
preliminary draft, 20 Jul 2006 14:39 preliminary draft, 20 Jul 2006 14:39

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 20 Jul 2006 14:39 1001

Labelled diagrams in METAFONT

Alan Jeffrey

1 Diagrams in METAFONT

In TUGboat 11(4), Alan Hoenig described a method
of producing diagrams in METAFONT with labels
provided by TEX. His method relied on passing
information around via font dimensions. This is
a standard method of passing information from
METAFONT to TEX, but it has some drawbacks:

• There are only a limited number of font dimen-
sions available, and each label uses up two of
them.

• As METAFONT can only communicate with
TEX via font dimensions, each label has to be
assigned a font dimension, and it is difficult
for the correspondence between font dimensions
and labels to be kept automatically.

• Since TEX is providing the labels, and META-
FONT is providing the diagrams, the diagrams
have to be kept in a different file from the labels.

• There is no communication between TEX and
METAFONT, so METAFONT cannot change the
diagram depending on the size and shape of the
labels. This is rather inconvenient for diagrams
such as

a|b
a bb a

�
where the shape of the ovals depends on the size
of the contents.

Fired with enthusiasm by Alan’s talk at the Euro-
pean TEX Users Group meeting, I stole the best of
his ideas, and slightly modified them to produce a
simple METAFONT–TEX interface. This allows TEX
code to be embedded within a METAFONT program,
for example
begindiagram(2,30pt#,7pt#,2pt#);

hboxes(0);
pickup pencircle scaled 0.4pt;
.5[hboxl0,hboxr0] = (.5w,0);
draw hboxbl0..hboxtl0

---hboxtr0..hboxbr0
---cycle;

setbox0 "$g \circ h$";
enddiagram;

produces the diagram g ◦ h�. The new facilities
used are:

begindiagram(2,30pt#,7pt#,2pt#) starts off dia-
gram 2, which is 30pt wide, 7pt tall and 2pt
deep.

hboxes(0) says that the only label we’ll be us-
ing is number 0. This has a similar syntax
to labels, so you can say hboxes(1,2,7) or
hboxes(3 upto 9).

hboxl0 is the left point of label number 0, at the
baseline. Similarly, hboxbl0 is the bottom left,
hboxtr0 is top right, and so on. In this exam-
ple, these points are

g ◦ h

hboxtl0 hboxtr0

hboxr0

hboxbr0hboxbl0

hboxl0�
You can also use the numeric variables hboxwd0,
hboxht0 and hboxdp0 which are the width,
height and depth of label 0, and hboxwd#0,
hboxht#0 and hboxdp#0 which are their sharp
equivalents.

setbox0 "$g \circ h$" sets label number 0 to be
g ◦ h.

enddiagram finishes it all off.

The rest of the diagram is standard METAFONT.
Within a TEX document you can use

\diagramfile{dmfexmpl} to load in the diagrams
kept in dmfexmpl.mf,

\diagramf{2} to get the second diagram, and

\everylabel which is a token register added to ev-
ery label, in the same fashion as \everymath.
It should be set before saying \diagramfile.

These commands behave well inside groups, so if you
say
\diagramfile{foo}
{\diagramfile{baz}\diagramf{1}}
\diagramf{2}

you get the first diagram from baz and the second
diagram from foo.

2 How it all works

In the diagramf package, TEX and METAFONT

communicate by auxiliary files, in a similar fash-
ion to the MG TEX-PostScript interface (‘Problems
on the TEX/PostScript/graphics interface’, TUG-
boat 11(3)).

preliminary draft, 20 Jul 2006 14:39 preliminary draft, 20 Jul 2006 14:39

1002 preliminary draft, 20 Jul 2006 14:39 TUGboat, Volume 0 (2001), No. 0

When you run METAFONT on dmfexmpl.mf it
reads in dmfexmpl.dim, which specifies the dimen-
sions of all the boxes. In our example, part of
dmfexmpl.dim is
wd#[2][0] := 20.3344pt#;
ht#[2][0] := 6.94444pt#;
dp#[2][0] := 1.94444pt#;

So, in diagram 2, label 0 has width 20.3344pt,
height 6.94444pt and depth 1.94444pt. From this,
METAFONT calculates where to put each label, and
outputs a .dia file, containing TEX code. For ex-
ample dmfexmpl.dia contains1:
\newdiagram{2}
\diagramlabel{0}{4.88908pt}{0pt}
$g \circ h$
\enddiagramlabel
\diagramchar{2}
\endnewdiagram

This tells TEX that diagram number 2 contains la-
bel 0 at coordinates (4.88908pt, 0pt) consisting of
$g \circ h$. The diagram is character number 2
in the dmfexmpl font.

Similarly, when TEX encounters the instruction
\diagramfile{dmfexmpl} it loads in dmfexmpl.dia
and produces dmfexmpl.dim. And so we can have
our METAFONT cake and eat it in TEX.

Well, almost. Unfortunately for all these grand
ideas, METAFONT has no file-handling capabilities
at all! The only files METAFONT generates are the
.tfm, .gf and .log files.

This is rather annoying, but fortunately we can
steal an idea from Section 7 of the Dirty Tricks ap-
pendix in The METAFONTbook. There, Knuth uses
the .log file as a means of communicating between
METAFONT jobs. Similarly, we use the .log file as
a way of sending messages to TEX. Our texoutput
macro is defined
def texoutput text t =

for s = t:
message s & "% diagramf";

endfor
message ""

enddef;

So texoutput "Fred", "Ethel" produces the out-
put
Fred% diagramf
Ethel% diagramf

You can then use your favourite file-handling utility
to filter the .log file, keeping only the lines contain-
ing % diagramf. On my UNIX set-up, for example,
I have an alias diagramf foo which expands out to

1 Actually, each line ends with % diagramf.

touch foo.dim
mf foo
grep "% diagramf" foo.log > foo.dia
echo Labels written on foo.dia.

The crucial line in this is the grep, which takes all
the lines from foo.log containing % diagramf and
puts them in foo.dia.

And so we’ve achieved labelled diagrams in
METAFONT. The diagramf package is free software,
and is available from the Aston archive.

3 Acknowledgements

The inspiration, and many of the original ideas, for
this article came from Alan Hoenig’s talk on the
same subject at Cork. I’d also like to thank Jeremy
Gibbons and Damian Cugley for comments, advice
and allowing me to bounce ideas off them.

� Alan Jeffrey
School of Cognitive and

Computing Sciences
University of Sussex
Brighton BN1 9QH
UK
alanje@cogs.sussex.ac.uk

c© 1990 Alan Jeffrey

