begin{$$}
\providecommand\dollardollar@end{$$}

and replacing every usage of $$ with the appropri-
ate start or end command. The addition of these
\providecommand lines to classes and packages ensures
that they will work with older LATEX kernels.

Fixing the spacing after display math
When LATEX produces an accessible (tagged) PDF it has
to add structure data into the PDF to mark (i.e., tag)
individual elements. If the pdfTEX engine is used this
has to be done with the help of \pdfliterals which
are whatsit nodes like \special or \write. This means
that they should be added only in places, where these
extra nodes are not affecting the spacing—TEX can’t,
for example, look backwards past such a whatsit node so
consecutive spaces that are normally collapsed into one,
suddenly appear both, if such a node separates them.

The situation is especially complicated with displays
math formulas, because there TEX adds penalties
and spaces with low-level procedures, that are not
directly accessible from the macro level, and the tagging
structures have to appear somewhere in the middle of
that to ensure that the formula and the PDF structures
are not separated by page break. Because of this
it is necessary to use some fairly complex methods
(essentially disable TEX’s mechanisms and reprogram
them on the macro level) to get the structure data in
the right places.

Our first attempt in doing that was slightly faulty and
resulted in some cases in an extra space (an additional
\parskip space when there shouldn’t be one). This has
now corrected and the gymnastics to achieve this are
rather an “interesting” study in obfuscated TEX coding.

In LuaTEX the situation is much better because there
the structures can be added later when the formula pro-
cessing has already finished. (tagging-project issue 762)

Local changes to the spacing around display math
todo: combine text with previous entry

Due to TEX’s low-level handling of display math,
it is very difficult to attach TEX code for tagging to
such display math formulas whilst ensuring that such
code always stays on the same page as the formula,
i.e., code has to be attached after the the end of the
display, but before TEX places a \postdisplaypenalty
onto the page. There is, however, no way to inject
code in the middle of this TEX process, which is why
we have to resort to complex gymnastics: we set
\postdisplaypenalty locally to 10000 and also make
sure that \belowdisplayskip when used by TEX is
negative. Then we let TEX do its job and afterwards
regain control via \aftergroup and insert the tagging
code. Finally, we add the real \postdisplaypenalty
and a corrected space.

With our first implementation of this approach
it was not possible for a user to add an explicit
\postdisplaypenalty or a \belowdisplayskip setting
inside the formula. We have now slightly altered our
algorithm making such user adjustments possible again.

(tagging-project issue 809)

New or improved commands
Socket and plug conditionals
It is sometimes necessary/helpful to know if a particular
socket or plug exists (or is assigned to a certain
socket) and based on that take different actions.
With the current release we added conditionals, such
as \IfSocketExistsTF, to support such scenarios.
Corresponding L3 programming layer conditionals are
also provided. (github issue 1577)

–4

https://github.com/latex3/tagging-project/issues/762
https://github.com/latex3/tagging-project/issues/809
https://github.com/latex3/latex2e/issues/1577

Accessing the current counter
Counter commands such as \alph, \stepcounter,
may now have the argument * to denote the current
counter (as used by \label). This is compatible with
the package enumitem use of \alph* in item labels but
is generally available. Not all commands accept *, for
example \counterwithin and \counterwithout require
counter names as before. (github issue 1632)

Collecting environment bodies verbatim
The mechanisms in ltcmd (“xparse”) offer a powerful way
to specify a range of types of document command and
environment syntax. This includes the ability to collect
the entire body of an environment, for cases where
treating it as a standard argument is useful. It is also
possible in ltcmd to define arguments which grab their
content verbatim, another specialist argument form. To
date, however, it was not possible to combine these two
ideas.

In this release, a new specifier c is introduced, which
collects the body of an environment in a verbatim-like
way. Like the existing +v specification, each separate line
is marked by the special \obeyedline marker, which
as standard issues a normal paragraph. Thus, this new
specifier is usable both for typesetting and collecting file
contents (the letter c indicates “collect code”). Thus,
we may use
\NewDocumentEnvironment
{MyVerbatim}{!O{\ttfamily} c}
{\begin{center}#1 #2\end{center}} {}

\begin{MyVerbatim}[\ttfamily\itshape]
% Some code is shown here
$y = mx + c$

\end{MyVerbatim}

to obtain
% Some code is shown here

$y = mx + c$

Code improvements
Refinement of \MakeTitlecase
We introduced \MakeTitlecase as a late addition to
the June 2022 release, making use of the improved case
code in expl3. Unlike upper and lowercasing, making
text titlecased is more tricky to get right: this can apply
either to the whole text or on a word-by-word basis.

A subtle issue was reported against the expl3 repository
(https://github.com/latex3/latex3/issues/1316)
which links to how we deal with the question of case
changing “words” but shows up if you titlecase text
stored in a command.

We have looked again at how to implement
\MakeTitlecase to be as predictable as possible,
and have made a change in this release. The command

no longer tries to lowercase text before applying title-
casing, and gives the correct result for text stored in
commands.

We have also added an additional key to the optional
argument to \MakeTitlecase which allows the user
to decide if this will apply only to the first word (the
default) or to all words.

Tab character as a special
In LATEX News 38, we described the extension of \verb,
etc., to cover the tab character as equivalent to a
space. We have now added tabs to the standard list of
characters covered by \dospecials. This allows them
to be used in for example a v specification document
command without additional steps.

Refinement of v specification category codes
Work on verbatim argument handling has highlighted
that storing all characters as “other” (category code 12)
when using a v specification in ltcmd was problematic.
We have now revised this to capture letters with their
original cateogry code.

Logging text command and symbol declarations
For thirty years the documentation claimed that
\DeclareTextSymbol, \DeclareTextCommand, and
friends log their changes, but in contrast to their math
counterparts they never did. This has now finally
changed. (github issue 1242)

Improvement of the NFSS font series management
LATEX’s font selection mechanism (NFSS) supports
9 weight levels, from ultra-light (ul) to ultra-bold (ub),
and also 9 width levels, from ultra-condensed (uc) to
ultra-expanded (ux). With the February 2020 release,
this mechanism was extended so that requests to set the
weight or the width attributes of the series are combined
in a sensible way [3]: E.g., if you typeset a paragraph in a
condensed face using \fontseries{c}\selectfont and
then use \textbf inside the paragraph, a bold condensed
face is selected. The combination of the series values is
done by consulting a simple lookup table whose entries
are defined with \DeclareFontSeriesChangeRule.

Until now, this lookup table was missing some entries,
especially with regard to rarely used width values. In
such cases, the series values were not combined as ex-
pected. This has been fixed (thanks to Maurice Hansen)
by adding numerous \DeclareFontSeriesChangeRule
entries so that the full range of weights (from ul to
ub) and widths (from uc to ux) is now supported when
combining font series values. (github issue 1396)

Supporting the ssc and sw shapes
The ssc shape (spaced small capitals) is supported in
LATEX through the commands \sscshape and \textssc.
However, until this release there where no font shape

–5

https://github.com/latex3/latex2e/issues/1632
https://github.com/latex3/latex3/issues/1316
https://github.com/latex3/latex2e/issues/1242
https://github.com/latex3/latex2e/issues/1396

change rules defined for this admittely seldom available
shape, so that
\sscshape\itshape

changed unconditionally to it (italics) rather than to
sscit (spaced small italic capitals). Thanks to Michael
Ummels, the missing declarations have now been added
so that shape changes in font families that support
spaced small capitals work properly.

At the same time we took the opportunity to improve
the fallbacks for the sw (swash) shapes, which are
accessible through the commands \swshape or \textsw.
If an sw combination is not available, the rules now
try to replace sw with it rather than falling back to n.

(github issue 1581)

Improving the handling of \label, \index, and \glossary
In standard LATEX, the three commands \label, \index,
and \glossary take exactly one mandatory argument,
e.g., \index{⟨entry⟩}. In some extension packages, for
example, in index or cleveref, they are augmented to
accept an optional argument and in case of \index also
a star form. These extensions conflict with LATEX’s way
of disabling the commands within the table of contents
or within the running header, because there, they were
redefined to expect just a mandatory argument and
then do nothing. We have now changed that behavior so
that the redefinitions in these places accept an extended
syntax.

(github issue 311)

Tracing lost characters
In LaTeX News 33 [4] we announced that \tracingall
changes \tracinglostchars to an error condition.
This change has been reverted and \tracingall and
\tracingnone no longer alter \tracinglostchars but
retain its current setting.

The default value used in LATEX is set so that lost
character information is written to the log and terminal.
Users may wish to make this into an error, in which case
they should set the value to 5 (not 3); this works in all
engines.

(github issue 1687)

Always use the extended pool
As the kernel has grown, the use of registers has
expanded to the point where rolling back to the classical
register allocation approach (using only 256 registers)
is no longer viable. We have therefore adjusted the
rollback code so that even when requesting a pre-2015
LATEX, the extended pool remains in use.

A version of \input for expansion contexts
The LATEX definition of \input cannot be used in places
where TEX is performing expansion: the classic example
is at the start of a tabular cell. There are a number of

reasons for this: the key ones are that \input records
which files are read and provides pre- and post-file
hooks.

To support the need to carry out file input in expansion
contexts, we have now added \expandableinput: this
skips recording the file name and does not apply any
file hooks, but otherwise behaves like \input. In
particular, it still uses \input@path when doing file
lookup (contrasting with the TEX primitive, which
is internally available for programmers as \@@input).

(github issue 514)

Bug fixes
Fix the use of localmathalpabets
In 2021 we introduced a method to overcome the
problem that classic TEX engines (but not the Unicode
engines) have only a limited number of math alphabets
available that got easily fill up simply by loading math
font packages, even if their symbols got used only
occasionally. The idea was to avoid allocating all math
alphabets globally, but instead allow a number of them
(defined by counter localmathalpabets) to vary from
one formula to the next. This way different formulas can
make use of different alphabets and chances are much
higher that the processing a complex the document
succeeds. See [5] for details.

Unfortunately, the approach taken failed in some
cases of nested formulas with the result that the wrong
symbol glyphs were used. This has now been corrected.

(github issues 1101 1028)

docstrip: Error if .ins file is problematical
If a file to generate had the same name as a preamble
declared with \declarepreamble the preamble definition
was overwritten because the macro used to store it was
reused for denoting the output stream. The same
problem happened with postambles declared with
\declarepostamble. This is now detected and an error
message is issued. To circumvent the issue in that case,
simply use a different macro name for the preamble or
postamble. (github issue 1150)

Prevent cmd hook from defining an undefined command
Using \AddToHook{cmd/FOO/...} when the command
\FOO was undefined resulted in the command becoming
\relax. Thus, if used, it no longer raised an “Undefined
control sequence” error but silently did nothing. This
behavior has been corrected and if the command \FOO
isn’t defined later, e.g., in a package, it now raises an
error if it is used in the document. (github issue 1591)

Process global options once per package
In 2022, we introduced key–value (keyval) option
processing in the kernel [6]. This also added the idea
that keys could have scope: load-only, preamble-only

–6

https://github.com/latex3/latex2e/issues/1581
https://github.com/latex3/latex2e/issues/311
https://github.com/latex3/latex2e/issues/1687
https://github.com/latex3/latex2e/issues/514
https://github.com/latex3/latex2e/issues/1101
https://github.com/latex3/latex2e/issues/1150
https://github.com/latex3/latex2e/issues/1591

and general use. However, we overlooked that an
option given globally (in the optional argument to
\documentclass) would be repeatedly processed and
could therefore lead to spurious warnings. This has now
been corrected: global options are seen exactly once per
package by the keyval-based option handling system.

(github issue 1619)

Make \label, \index, and \glossary truely invisible in
running headers
LATEX has had a bug since its initial implementation,
in that it correctly ignored any \label, \index, or
\glossary appearing in a mark, but neglected to handle
the spaces around the command. As a result one could
end up with two spaces in the running header when
only one should be present. This was detected as part
of working on issue 311 and has now been corrected.

(github issue 1638)

Correct the float placement algorithm
When floats are added to the current or next page, LATEX
makes several tests to find an area that can receive the
float. One of these tests calculates how much space is
already used on the page and how much additional space
is needed to place the float in a particular area. This
means that it looks not only at the height of the float
but also at the values from \intextsep (for h floats) or
\textfloatsep and \floatsep (for t and b floats). The
resulting space requirement is then stored in an internal
variable and compared to the space still available on the
page.

If the test fails, the algorithm tries the next area.
Unfortunately, it was reusing the value in that internal
variable as the starting point for the next test without
removing the added space for the float separation
(\intextsep, \floatsep, or \textfloatsep). Thus
the comparison was being made with the wrong value
(i.e., too high); therefore the test may have incorrectly
concluded that a float doesn’t fit, even though in fact it
did.

This has now been corrected. (github issue 1645)

Correct \CheckEncodingSubset
In [7] and again in [9] we suggested that font maintainers
should place an appropriate \DeclareEncodingSubset
declaration into each ts1⟨family⟩.fd file so that it is tied
to the font definition and available if a font family is ex-
plicitly selected through \fontfamily{⟨name⟩} instead
of using some font support package. Unfortunately,
doing this could result in incorrectly selected glyphs
when the font encoding subset setting was evaluated
before the .fd file was loaded (because then subset
9 was assumed). This has now been corrected and
\CheckEncodingSubset now first loads the .fd file, if
necessary. (github issue 1669)

Avoid problems with page breaks in the middle of a
verbatim-like environment
If a page break occurs in the middle of an environment
that sets up special \catcode settings, e.g., a verbatim
environment, then these settings will remain active
while the output routine builds the page. This is
normally harmless, because the material used for the
page has already been tokenized earlier, so that the
\catcode changes do not matter. However, in special
circumstances tokenization can happen during that
time, for example, if the header material reads in a file,
or if it contains a command that uses \scantokens and
this way retokenizes some material using the verbatim
settings.

This has now been fixed and LATEX explicitly resets
the \catcode values to their default settings when
entering the output routine. Furthermore, packages
that make changes to the tokenization that go beyond
what verbatim does can use the newly introduced
hook build/page/reset to add their own resets to
the output routine processing. This hook is evaluated
after LATEX has done its reset, so it is also possible
to overwrite LATEX’s behavior if that ever becomes
necessary. (github issue 600)

Fully expand the arguments of \counterwithin and
\counterwithout
The arguments of \counterwithin and
\counterwithout are counter names and are used
reset one counter if the the other is stepped. They also
define the representation of that counter, e.g.,
\renewcommand\thesection

{\thechapter.\arabic{section}}

However, if one of the counters was implicitly given, e.g.,
\newcommand\sectioncounter{section}
\counterwithin{\sectioncounter}{chapter}

we ended up with definitions such as
\renewcommand\thesection

{\thechapter.\arabic{\sectioncounter}}

which could lead to strange results if \sectioncounter
would change later on. This has been corrected and the
arguments are fully expanded when the declaration is
made. (github issue 1675)

Ensure that late \write commands aren’t lost
A non-\immediate \write command that is used
after the final page has been shipped out is never
written because it waits for another \shipout to
happen. After the last page has been shipped out,
we therefore force further \write calls to be always
\immediate; this ensures that they get written even
though we are not going to ship out any more pages.
This change of behavior is implemented just before the

–7

https://github.com/latex3/latex2e/issues/1619
https://github.com/latex3/latex2e/issues/1638
https://github.com/latex3/latex2e/issues/1645
https://github.com/latex3/latex2e/issues/1669
https://github.com/latex3/latex2e/issues/600
https://github.com/latex3/latex2e/issues/1675

enddocument/afterlastpage hook because that hook
may contain such \write commands. (github issue 1689)

Documentation
Clarifying space handling of \textcolor
In contrast to other \text-commands like \textbf
or \textrm, the command \textcolor gob-
bles spaces at the start of its argument, so
Hello\textcolor{red}{␣World} will output
HelloWorld. There are technical as well as compati-
bility reasons for this, so the behavior will not change.
This has now been clarified in the documentation.

(github issue 1474)

Changes to packages in the amsmath category
\numberwithin is now an alias for \counterwithin
The amsmath package offers a \numberwithin declara-
tion to specify that a counter should be reset when some
other counter is stepped. This is a restricted version
of the more general kernel command \counterwithin
which was introduced in the LATEX kernel in 2018 and
extended in 2021 [5]. With the current release we have
made \numberwithin an alias for the more powerful
\counterwithin and suggest that the latter command
is used in new documents. (github issue 1673)

Changes to packages in the graphics category
More accessibility keys in graphicx
The \includegraphics command now accepts
actualtext and artifact keys, which by default
do nothing but are used by the tagging code to provide
an ActualText string and a boolean flag that the graphic
is an artifact. (github issue 1552)

Changes to packages in the tools category
multicol: Full support for extended marks
In 2022 we introduced a new mark mechanism for
LATEX [6]. However, the initial implementation only
covered the standard output routine of LATEX. As a
result the extended marks were not available within
columns produced with the multicol package (where
they would be especially useful). This limitation has
finally been lifted and the new mechanism is now fully
supported. (github issue 1421)

array: Improve preamble setup code for p and friends
While the preamble of a tabular or array is being
built the arguments to p, m, or b columns got expanded
several times. This is normally harmless because that
argument contains usually just a dimension. However,
in a case like p{\fpeval{15}pt} this resulted in an
error, because \fpeval was expanded a few times,
but not often enough to result in a single number.

This has now been corrected and the argument is not
expanded at all to allow for such edge cases as well as
the extension available with the calc package, such as
p{\widthof{AAAAAA}} (the latter was possible before
but needed to be taken into account while the correction
was implemented). (github issue 1585)

varioref: How to make \reftexfaceafter, etc. empty
In the case that one wants to make a command such
as \reftextfaceafter produce nothing, one has to get
rid of the space that is automatically placed in front of
the command. This can be done by simply defining the
command to remove it, e.g.,
\renewcommand\reftextfaceafter{\unskip}

The varioref package does not test if such strings are
empty, because that would require a lot of tests each
time \vref is used, and it would nearly always find that
the text is not empty. However, as shown above, the
solution for this uncommon case is simple, and it is now
explicitly documented in the package documentation.

(github issue 1622)

Changes to files in the L3 programming layer
Work on the L3 programming layer continues in parallel
with development of the LATEX kernel. Of note for
developers is that we have integrated more code into the
main l3kernel bundle, and therefore into the functionality
available automatically within LATEX. Most notably,
l3benchmark, which provides tools for checking code
performance, is now part of l3kernel.

References
[1] Leslie Lamport. LATEX: A Document Preparation

System: User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, 2nd edition,
1994. ISBN 0-201-52983-1. Reprinted with
corrections in 1996.

[2] LATEX Project Team. LATEX 2ε news 1–41. June,
2025. https://latex-project.org/news/
latex2e-news/ltnews.pdf

[3] LATEX Project Team. LATEX 2ε news 31. February
2020. https://latex-project.org/news/
latex2e-news/ltnews31.pdf

[4] LATEX Project Team. LATEX 2ε news 33. June 2021.
https://latex-project.org/news/
latex2e-news/ltnews33.pdf

[5] LATEX Project Team. LATEX 2ε news 34. November
2021. https://latex-project.org/news/
latex2e-news/ltnews34.pdf

[6] LATEX Project Team. LATEX 2ε news 35. June 2022.
https://latex-project.org/news/
latex2e-news/ltnews35.pdf

–8

https://github.com/latex3/latex2e/issues/1689
https://github.com/latex3/latex2e/issues/1474
https://github.com/latex3/latex2e/issues/1673
https://github.com/latex3/latex2e/issues/1552
https://github.com/latex3/latex2e/issues/1421
https://github.com/latex3/latex2e/issues/1585
https://github.com/latex3/latex2e/issues/1622
https://latex-project.org/news/latex2e-news/ltnews.pdf
https://latex-project.org/news/latex2e-news/ltnews.pdf
https://latex-project.org/news/latex2e-news/ltnews31.pdf
https://latex-project.org/news/latex2e-news/ltnews31.pdf
https://latex-project.org/news/latex2e-news/ltnews33.pdf
https://latex-project.org/news/latex2e-news/ltnews33.pdf
https://latex-project.org/news/latex2e-news/ltnews34.pdf
https://latex-project.org/news/latex2e-news/ltnews34.pdf
https://latex-project.org/news/latex2e-news/ltnews35.pdf
https://latex-project.org/news/latex2e-news/ltnews35.pdf

[7] LATEX Project Team. LATEX 2ε news 36. November
2022. https://latex-project.org/news/
latex2e-news/ltnews36.pdf

[8] LATEX Project Team. LATEX 2ε news 38. November
2023. https://latex-project.org/news/
latex2e-news/ltnews38.pdf

[9] LATEX Project Team. LATEX 2ε news 39. June 2024.
https://latex-project.org/news/
latex2e-news/ltnews39.pdf

[10] LATEX Project Team. LATEX 2ε news 40. November
2024. https://latex-project.org/news/
latex2e-news/ltnews40.pdf

[11] Frank Mittelbach, LATEX Project Team.
The ltmarks.dtx code. June 2025.
https://latex-project.org/help/
documentation/ltmarks-doc.pdf

[12] LATEX Project Team. The LATEX 2ε Sources. June
2025. https://latex-project.org/help/
documentation/source2e.pdf

–9

https://latex-project.org/news/latex2e-news/ltnews36.pdf
https://latex-project.org/news/latex2e-news/ltnews36.pdf
https://latex-project.org/news/latex2e-news/ltnews38.pdf
https://latex-project.org/news/latex2e-news/ltnews38.pdf
https://latex-project.org/news/latex2e-news/ltnews39.pdf
https://latex-project.org/news/latex2e-news/ltnews39.pdf
https://latex-project.org/news/latex2e-news/ltnews40.pdf
https://latex-project.org/news/latex2e-news/ltnews40.pdf
https://latex-project.org/help/documentation/ltmarks-doc.pdf
https://latex-project.org/help/documentation/ltmarks-doc.pdf
https://latex-project.org/help/documentation/source2e.pdf
https://latex-project.org/help/documentation/source2e.pdf

	Introduction
	Replacement for the legacy mark mechanism
	Configurable output routine
	News from Tagged PDF project
	Socket declarations for tagging support
	Promoting PDF 2.0
	Extended support for pictures
	New user keys to activate tagging
	New value latest for testphase key
	Setting up math tagging
	The use of $$...$$ for displays math
	Fixing the spacing after display math
	Local changes to the spacing around display math

	New or improved commands
	Socket and plug conditionals
	Accessing the current counter
	Collecting environment bodies verbatim

	Code improvements
	Refinement of \MakeTitlecase
	Tab character as a special
	Refinement of v specification category codes
	Logging text command and symbol declarations
	Improvement of the NFSS font series management
	Supporting the ssc and sw shapes
	Improving the handling of \label, \index, and \glossary
	Tracing lost characters
	Always use the extended pool
	A version of \input for expansion contexts

	Bug fixes
	Fix the use of localmathalpabets
	docstrip: Error if .ins file is problematical
	Prevent cmd hook from defining an undefined command
	Process global options once per package
	Make \label, \index, and \glossary truely invisible in running headers
	Correct the float placement algorithm
	Correct \CheckEncodingSubset
	Avoid problems with page breaks in the middle of a verbatim-like environment
	Fully expand the arguments of \counterwithin and \counterwithout
	Ensure that late \write commands aren't lost

	Documentation
	Clarifying space handling of \textcolor

	Changes to packages in the amsmath category
	\numberwithin is now an alias for \counterwithin

	Changes to packages in the graphics category
	More accessibility keys in graphicx

	Changes to packages in the tools category
	multicol: Full support for extended marks
	array: Improve preamble setup code for p and friends
	varioref: How to make \reftex... empty

	Changes to files in the L3 programming layer

