REFERENCE DATA

for

100

8. V.

RADIO ENGINEERS

second edition

Federal Telephone and Radio Corporation an associate of International Telephone and Telegraph Corporation 67 Broad Street • New York 4, N.Y.

Copyright 1946 by Federal Telephone and Radio Corporation

Second Edition Printed in the U.S.A. by J. J. Little & Ives Co., N. Y.

199

譱

14 Exc.

Foreword

Widespread acceptance of the four printings of the first edition of Reference Data for Radio Engineers prompted this larger and improved second edition. Like its predecessor, it is presented by the Federal Telephone and Radio Corporation as an aid in the fields of research, development, production, operation, and education. In it will be found all the material that proved so useful in the first edition along with much additional data—some the result of helpful suggestions from readers, others stemming from rapid advances in the art, and still others now made possible by declassification of many war developments.

While the general arrangement remains unchanged, the present edition has been greatly enlarged and a subject index included. Chapters on transformers and room acoustics have been added. The material on radio propagation and radio noise has been revised. Because of their importance in television, in radar, and in laboratory technique, the data on cathode-ray tubes have been considerably expanded.

The section on electrical circuit formulas has been greatly enlarged; additions include formulas on T-II and Y- Δ transformations, amplitude modulation, transients, and curves and numerous formulas on selective circuits. The attenuator section contains comprehensive design formulas and tables for various types of attenuators. The number of mathematical formulas also has been considerably increased.

As revised, the wave-guide chapter includes equations for both rectangular and cylindrical guides plus illustrations of field distribution patterns. Several methods of coupling to the TE0.1 mode are illustrated. A table of standard rectangular wave guides and connectors, giving useful frequency range and attenuation, has been added. Design curves for the gain and beam width of rectangular electromagnetic horn radiators are included, and a simple formula for the gain of a paraboloid reflector is given. Many very helpful suggestions were received from the Armed Services.

Acknowledgment is made to Edward J. Content, consulting engineer, for his contribution of the chapter on room acoustics; its inclusion was made possible largely through the courtesy of the Western Electric Company in permitting the use of their engineering data. Acknowledgment also is due to I. E. Lempert, Allen B. Dumont Laboratories, Inc., for the descriptive material on cathode-ray tubes; and to Professor L. Brillouin of Harvard University for advice and suggestions on the wave-guide chapter.

In the compilation of this reference book, the cooperation of the following I.T. & T. associate companies was invaluable:

International Telecommunication Laboratories, Inc., New York, N. Y. E. M. Deloraine, president, and E. Labin, technical director

American Cable and Radio Corporation, New York, N. Y. Haraden Pratt, vice president and chief engineer

Standard Telephones and Cables, Ltd., London, England. C. E. Strong, chief engineer of radio division

International Telephone and Telegraph Corporation, New York, N. Y. George Lewis, assistant vice president, and H. P. Westman, associate editor of *Electrical Communication*.

Recognition for contribution of specific material:

Federal Telecommunication Laboratories, Inc., New York, N. Y.

H. Busignies, director, G. S. Burroughs, W. A. Cobb, S. Frankel, J. J. Glauber, D. D. Grieg, A. G. Kandoian, N. Marchand,* C. R. Muller, E. M. Ostlund, W. Sichak, L. D. Smullin, N. S. Tierney, A. R. Vallarrino, M. W. Wallace, A. J. Warner, and J. K. Whitteker

Federal Telephone and Radio Corporation, Newark, N. J. E. G. Ports, technical director of radio division, H. Baker, W. F. Bonner, C. L. Howk, W. W. Macalpine, G. T. Royden, and A. K. Wing

Mackay Radio and Telegraph Company, New York, N. Y. R. McSweeny, C. E. Scholz, and L. Spangenberg

International Standard Electric Corporation, New York, N. Y. J. C. Frick, G. H. Gray, and E. S. McLarn

H. H. Buttner, chairman

Radio Reference Book Committee

H. T. Kohlhaas, editor

Editor of Electrical Communication

F. J. Mann, assistant editor

Managing Editor of Electrical Communication

*Formerly of Federal Telecommunication Laboratories, Inc.

Contents

Chapter 1 — General information

Conversion factors
Fractions of an inch with metric equivalents
Miscellaneous data
Greek alphabet
Unit conversion table
Electromotive force—series of the elements
Position of metals in the galvanic series
Atomic weights
Centigrade table of relative humidity or percent of saturation
Atmospheric pressure chart
Weather data
Temperature extremes
Precipitation extremes
World temperatures
World precipitation
Principal power supplies in foreign countries
World time chart
Electromagnetic frequency spectrum
Radio frequency classifications
Wavelength vs frequency chart
Wavelength vs frequency formulas
Frequency tolerances
Frequency band widths occupied by the emissions
Tolerances for the intensity of harmonics of fixed, land, and broadcasting stations Classification of emissions
Relation between decibels and power, voltage, and current ratios

6 REFERENCE DATA FOR RADIO ENGINEERS

Chapter 2 — Engineering and material data

Copper wire table—standard annealed copper	
Copper wire table—English and metric units	
Solid copperweld wire-mechanical and electrical properties	
Standard stranded copper conductors—American wire gauge	
Machine screw head styles, method of length measurement	;
Standard machine screw data including hole sizes	;
Insulating materials	
Plastics: trade names	A
Wind velocities and pressures	
Temperature chart of heated metals	
Physical constants of various metals and alloys	
Thermocouples and their characteristics	
Melting points of solder	
Spark gap voltages	
Head of water in feet and approximate discharge rate	
Materials and finishes for tropical and marine use	
Torque and horsepower	

Chapter 3 — Audio and radio design

Resistors and capacitors—color code	
Resistors, fixed composition	
Standard color coding for resistors	
Capacitors, fixed mica dielectric	
Capacitors, fixed ceramic	
Inductance of single-layer solenoids	
Magnet wire data	
Reactance charts	
Impedance formulas	
Skin effect	
Network theorems	· · · · · · · · · · · · · · · · · · ·
Electrical circuit formulas	
Attenuators	
Filter networks	

Chapter 4—Rectifiers and filters

Typical rectifier circuit connections and circuit data	118
Rectifier filter design—ripple voltage vs LC for choke-input filters	120
Rectifier filter design—ripple voltage vs RC for capacitor-input filters	121

Chapter 5—Iron-core transformers and reactors

Major transformer types	122
Major reactor types	122
Temperature, humidity, and pressure effects	123
General limitations	123
Design of power-supply transformers	124
Round enameled copper wire data	

Chapter 6—Vacuum tubes

Nomenclature	
Coefficients	
Terminology	
Formulas	
Performance limitations	
Electrode dissipation data	
Filament characteristics	
Ultra-high-frequency tubes	· · · · · · · · · · · · · · · · · · ·
Cathode-ray tubes	
Army-Navy preferred list of electron tubes	

Chapter 7—Vacuum tube amplifiers

Classification	143
General design	143
Graphical design methods	
Classification of amplifier circuits	155
Cathode follower data	
Resistance-coupled audio amplifier design	158
Negative feedback	
Reduction in gain caused by feedback	160
Distortion	164

Chapter 8 — Room acoustics

General considerations for good room acoustics	165
Good acoustics—governing factors	165
Room sizes and proportions for good acoustics	165
Optimum reverberation time	166
Computation of reverberation time	169
Electrical power levels required for public address requirements	171
General	177

0 REFERENCE DATA FOR RADIO ENGINEERS

Chapter 9 — Wire transmission

Telephone transmission line data	179
Frequency allocation chart for type J and K carrier systems	185
Frequency allocation chart for carrier systems	
Frequency allocation and modulation steps in the L carrier system (coaxial cable)	188
Noise and noise measurement—wire telephony	189
Telegraph facilities	192
Telegraph printer systems	
Frequency of printing telegraph systems in cycles per second	192
Comparison of telegraph codes	193

Chapter 10—Radio frequency transmission lines

Formulas for uniform transmission lines	194
Surge impedance of uniform lines	
Transmission line data	
Transmission line attenuation due to load mismatch	
Impedance matching with shorted stub	199
Impedance matching with open stub	199
Impedance matching with coupled section	
Army-Navy standard list of radio-frequency cables	
Attenuation of standard r-f cables vs frequency	
Length of transmission line	
Attenuation and resistance of transmission lines at ultra-high frequencies	206

Chapter 11 — Wave guides and resonators

Propagation of electromagnetic waves in hollow wave guides	
Rectangular wave guides	
Circular wave guides	
Electromagnetic horns	
Resonant cavities	
Some characteristics of various types of resonators	
Additional cavity formulas	
Recommended rectangular wave guides	

Chapter 12—Radio propagation and noise

Propagation of medium and long waves	224
Propagation of short waves	220
Propagation forecasts for short waves	231
Propagation of very short waves	237
U-H-F path length and optical line-of-sight distance range of radio waves	238
Great circle calculations	
Time interval between transmission and reception of reflected signal	
Radio noise and noise measurement	

Chapter 13 — Antennas

250
252
252
253
253
254
258
260
261
261
263

Chapter 14—Non-sinusoidal and modulated wave forms

Relaxation oscillators	272
Electronic integration methods	274
Electronic differentiation methods	276
Fourier analysis of recurrent wave forms	277
Analysis of commonly encountered wave forms	281
Modulated wave forms	`288

Chapter 15 — Mathematical formulas

Mensuration formulas	291
Formulas for complex quantities	
Algebraic and trigonometric formulas	294
Approximations for small angles	296
Quadratic equation	296
Arithmetical progression	296
Geometrical progression	297
Combinations and permutations	297
Binomial theorem	
Maclaurin's theorem	297
Taylor's theorem	297
Trigonometric solution of triangles	298
Complex hyperbolic and other functions	
Table of integrals	300

Chapter 16 — Mathematical tables

Exponentials	303
Common logarithms of numbers and proportional parts	304
Natural trigonometric functions for decimal fractions of a degree	306
Logarithms of trigonometric functions for decimal fractions of a degree	310
Natural logarithms	
Hyperbolic sines	316
Hyperbolic cosines	317
Hyperbolic tangents	318
Multiples of 0.4343	318
Multiples of 2.3026	318
Bessel functions	319

100

. .

General information

Conversion factors

to convert into		multiply by	conversely multiply by			
			0.00()/ 10=5			
Acres	Square feet	4.356×10^{4}	2.296×10^{-6}			
Acres	Square meters	4,047	2.471×10^{-4}			
Ampere-hours	Coulomb	3,600	2.778×10^{-4}			
Amperes per sq cm	Amperes per sq inch	6.452	0.1550			
Ampere turns	Gilberts	1.257	0.7958			
Ampere turns per cm	Ampere turns per inch	2.540	0.3937			
Atmospheres	Mm of mercury @ 0° C	760	1.316×10^{-3}			
Atmospheres	Feet of water @ 4° C	33.90	2.950×10^{-2}			
Atmospheres	Inches mercury @ 0° C	29.92	3.342×10^{-2}			
Atmospheres	Kg per sq meter	1.033×10^{4}	9 .678 × 10 ^{−5}			
Atmospheres .	Pounds per sq inch	14.70	6.804×10^{-2}			
Btu	Foot-pounds	778.3	$1.285 imes 10^{-3}$			
Btu	Joules	1,054.8	9.480×10^{-4}			
Btu	Kilogram-calories	0.2520	3.969			
Btu	Horsepower-hours	3.929 X 10 ⁴	2,545			
Bushel s	Cubic feet	1.2445	0.8036			
Centigrade	Fahrenheit	$(C^{\circ} \times 9/5) + 32$	(F° — 32) 🗙 5/9			
Circular mils	Square centimeters	5.067 × 10 ⁶	1.973 × 10 ⁵			
Circular mils	Square mils	0.7854	1.273			
Cubic feet	Cords	7.8125 🗙 10 ³	128			
Cubic faet	Gallons (lig US)	7.481	0.1337			
Cubic feet	Liters	28.32	3.531×10^{-2}			
Cubic inches	Cubic centimeters	16.39	6.102×10^{-2}			
Cubic inches	Cubic feet	5.787 × 10 ⁻⁴	1,728			
Cubic inches	Cubic meters	1.639 × 10 ⁻⁵	6.102 × 10 ⁴			
Cubic inches	Gallons (lig US)	4.329×10^{-3}	231			
Cubic meters	Cubic feet	35.31	2.832×10^{-2}			
Cubic meters	Cubic yards	1.308	0.7646			
Degrees (angle)	Radians	1.745 × 10 ⁻²	57.30			
Dynes	Pounds	2.248×10^{-6}	4.448×10^{5}			
Ergs	Foot-pounds	7.367 × 10 ⁻⁸	1.356×10^{7}			
Fathoms	Feet	6	0.16666			
Feet	Centimeters	30.48	3.281×10^{-2}			
Feet of water @ 4° C	Inches of mercury @ 0° (1.133			
Feet of water @ 4° C	Kg per sq meter	304.8	3.281×10^{-8}			

Conversion factors

continued

to convert	into	multiply by	conversely multiply by
Feet of water @ 4° C	Pounds per sq foot	62.43	1.602×10^{-2}
Foot-pounds	Horsepower-hours	5.050×10^{-7}	$1.98 imes 10^{6}$
Foot-pounds	Kilogram-meters	0.1383	7 .233
Foot-pounds	Kilowatt-hours	$3.766 imes 10^{-7}$	2.655 × 10 ⁶
Gallons	Cubic meters	$3.785 imes 10^{-3}$	264.2
Gallons (lig US)	Gallons (lig Br Imp)	0.8327	1.201
Gauss	Lines per sq inch	6.452	0.1550
Grams	Dynes	980.7	$1.020 imes 10^{-3}$
Grams	Grains	15.43	6.481 × 10 ²
Grams	Ounces (avoirdupois)	3.527 × 10 ⁻²	28.35
Grams	Poundals	$7.093 imes 10^{-2}$	14.10
Grams per cm	Pounds per inch	$5.600 imes 10^{-3}$	178.6
Grams per cu cm	Pounds per cu inch	3.613×10^{-2}	27.68
Grams per sq cm	Pounds per sg foot	2.0481	0.4883
Hectares	Acres	2.471	0.4047
Horsepower (boiler)	Btu per hour	3.347×10^{4}	2.986 × 10 ⁻⁵
Horsepower (metric)	Btu per minute	41.83	2.390×10^{-2}
(542.5 ft-lb per sec)	•		
Horsepower (metric) (542.5 ft-lb per sec)	Foot-lb per minute	3.255 × 104	3.072 × 10 ^{−5}
Horsepower (metric) (542.5 ft-lb per sec)	Kg-calories per minute	10.54	9.485 × 10 ⁻²
Horsepower (550 ft-lb per sec)	Btu per minute	42.41	2.357 × 10 ²
Horsepower (550 ft-1b per sec)	Foot-Ib per minute	$3.3 imes 10^{4}$	$3.030 imes 10^{-5}$
Horsepower (metric) (542.5 ft-lb per sec)	Horsepower (550 ft-lb per sec)	0.9863	1.014
Horsepower (550 ft-lb per sec)	Kg-calories per minute	10.69	9.355 × 10 ^{−2}
Inches	Centimeters	2.540	0.3937
Inches	Feet	8.333 × 10 ⁻²	12
inches	Miles	1.578 × 10 ⁻⁵	6.336×10^{4}
Inches	Mils	1,000	0.001
Inches	Yards	2.778 × 10 ⁻²	36
Inches of mercury @ 0° C	Lbs per sq inch	0.4912	2.036
Inches of water @ 4° C	Kg per sq meter	25.40	3.937×10^{-2}
Inches of water	Ounces per sq inch	0.5781	1.729
Inches of water	Pounds per sq foot	5.204	0.1922
Joules	Foot-pounds	0.7376	1.356
Joules	Ergs	107	10-7
Kilogram-calories	Kilogram-meters	426.9	, 2.343 × 10
Kilogram-calories	Kilojoules	4.186	0.2389
Kilograms	Tons, long (avdp 2240 lb)	9.842 × 10 ⁻⁴	1,016
Kilograms	Tons, short (avdp 2000 lb)	1.102×10^{-3}	907.2
Kilograms	Pounds (avoirdupois)	2.205	0.4536
Kg per sq meter	Pounds per sg foot	0.2048	4.882
Kilometers	Feet	3.281	3.048 × 10-4
Kilowatt-hours	Btu	3,413	2.930 × 10 ⁻⁴
Kilowatt-hours	Foot-pounds	2.655 × 10 ⁶	3.766 × 10 ⁻⁷
Kilowatt-hours	Joules	3.6×10^{6}	2.778 × 10 ⁻⁷
Kilowatt-hours	Kilogram-calories	860	1.163 × 10 ⁻³
Kilowatt-hours	Kilogram-meters	3.671×10^{5}	2.724 × 10 ⁻⁶
Kilowatt-hours	Pounds carbon oxydized	0.235	4.26
Kilowatt-hours	Pounds water evaporated	3.53	0.283
VIOMOU-IOUI2	from and at 212° F		0.200

3

Conversion factors

continued

to convert	into	multiply by	conversely multiply by
Kilowatt-hours	Pounds water raised from 62° to 212° F	22.75	4. 395 × 10 ^{−2}
Liters	Bushels (dry US)	2.838 × 10 ⁻²	35.24
Liters	Cubic centimeters	1,000	0.001
Liters	Cubic meters	0.001	1,000
Liters	Cubic inches	61.02	1.639 × 10 ⁻²
Liters	Gallons (lig US)	0.2642	3 .785
Liters	Pints (liq US)	2.113	0.4732
$\log_e N$ or $1_n N$	Log ₁₀ N	0.4343	2.303
Lumens per sq foot	Foot-candles	` 1	1
Lux	Foot-candles	0.0929	10.764
Meters	Yards	1,094	0.9144
Meters per min	Knots (nautical mi per hour)	3.238 × 10 ⁻²	30.88
Meters per min	Feet per minute	3.281	0.3048
Meters per min	Kilometers per hour	0.06	16.67
Microhms per cm cube	Microhms per inch cube	0.3937	2.540
Microhms per cm cube	Ohms per mil foot	6.015	0.1662
Miles (nautical)	Feet	6, 080.27	1.645 X 10 ⁻⁴
Miles (nautical)	Kilometers	1.853	0.5396
Miles (statute)	Kilometers	1.609	0.6214
Miles (statute)	Miles (nautical)	0.8684	1.1516
Miles (statute)	Feet	5,280	1.894 × 10 ⁻⁴
Miles per hour	Kilometers per minute	2.682 🗙 10 ²	37.28
Miles per hour	Feet per minute	88	1.136 × 10 ⁻²
Miles per hour	Knots (nautical mi per hour)	0.8684	1.1516
Miles per hour	Kilometers per hour	1.609	0.6214
Pounds of water (dist)	Cubic feet	1.603 🗙 10⁻²	62.38
Pounds of water (dist)	Gallons	0.1198	8.347
Pounds per cu foot	Kg per cu meter	16.02	6.243×10^{-2}
Pounds per cu inch	Pounds per cu foot	1,728	5.787×10^{-4}
Pounds per sa foot	Pounds per sq inch	6.944 X 10 ⁸	144
Pounds per sq inch	Kg per sq meter	703.1	1.422×10^{-3}
Poundals	Dynes	1.383×10^{4}	7 .233 × 10 ^{−5}
Poundals	Pounds (avoirdupois)	3.108×10^{-2}	32.17
Sq inches	Circular mils	1.273×10^{6}	7.854×10^{-7}
Sq inches	Sq centimeters	6.452	0.1550
Sq feet	Sq meters	9.290 × 10 ⁻²	10.76
Sq miles	Sq yards	3.098 × 10 ⁶	3.228×10^{-7}
Sq miles	Acres	640	1.562×10^{-3}
Sq miles	Sq kilometers	2.590	0.3861
Sq millimeters	Circular mils	1,973	5.067×10^{-4}
Tons, short (avoir 2000 lb)	Tonnes (1000 kg)	0.9072	1.102
Tons, long (avoir 2240 lb)	Tonnes (1000 kg)	1.016	0.9842
Tons, long (avoir 2240 lb)	Tons, short (avoir 2000 lb)	1.120	0.8929
Tons (US shipping)	Cubic feet	40	0.025
Watts	Btu per minute	5.689 × 10 ⁻²	17.58 •
Watts	Ergs per second	10 ⁷	10 ⁻⁷
Watts Watts	Foot-lb per minute Horsepower (550 ft-lb per sec)	44.26 1.341 × 10−3	2.260 × 10 ⁻² 745.7
Watts ,	sec) Horsepower (metric) (542.5 ft-lb per sec)	1.360 × 10 ⁻ 8	735.5
Watts	Kg-calories per minute	1.433 × 10 ⁻²	69.77

	ons of inch	decimals of an inch		fractions of an inch		decimals of an inch	millimeters
	14	.0156	0.207		997		1
1/32	1/64	.0313	0.397 0.794	17/	33/64	.5156	13.097
732	3/	.0469		17/32	957	.5313	13.494
17	3⁄64		1.191	0/	⁸⁵ /64	.5469	13.891
1/16	5/	.0625	1.588	⁹ ⁄16	07/	.5625	14.288
8/	5/64	.0781	1.984	10/	37/64	.5781	14.684
³∕32	7/	.0938	2.381	19/32	80.4	.5938	15.081
	7⁄64	.1094	2.778		³⁹ ⁄64	.6094	15.478
1/8 .		.1250	3.175	5⁄8		.6250	15.875
- /	%4	.1406	3.572		41/64	.6406	16.272
5/32	1	.1563	3.969	21/32		.6563	16.669
	11/64	.1719	4.366		43/64	.6719	17.066
3/16		.1875	4.763	11/16		.6875	17.463
_	13/64	.2031	5.159	1	45/64	.7031	17.859
$\frac{7}{32}$.2188	5.556	23/32		.7188	18.256
	15/64	.2344	5.953		47/64	.7344	18.653
1/4		.2500	6.350	3/4		.7500	19.050
	17/64	.2656	6.747	1.0	4%4	.7656	19.447
9/32		.2813	7.144	25/32	1	.7813	19.844
	1%4	.2969	7.541	-	51/64	.7969	20.241
5/16		.3125	7.938	13/16		.8125	20.638
	21/64	.3281	8.334		⁵³ ⁄64	.8281	21.034
11/32		.3438	8.731	27/32		.8438	21.431
	23/64	.3594	9.128	. 02	55/64	.8594	21.828
3⁄8		.3750	9.525	7/8		.8750	22.225
	25/64	.3906	9.922	/0	57/64	.8906	22.622
13_{32}		.4063	10.319	²⁹ / ₃₂		.9063	23.019
	27/64	.4219	10.716	1 04	⁵⁹ 64	.9219	23.416
7⁄16		.4375	11.113	15/16	104	.9375	23.813
. 10	2964	.4531	11.509	10	61/64	.9531	24.209
15/32	/ 1/1	.4688	11.906	31/32	/04	.9688	24.606
× 94	\$1/64	.4844	12.303	/ 32	6364	.9844	25.003
1/2	- 04	.5000	12.700		×04	1.0000	25.400

Fractions of an inch with metric equivalents

Miscellaneous data

1 cubic foot of water at 4° C (weight)	62.43 lb
1 foot of water at 4° C (pressure)	0.43352 lb per sq in
Velocity of light in vacuum	186,284 mi per sec
Velocity of sound in dry air at 20° C	1129 ft per sec
Degree of longitude at equator	69.17 miles
Acceleration due to gravity, g, at sea-level, 40° N	4 · · · · · · · · · · · · · · · · · · ·
Latitude (NY)	32.1578 ft per sq sec
√2g	8.02
1 inch of mercury	1.133 ft water
1 inch of mercury	0.4912 lb per sq in
1 radian	$180^{\circ} \div \pi = 57.3^{\circ}$
360 degrees	2π radians
π	3.1416
Sine 1'	0.0002929
Side of square0.	707 diagonal of square

Greek alphabet

name	capital	small	commonly used to designate				
ALPHA	A	a	Angles, coefficients, attenuation constant, absorption factor, area				
BETA	В	β	Angles, coefficients, phase constant				
GAMMA	Г	γ	Complex propagation constant (cap), specific gravity, angles, electrical conductivity, propagation constant				
DELTA	Δ	δ	Increment or decrement (cap or small), determinant (cap), permittivity (cap), density, angles				
EPSILON	Е	6	Dielectric constant, permittivity, base of natural logarithms, electric intensity				
ZETA	Z	5	Coordinates, coefficients				
ETA	Ħ	η	Intrinsic impedance, efficiency, surface charge density, hysteresis, coordinates				
THETA	θ	θ θ	Angular phase displacement, time constant, reluctance, angles				
IOTA	I	٤	Unit vector				
KAPPA	ĸ	К	Susceptibility, coupling coefficient				
LAMBDA	Δ	λ	Permeance (cap), wavelength, attenuation constant				
MU	\mathbf{M}	μ	Permeability, amplification factor, prefix micro				
NU	N	V	Reluctivity, frequency				
XI	z	Ę	Coordinates				
OMICRON	0	0					
Pi	п	Т	3.1416				
RHO	Р	ρ_	Resistivity, volume charge density, coordinates				
SIGMA	Σ	σς	Summation (cap), surface charge density, complex propagation constant, electrical conductivity, leakage coefficient				
TAU	Т	τ	Time constant, volume resistivity, time-phase displacement, transmission factor, density				
UPSILON	r	υ	,				
PHI	Φ	φφ	Scalar potential (cap), magnetic flux, angles				
CHI	x	x	Electric susceptibility, angles				
PSI	Ψ	ψ	Dielectric flux, phase difference, coordinates, angles				
OMEGA	Ω	ω	Resistance in ohms (cap), solid angle (cap), angular velocity				
		Small	letter is used except where capital is indicated.				

Unit Conversio	n Ta	ble		N emu			units	al vnits
			cgs	l esu =	cgs	symmetric	1 emu = N practical	1 esu = N practical
quantity	sym- bol	equation	electrostatic unit	Ni ↓	electromagnetic unit	or Gaussian unit	N ↓	N -
length	1		centimeter	1	centimeter	centimeter	1	1
mass	m		gram	1	gram	gram		
time			second	1	second	second	1	1
velocity	D	v = l/t	cm/sec	1	em/sec	cm/sec	1	1
acceleration	<u>a</u>	a = v/t	cm/sec ²	1		cm/sec ²	1	1
force	F	F = ma	dyne	1	dyne	dyne		
work, energy	W	W = Fl	erg	1	erg	erg	10-7	10-7
power	\overline{P}	P = W/t	erg/sec	1	erg/sec	erg/sec	10-7	10~7
permittivity of space	€0		1 statfarad/em	1	1/c ² abfarad/cm	1 statfarad/cm		
charge	$\frac{1}{q}$	$F = q_1 q_2 / Er^2$	statcoulomb	1/c	abcoulomb	statcoulomb	10/c	10
surface charge density	σ	$\sigma = \sigma/A$	stateoulomb/em2	1/c	abcoulomb/cm2	abcoulomb/cm2	10/c	10
volume charge density	ρ	$\rho = q/v$	statcoulomb/cm3	1/c	abcoulomb/cm ³	statcoulomb/cm3	10/c	10
electric field strength	E	$E = -\operatorname{grad} V$	statvolt/cm	C	abvolt/em	statvolt/cm	c/10 ⁸	10-8
electric flux density displacement density	D	D = eE	$\frac{\frac{1}{4\pi \text{ stateoulomb}}}{\text{em}^2}$	1/c	$\frac{\frac{1}{4}\pi \text{ abcoulomb}}{\text{cm}^2}$	$\frac{\frac{1}{4}\pi \text{ stateoulomb}}{\text{cm}^2}$	10/c	
electric flux displacement	Ψ	$\Psi = DA$	line = $\frac{1}{4\pi}$ stateoulomb	1/c	$\frac{1}{4}\pi$ abcoulomb	line = $\frac{1}{4\pi}$ stateoulomb	10/c	
capacitance	\overline{c}	$\overline{C = a/V}$	statfarad = cm	1/c ²	abfarad	statfarad or cm	10 ⁹ /c ²	109
elastance	8	$\overline{S} = 1/C$	statdaraf	c ²	abdaraf	statdaraf	c2/109	10-9
polarization	P		statcoulomb/cm2	1/c	abcoulomb/em ²	stateoulomb/em ²	10/e	
potential potential difference		$V = F_8 = \frac{W}{q}$	statvolt	c	abvolt	statvolt	c/10 ⁸	10-8
emf	e	$e = -d\Phi/dt$	statvolt	c	abvolt	statvolt	c/108	10-8
current	I	I = dq / dt	statampere	1/e	abampere	statampere	10/c	10
current density	ı	$\iota = I/A$	statampere/cm ²	1/c	abampere/cm ²	statampere/cm ²	10/c	10
resistance	R	$\overline{R} = e/I = V/I$	statohm	C ²	abohm	statohm	c²/109	10-9
resistivity	ρ		statohm \times cm	C ²	$abohm \times cm$	$\operatorname{statohm} \times \operatorname{em}$	c²/109	10-9
conductance .	G	G = 1/R	statmho	1/c ²	abmho	statmho	$10^{9}/c^{2}$	10-9
conductivity	γ	$\gamma = 1/\rho$	statmho/cm	1/c ²	abmho/cm	statmho/cm	$10^{9}/c^{2}$	10-9
permeability of space	μο		$\frac{1}{e^2} = \frac{\text{stathenry}}{em}$		abhenry/cm	abhenry/cm		
reluctivity	υ	$v = 1/\mu$						
pole strength	m	$F = m_1 m_2 / \mu r^2$	statunit	e	unit pole	unit pole		
magnetic moment		= mI	statpole \times cm	C	pole \times cm	pole \times cm		
intensity of magnetization	J				pole/cm ²	pole/cm ²		
magnetic potential	U			1/e				
magnetic potential diff magnetomotive force	М			1/c	gilbert	gilbert	10/c	10
magnetizing force	H	H = M/I		1/0	oersted	oersted	10/c	10
magnetic flux density magnetic induction	B	$B = \mu H$	statweber/cm ²	e ·	gauss	gauss	c/108	10-8
magnetic flux	Ф	$\Phi = BA$	statweber	c	maxwell or line or abvolt-sec	maxwell or line or abvolt-sec	c/108	10-8
reluctance	R	$\mathcal{R} = M/\Phi$		1/c²	gilbert/maxwell	gilbert/maxwell	109/c ²	109
permeance	Р	$\mathcal{P} = 1/\mathcal{R}$		c ²	maxwell/gilbert	maxwell/gilbert		
inductance From "Radio " May 194		$\overline{L} = e/(dI/dt)$	•	C ²	abhenry or cm	abhenry or cm	c ² /109	10-9

From "Radio," May, 1944 (compiled by John M. Borst) The table gives the name and defining equation for each unit in six systems and shows factors for the conversion of all units from or system into any other. Column 3, "equation," of the table lists the relationships of the physical quantities involved. Consider, as an example, column 1 esu = N emu. The conversion factor in this column can be applied in any of the following ways:

GENERAL INFORMATION 17

	1 esu = N MKS	1 emu = N MKS	1 practical unit = N MKS		1 esu = N MKS (R)	1 emu = N MKS (R)		1 MK\$ unit unrationalized = N MKS (R)	1 practical unit = N MKS (R)
actical unit	N↓ unrati	N ↓ onalized	N↓ MKS	unrationalized MKS or Giorgi unit	N↓ MKS sub ize	N↓ rational- ed	subrationalized MKS or Giorgi unit	N↓ MKS su	¦N↓ bretion- zed
ntimeter	10-2	10-2	10-2	meter	10-2	10-2	meter	1	10-2
	10-3	10-3		kilogram	10-3	10-3	kilogram	1	
cond	1	1	1	second	1	1	second	1	1
1/sec	10-2	10-2	10-2	meter/second	10-2	10-2	meter/second	1	10-2
n/sec ²	10-2	10-2	10-2	meter/sec ²	10-2	10-2	meter/sec ²	1	10-2
	10-*	10-5		$\frac{\text{joule}}{\text{meter}} = \text{newton}$	10-5	10-5	$\frac{\text{joule}}{\text{meter}} = \text{newton}$	1	
ule	10-7	10-7	1	joule	10-7	10-7	joule	1	1
att	10-7	10-7	1	watt	10-7	10-7	watt	1	1
$\frac{1}{\times 10^{11}}$ farad/cm			}	$\frac{1/(9\times10^8) \text{ farad}}{\text{meter}}$			1 (36x×10 ⁹) farad/m		
ulomb	10/e	10	1	coulomb	10/c	10	coulomb	1	1
ulomb/cm ²	10 ⁵ /c	105	104	coulomb/m2	10 ⁵ /c	105	coulomb/m ²	1	104
ulomb/cm ³	107/e	10*	106	coulomb/mª	107/c	107	coulomb/m ³	1	106
lt/cm	c/10 ⁶	10-6	102	volt/m	c/106	10-6	volt/m	1	102
	105/c	105		$\frac{\frac{1}{4}\pi \text{ coulomb}}{\text{meter}^2}$	10 ⁵ /4πc	$10^{5}/4\pi$	coutomb/m ²	1⁄4π	
	10/c	10		$\frac{1}{4\pi}$ coulomb	10/4 πc	10/4 1	coulomb	1/4π	
rad	10º/c²	109	1	farad	10º/c²	109	farad	1	1
raf	c ² /10 ⁹	10-9	1	daraf	e ² /10 ⁹	10-9	daraf	1	1
	105/c	105		coulomb/m ²	10º/c	105	coulomb/m ²	1	
lt	c/10 ⁸	10-8	1	velt	c/10 ⁸	10 -s	volt	1	1
lt	c/10 ⁸	10-8	1	volt	c/10 ⁸	10-8	volt	1	1
apere	10/c		1	ampere	10/c	10	ampere	1	1
apere/cm ²	105/c	105	104	ampere/mª	10 ⁵ /c	105	ampere/m ²	1	104
<u>im</u>	c ² /10 ⁹	10-9	1	ohm	c ² /109	10-9	ohm	1	1
m × cm	$\frac{c^2/10^{11}}{10^2/c^2}$	10-11	102	ohm × meter	$\frac{c^2}{10^{11}}$	10-11	ohm × meter		102
ho ho/em	$\frac{10^{9}/c^{2}}{10^{11}/c^{2}}$	$\frac{10^9}{10^{11}}$	1 10-2	mho (motor	$\frac{10^{9}/c^{2}}{10^{11}/c^{2}}$	10 ⁹ 10 ¹¹	mho	$-\frac{1}{1}$	1 10-2
	104/6*	10**		mha/meter	104/64		$\frac{\text{mho} \times \text{meter}}{4\pi \times 10^{-7} \text{ henry}}$		10 1
henry/cm				10 ⁻⁷ henry/m			meter		[
- <u>·</u>	c/108	10~8			$4\pi c/10^8$	1-/100	weber		İ
	c/10 ⁴	10 0			$\frac{4\pi c}{10^3}$	$\frac{4\pi/10^8}{4\pi/10^{10}}$	weber × meter	$\frac{4\pi}{4\pi}$	
	c/104	10-4			$\frac{4\pi c}{10^4}$	$\frac{4\pi}{10^4}$	weber/m ²	<u>4π</u>	
	10/c	10	1		10/4mc	$\frac{4\pi}{10/4\pi}$		347	
π amp turn	10/c	10	1	$\frac{1}{4\pi}$ amp turn pra-gilbert	10/4πc	$10/1_{\pi}$ 10/4 π	ampere turn	<u>/4</u> π	}⁄4π
π amp turn	10ª/c	10°	102	1/4 m amp turn pra-oersted	10 ³ /4πc	10 ³ /4π	ampere turn/m	1 ⁄4π	10²/4π
eber/cm ²	104/c	104	104	weber/m ²	c/104	10-4	weber/m ²	1	104
eber or volt-sec	10 %/ c	10 ⁸	1	weber = volt-sec	c/108	10-8	weber = volt-sec	t	1
π amp turn weber	109/c ²	109	1 .	$\frac{\frac{1}{4\pi} \operatorname{amp turn}}{\operatorname{weber}}$	10 ⁹ /4πc ²	10 9 /4π	amp turn/weber	1⁄4π	¥ π
weber amp turn	c²/10º	10-•	1	weber $\frac{1}{4\pi} \sup turn$	4πc ² /109	4π/109	weber/amp turn	47	
nry	c ² /109	10-9	1	benry	c ² /10 ²	10-9	henry	1	

Multiply number of esu by N to obtain emu
 Number of emu /number of esu = N
 Magnitude of 1 esu /magnitude of 1 emu = N
 To convert from emu to esu multiply by 1/N;

 $\begin{array}{c} c = 2.998 \times 10^{10} & c^2 = 8.988 \times 10^{40} \\ \mbox{F/c} = 3.335 \times 10^{-11} & \mbox{J/c}^2 = 1.112 \times 10^{-24} \\ \mbox{A} = 12.57 & \mbox{J}_{4\pi} = 0.7988 \\ \mbox{note: MKS (R)} = subrationalized MKS unit \end{array}$

element	volts	ion	element	volts	ion
Lithium	2.9595		Tin	0.136	
Rubidium	2.9259		Lead	0.122	Pb ⁺⁺
Potassium	2.9241		Iron	0.045	Fo ⁺⁺⁺
Strontium	2.92		Hydrogen	0.000	
Barium	2.90		Antimony	-0.10	
Calcium	2.87		Bismuth	-0.226	
Sodium	2.7146		Arsenic	-0.30	
Magnesium	2.40		Copper	-0.344	Cu++
Aluminum	1.70		Oxygen	-0.397	
Beryllium	1.69		Polonium	-0.40	
Uranium	1.40		Copper	-0.470	Cu+
Manganese	1.10		lodine	-0.5345	
Tellurium	0.827		Tellurium	-0.558	Te ⁺⁺⁺⁺
Zinc	0.7618		Silver	0.7978	
Chromium	0.557		Mercury	-0.7986	
Sulphur	0.51		Lead	-0.80	Pb++++
Gallium	0.50		Palladium	-0.820	
Iron	0.441	Fe ⁺⁺	. Platinum	-0.863	
Cadmium	0.401		Bromine	- 1.0648	
Indium	0.336		Chlorine	-1.3583	
Thallium	0.330		Gold	-1.360	Au++++
Cobalt	0.278		Gold	- 1.50	Au+
Nickel	0.231		Fluorine	-1.90	

Electromotive force series of the elements

Position of metals in the galvanic series

Corroded end (anodic, or least noble)

Magnesium Magnesium alloys

Zinc

Aluminum 2S

Cadmium

Aluminum 17ST

Steel or Iron Cast Iron

Chromium-iron (active)

Ni-Resist

18–8 Stainless (active) 18–8–3 Stainless (active)

Lead-tin solders Lead Tin Nickel (active) Inconel (active)

Brasses Copper Bronzes Copper-nickel alloys

Monel

Silver solder

Nickel (passive) Inconel (passive)

Chromium-iron (passive) 18–8 Stainless (passive) 18–8–3 Stainless (passive)

Silver Graphite Gold Platinum

Protected end (cathodic, or most noble)

Note: Groups of metals indicate they are closely similar in properties.

1

Atomic weights

element	symbol	atomic number	atomic weight	element	symbol	atomic number	atomic weight
Aluminum	AI	13	26.97	Molybdenum	Мо	42	95.95
Antimony	Sb	51	121.76	Neodymium	Nd	60	144.27
Argon	Ă	18	39,944	Neon	Ne	10	20.183
Arsenic	As	33	74.91	Nickel	Ni	28	58.69
Barium	Ba	56	137.36	Nitrogen	Ν	7	14.008
Beryllium	Be	4	9.02	Osmium	Os	76	190.2
Bismuth	Bi	83	209.00	Oxygen	0	8	16.0000
Boron	В	5	10.82	Palladium	Pd	46	106.7
Bromine	Br	35	79,916	Phosphorus	P	15	30.98
Cadmium	Čd	48	112.41	Platinum	Pt	78	195.23
Calcium	Ca	20	40.08	Potassium	κ·	19	39.096
Carbon	С	6	12.010	Praseodymium	Pr	59	140.92
Cerium	Ce	58	140.13	Protactinium	Pa	91	231
Cesium	Cs	55	132.91	Radium	Ra	88	226.05
Chlorine	CI	17	35.457	Radon	Rn	86	222
•	-			.	_		
Chromium	Cr	24	52.01	Rhenium	Re	75	186.31
Cobalt	Co	27	58.94	Rhodium	Rh	45	102.91
Columbium	Сь	41	92.91	Rubidium	Rb	37	85.48
Copper	Cu	29	63.57	Ruthenium	Ru	44	101.7
Dysprosium	Dy	66	162.46	Samarium	Sm	62	150.43
	-			a	•		
Erbium	Er	68	167.2	Scandium	Sc	21	45.10
Europium	Eu	63	152.0	Selenium	Se	34	78.96
Fluorine	F	9	19.00	Silicon	Si	14	28.06
Gadolinium	Gd	64	156.9	Silver	Ag	47	107.880
Gallium	Ga	31	69.72	Sodium	Na	11	22.997
Germanium	Ge	32	72.60	Strontium	Sr	38	87.63
Gold	Au	79	197.2	Sulfur	S	16	32.06
Hafnium	Hf	••			J Ta		
		72	178.6	Tantalum		73	180.88
Helium	He	2	4.003	Tellurium	Te	52	127.61
Holmium	Но	67	164.94	Terbium	ТЬ	65	159.2
Hydrogen	н	1	1.0080	Thallium	TI	81	204.39
Indium	In	49	114.76	Thorium	Th		232.12
lodine	1	53	126.92	Thulium	Tm	69	169.4
Iridium	Ir	77	193.1	Tin	Sn	50	118.70
Iron	Fe	26	55.85	Titanium	Ti	22	47.90
non	10	20	33.65	Thomon	11	22	47.30
Krypton	Kr	36	83.7	Tungsten	W	74	183.92
Lanthanum	la	57	138.92	Uranium	U	92	238.07
lead	РЬ	82	207.21	Vanadium	V	23	50.95
Lithium	Li	3	6.940	Xenon	Xe	54	131.3
Lutecium	Lu	71	174.99	Ytterbium	ŶЪ	70	173.04
Magnesium	Mg	12	24.32	Yttrium	Y	39	88.92
Manganese	Mn	25	54.93	Zinc	Zn	30	65.38
Mercury	Hg	80	200.61	Zirconium	Zr	40	91.22

From the Journal of the American Chemical Society, 1943.

Centigrade table of relative humidity or percent of saturation

dry bulb degrees															-				-			gre		-										dry bulb degrees
centigrade	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5	6	7	8	9	10	11	12	13	14	15	16	18	20	22	24	26	28	30	32	34	36	38	40	centigrade
2 4 6 8 10	92 93 94 94 94	83 85 87 87 88	75 77 80 81 82	67 70 73 74 76	59 63 66 68 71	52 56 60 62 65	43 48 54 56 60	36 41 47 50 54	27 34 41 45 49	20 28 35 39 44	15 23 28 34	11 17 23	14																					2 4 6 8 10
12 14 16 18 20	94 95 95 95 96	89 90 90 90 91	84 84 85 86 87	78 79 81 82 82	73 74 76 78 78	68 69 71 73 74	63 65 67 69 70	58 60 62 65 66	53 55 58 61 62	48 51 54 57 58	38 41 45 49 51	30 33 37 42 44	21 24 29 35 36	12 16 21 27 30	4 10 14 20 23	7 13 17	6 11																	12 14 16 18 20
22 24 26 28 30	96 96 96 96 96	92 92 92 92 92 93	87 88 89 89 89 89	83 85 85 85 85 86	79 81 81 82 82	75 77 77 78 79	72 74 74 75 76	68 70 71 72 73	64 66 67 68 70	60 63 64 65 67	53 56 57 59 61	46 49 51 53 55	40 43 45 47 50	34 37 39 42 44	27 31 34 37 39	21 26 28 31 35	16 21 23 26 30	11 14 18 21 24	10 13 17 20	13 16	12													22 24 26 28 30
32 34 36 38 40	96 97 97 97 97	93 93 93 94 94	90 90 90 90 91	86 87 87 87 88	83 84 84 84 85	80 81 81 81 82	77 77 78 79 79	74 74 75 76 76	71 71 72 73 74	68 69 70 70 71	62 63 64 65 66	56 58 59 60 61	51 53 54 56 57	46 48 50 51 52	41 43 45 46 48	36 38 41 42 44	32 34 36 38 40	27 30 32 34 36	23 26 28 30 32	19 22 24 26 29	15 18 21 23 25	10 13 16 19	10 13											32 34 36 38 40
42 44 46 48 50	97 97 97 97 97 97	94 94 94 94 94	91 91 91 92 92	88 88 89 89 89	85 86 86 86 87	82 83 83 84 84	80 80 81 81 81 82	77 77 78 78 78 79	74 75 76 76 77	72 73 73 74 75	67 68 68 69 70	62 63 64 65 65	58 59 60 61 62	53 54 55 56 57	49 50 52 53 54	45 47 48 49 50	41 43 44 45 47	38 39 41 42 43	34 36 37 39 40	31 32 34 35 37	27 29 31 33 34	21 23 25 27 28	15 17 19 21 23	12 14 16 18	12 14									42 44 46 48 50

Reprinted by permission of the Foxboro Company, Foxboro, Mass.

Example: Assume dry bulb reading (thermometer exposed directly to atmosphere) is 20° C and wet bulb reading is 17° C, or a difference of 3° C. The relative humidity at 20° C is then 74%.

GENERAL INFORMATION 2

di	y bulb sgrees	1								diffe	enco	ə bet	wee	n ree	adin	gs of	i wei	and	l dry	bul	bs ir	n deg	gree	s cer	tigra	ədə									dry bulb degrees
	tigrade	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5	6	7	8	9	10	11	12	13	14	15	16	18	20	22	24	26	28	30	32	34	36	36	40	centigrade
	52 54 56 58 60	97 97 97 97 98	94 95 95 95 95	92 92 93	89 90 90 90 90	87 87 87 88 88	84 85 85 85 86	82 82 83 83 83	79 80 80 80 81	77 78 78 79 79 79	75 76 76 77 77 77	70 71 72 72 73	66 67 68 68 69	62 63 64 64 65	58 59 60 61 62	55 56 57 57 58	51 52 53 54 55	48 49 50 51 52	44 45 46 47 48	41 42 43 44 45	38 39 40 42 43	35 36 38 39 40	30 31 32 33 35	25 26 27 29 30	20 21 23 24 26	16 17 19 20 21	11 13 15 16 18	11 12 14	11						52 54 56 58 60
	62 64 66 68 70	98 98 98 98 98	95 95 95 95 95 96	93 93	91 91 91 91 91	88 88 89 89 89 89	86 86 86 87 87	84 84 85 85	81 82 82 82 83	79 80 80 81 81	78 78 78 79 79 79	73 74 74 75 75	69 70 70 71 71	66 66 67 67 68	62 63 64 64 65	59 59 60 61 61	56 56 57 58 58	53 53 54 55 55	49 50 51 52 52	46 47 48 49 50	43 44 45 46 47	42 43 44	36 37 38 39 40	31 32 33 34 35	27 28 29 30 31	23 24 25 26 27	19 20 21 22 23	15 17 18 19 20	12 13 15 16 17	12 13 14	11				62 64 66 68 70
	72 74 76 78 80	98 98 98 98 98	96 96 96 96 96	94 94 94 94 94	92 92 92 92 92 92	89 90 90 90 90	87 87 88 88 88 88	85 85 86 86 86	83 83 84 84 84 84	81 82 82 82 83	80 80 80 81 81	76 76 76 77 77	72 72 73 73 73 74	69 69 70 70 71	65 66 67 67	62 63 63 64 64	59 60 60 61 61	56 57 57 58 58	53 54 54 55 55 56	50 51 52 52 53	48 48 49 50 50	46 47 47	40 41 42 43 43	36 37 38 38 38 39	32 33 34 34 35	28 29 30 30 31	24 25 26 27 28	21 22 23 24 24	18 19 20 21 22	15 16 17 18 19	12 13 14 15 16	12	10 11		72 74 76 78 80
	82 84 86 88 90	98 98 98 98 98 98	96 96 96 96 97	94 94 94 95 95	92 92 92 93 93	90 90 91 91 91	88 88 89 89 89 89	86 86 87 87 87	84 85 85 85 85	83 83 83 83 83 83	81 81 82 82 82 82	77 78 78 78 78 79	74 74 75 75 76	71 71 72 72 73	68 68 69 69 69	65 65 66 66 67	62 62 63 63 64	59 59 60 60 61	56 57 57 58 58	54 54 55 55 56	51 52 52 53 53	49 50 51	44 45 45 46 47	40 40 41 42 42	36 37 37 38 39	32 33 34 34 35	29 29 30 31 32	25 26 27 28 28	22 23 24 25 26	20 20 21 22 23	17 18 19 19 20	15 16 16 17 18	12 13 14 15 16	10 11 12 13 14	82 84 86 88 90
	92 94 96 98 100	98 99 99 99 99	97 97 97 97 97	95 95 95 95 95	93 93 93 93 93	91 91 91 92 92	89 89 90 90 90	87 88 88 88 88	86 86 86 86 86	84 84 84 85 85	82 83 83 83 83	79 79 80 80 80	76 76 76 77 77	73 73 74 74 74 74	70 70 70 71 71	67 67 68 68 68 68	64 65 65 65 66	61 62 62 63 63	59 59 60 60 60	56 57 57 58 58	54 54 55 55 55	52 53 53	47 48 48 49 49	43 44 44 45 45	39 40 41 41 42	36 36 37 38 38	32 33 34 34 35	29 30 31 31 32	26 27 28 28 28	24 24 25 26 26	21 22 22 23 24	19 19 20 21 22	16 17 18 19 19	14 15 16 16 17	

Centigrade table of relative humidity or percent of saturation

continued 🕻

Atmospheric pressure chart

1 inch of mercury = 0.4912 pounds per square inch

Weather data

Compiled from Climate and Man, Yearbook of Agriculture, U. S. Dept. of Agriculture, U. S. Govt. Printing Office, Washington, D. C., 1941.

Temperature extremes

United States

Lowest temperature Highest temperature	—66° F 134° F	Riverside Range Station, Wyoming (Feb. 9, 1933) Greenland Ranch, Death Valley, California (July 10, 1933)
Alaska		
Lowest temperature	—78° F	Fort Yukon (Jan. 14, 1934)
Highest temperature	100° F	Fort Yukon
World		
Lowest temperature	90° F	Verkhovansk, Siberia (Feb. 5 and 7, 1892)
Highest temperature	136° F	Azizia, Libya, North Africa (Sept. 13, 1922)
Lowest mean temperature (annual)	—14° F	Framheim, Antarctica
Highest mean temperature (annual)	86° F	Massawa, Eritrea, Africa

Precipitation extremes

United States

Wettest state Dryest state Maximum recorded Minimum recorded

World

Maximum recorded

Minimum recorded

Louislana—average annual rainfall 55.11 inches Nevada—average annual rainfall 8.81 inches New Smyrna, Fla., Oct. 10, 1924—23.22 inches in 24 hours Bagdad, Calif., 1900–1913—3.93 inches in 5 years Greenland Ranch, Calif.—1.35 inches annual average

Cherrapunji, India, Aug. 1841—241 inches in 1 month (Average annual rainfall of Cherrapunji is 426 inches) Bagui, luzon, Philippines, July 14–15, 1911—46 inches in 24 hours Wadi Halifa, Anglo-Egyptian Sudan and Awan, Egypt are in the "rainless" area; average annual rainfall is too small to be measured

territory	raximum ° F	° F	territory	° F	minimvm ° F
NORTH AMERICA			ASIA continued		
Alaska	100	78	India	120	-19
Canada	103	70	Irag	123	19
Canal Zone	97	63	Japan	101	-7
Greenland	86	-46	Malay States	97	66
Mexico	118	11	Philippine Islands	101	58
U. S. A.	134	-66	Sigm	106	58 52
West Indies	102	45	Tibet	85	-20
			Turkey	1 III	-22
SOUTH AMERICA			U. S. S. R.	109	-90
Argentina	115	27		1	
Bolivia	82	25	AFRICA		
Brazil	108	21	Alaeria	133	1
Chile	99	19	Anglo-Egyptian Sudan	126	28
Venezuela	102	45	Angola	91	33
			Belgian Congo	97	28 33 34 31 32
EUROPE			Egypt	124	31
British Isles	100	4	Ethiopia	1 111	32
France	107	-14	French Equatorial Africa	118	46
Germany	100	-16	French West Africa	122	41
Iceland	71	-6	Italian Somaliland	93	61
Italy	114	4	Libya	136	35
Norway	95	-26	Morocco	119	5
Spain	124	10	Rhodesia	103	5 25 28 21
Sweden	92	-49	Tunisia	122	28
Turkey	100	17	Union of South Africa	1 111	21
U. S. Ś. R.	110	-61		1	
			AUSTRALASIA		
ASIA			Australia	127	19
Arabia	114	53	Hawaii	91	51
China	1 111	-10	New Zealand	94	23
East Indies	tói	60	Samoan Islands	96	61
French Indo-Ching	113	33	Solomon Islands	97	70
					. 70

World temperatures

World precipitation

	ľ	highest	averago		1	lowest	tverage	1	yearly
territory	Jan inches	April inches	July inches	Oct inches	Jan inches	April inches	July inches	Oct inches	average
NORTH AMERICA Aloska Conada Canad Zone Greenland Mexico U. S. A. West Indies	13.71 8.40 3.74 3.46 1.53 4.45	10.79 4.97 4.30 2.44 1.53 6.65	8.51 4.07 16.00 3.27 13.44 5.80	22.94 6.18 15.13 6.28 5.80 6.89	.15 .48 .91 .35 .04 .92	.13 .31 2.72 .47 .00 1.18	.93 1.04 7.28 .91 .43 1.53	.37 .73 10.31 .94 .35 5.44	43.40 26.85 97.54 24.70 29.82 29.00 49.77
SOUTH AMERICA Argentina Bolivia Brazil Chile Venezuela	6.50 6.34 13.26 11.78 2.75	4.72 1.77 12.13 11.16 6.90	2.16 .16 10.47 16.63 6.33	3.35 1.42 6.54 8.88 10.44	.16 3.86 2.05 .00 .02	.28 1.46 2.63 .00 .61	.04 .16 .01 .03 1.87	.20 1.30 .05 .00 3.46	16.05 24.18 55.42 46.13 40.01
EUROPE British Isles France Germany Iceland Italy Norway Spain Sweden Turkey U. S. S. R.	5.49 3.27 1.88 5.47 4.02 8.54 2.83 1.52 3.43 1.46	3.67 2.64 2.79 3.70 4.41 4.13 3.70 1.07 1.65 1.61	3.78 2.95 5.02 3.07 2.40 5.79 2.05 2.67 1.06 3.50	5.57 4.02 2.97 5.95 5.32 8.94 3.58 2.20 2.52 2.07	1.86 1.46 1.16 5.47 1.44 1.06 1.34 .98 3.43 .49	1.54 1.65 1.34 3.70 1.63 1.34 1.54 .78 1.65 .63	2.38 .55 2.92 3.07 .08 1.73 .04 1.80 1.06 .20	2.63 2.32 1.82 5.59 2.10 2.48 1.77 1.60 2.52 .47	36.16 27.48 26.64 52.91 29.74 40.51 22.74 18.12 28.86 18.25
ASIA Arabia China East Indies French Indo-China India Iraq Japan Malay States Philippine Islands Siam Turkey U. S. S. R.	1.16 1.97 18.46 .79 3.29 1.37 10.79 9.88 2.23 .33 4.13 1.79	.40 5.80 10.67 4.06 33.07 .93 8.87 7.64 1.44 1.44 1.45 2.75 2.05	.03 13.83 6.54 12.08 99.52 .00 9.94 6.77 17.28 6.24 1.73 3.61	.09 6.92 10.00 10.61 13.83 .08 7.48 8.07 10.72 8.32 3.34 4.91	.32 .15 7.48 .52 .09 1.17 2.06 9.88 .82 .33 2.05 .08	.18 .61 2.60 2.07 .06 .48 2.83 7.64 1.28 1.65 1.73 .16	.02 5.78 .20 9.24 .47 .00 5.02 6.77 14.98 6.24 .21 .10	.09 .67 .79 3.67 .00 .05 4.59 8.07 6.71 8.32 .93 .06	3.05 50.63 78.02 65.64 75.18 6.75 70.18 95.06 83.31 52.36 25.08 11.85
AFRICA Algeria Anglo-Egyptian Sudan Angola Belgian Congo Egypt Ethiopia French Yautorial Africa French West Africa Italian Somaliland Libya Morocco Rhodesia Tunisia Union of South Africa	4.02 .08 8.71 9.01 2.09 .59 9.84 .10 .00 3.24 3.48 8.40 2.36 6.19	2.06 4.17 5.85 6.51 .16 3.42 13.42 13.42 1.61 3.66 .48 2.78 .95 1.30 3.79	.35 7.87 .00 .13 .00 10.98 6.33 8.02 1.67 .02 .07 .04 .08 3.83	3.41 4.29 3.80 2.77 .28 3.39 13.58 1.87 2.42 1.53 2.47 1.20 1.54 5.79	.52 .00 .09 3.69 .00 .00 .00 2.74 1.31 5.81 2.36 .06	.11 .00 .63 1.81 .00 3.11 .34 .00 3.60 .18 .36 .65 1.30 .23	.00 .00 .00 .00 8.23 .04 .18 1.67 .00 .00 .00 .00 .08 .27	.05 .00 .09 1.88 .00 .79 .86 .00 2.42 .67 .23 .88 1.54 .12	9.73 18.27 23.46 39.38 3.10 49.17 57.55 19.51 17.28 13.17 15.87 29.65 15.80 26.07
AUSTRALASIA Australia Hawaii New Zealand Samoan Islands Solomon Islands	15.64 11.77 3.34 18.90 13.44	5.33 13.06 3.80 11.26 8.24	6.57 9.89 5.55 2.60 6.26	2.84 10.97 4.19 7.05 7.91	.34 3.54 2.67 18.90 13.44	.85 2.06 2.78 11.26 8.24	.07 1.04 2.99 2.60 6.26	.00 1.97 3.13 7.05 7.91	28.31 82.43 43.20 118.47 115.37

7

Principal power supplies in foreign countries

territory	dc volts	ac volts	frequency
NORTH AMERICA Alaska British Honduras Canada Costa Rica Cuba Dominican Republic Guatemala Haitii Handuras Mexico Nicaraguo Panama (Republic) Penama (Canal Zone) Puerto Rico Salvador Virgin Islands	110, 220 110 110, 220 110 220, 125 110, 220 110, 220 110 110, 220 110, 220 110, 220 110, 220	110, 220 *110, 150, 115, 230 *110, 220 *110, 220 *110, 220 *110, 220 *110, 220 *110, 220 *110, 220 *110, 125, 115, 220, 230 110, 115 *110 *110 *110 *110	60 60, 25 60 60 50 60 60, 50 50, 50 50, 50 50, 50 50, 50 60, 50 50, 50 50, 50 50, 50 25 60 60 60 50 60<
WEST INDIES Bahamas is. Barbadas Bermuda Curacao Joraica Mentirique Trinidad	110	115 110 110 127 110 *110 110, 220	60 50 60 50 40, 60 50 60
SOUTH AMERICA Arcentina Bclivia Brazil Chile Cclombia Ecuador Paraguay Peru Uruguay Venezuela	*220 110 110, 120, 220 220, 110 *220 220, 110 220 110, 220	*220, 225 *110, 220 110, 115, 120, 125, 220, 230 *220 *110, 220, 150 110, 220 *220, 110 *220 *110	50, 60, 43 50, 60 50, 60 50, 60 60, 50 60, 50 50 60, 50 50 50 50, 60
EUROPE Albania Austria Azores Belgium Bulgaria Cyprus (Br.) Czechoslovakia Denmark Estonia Finland France Germany Gibraltar Greece Hungary Iceland Irish Free State Italy	220 220, 110, 150 220 220, 110, 120 220, 120 *220, 120, 150, 110 220, 120, 150, 110 220, 120, 120, 125 220, 110 *120, 220, 120, 125 220, 110, 120, 250 440, 220 *220, 110, 120 *220, 110, 120 *20 110, 125, 150, 220, 250, 160	*220, 125, 150 *220, 120, 127, 110 220 *220, 127, 110, 115, 135 *220, 120, 150 110 *220, 120, 115, 127 *220, 120, 127 220, 120, 127 220, 120, 115, 110 *110, 115, 120, 125, 220, 230 *220, 127, 120, 110 *110, 115, 110, 220 *100, 105, 110, 220 *220 *220 *220 *220 *220 *220 *220	50 50 50 50 50 50 50 50 50 50
Latvia Lithuania Malta Monaco Netway Poland Portugal Rumania Russia Spain Sweden Sweten Switzerland Turkey	220, 110 220, 110 220, 110 220, 150, 125 *220, 150, 125 *220, 110, 105, 120 220, 110, 120, 115, 250 *110, 120, 115, 105 220, 110, 120, 115, 250 220, 120, 110, 150 110, 220	135 *220, 120 *220 105 110 *220, 230, 130, 127, 110, 120, 150 *220, 230, 130, 127, 110, 120, 150 *220, 110, 125 120, 220, 110, 115, 105 *120, 10, 220 *120, 125, 150, 110, 115, 220, 130 *220, 110, 125 *120, 120, 145, 150, 110, 120 *220, 110	50 50 100 42 50 50 50 50 42 50 50 50 42 50 50 50 50 20, 22 50 50 40 50

Principal power supplies in foreign countries continued

territory	de volts	ac volts	frequency
EUROPE continued United Kingdom Jugoslavia	230, 220, 240 110, 120	*230, 240, others *120, 220, 150	50, 25, 40 50, 42
ASIA Arabia British Malaya Fed. Malay States Non-Fed. Malay States Straits Settlements North Borneo Ceylon China Hawaii India French Indo-China Iron (Persia) Iroq Japan Manchuria Palestine Philippine Islands Syria Stam	230 *230 220, 110 220, 110, 225, 230, 250 110, 120, 220, 240 220, 110 *220, 200 100	230 230 230 110 230 *110, 200, 220 *110, 220 230, 220, 110, others *120, 220, 110, 0thers *120, 220, 110, 115, 240 220 220, 230 *100, 110 110 110 110 110 110 110 220 22	50 50, 60, 40 50, 60 50, 60 50, 60, 25 50, 25 50 50 50 50 60 50, 60 60, 50, 25 50 50 60 50 50 50 50 50
Turkey AFRICA Angola (Port.) Algeria Belgian Congo British Cast Africa British East Africa Canary Islands Egypt Ethiopia (Abyssinia)	220, 110 220 *220 110 220	*220, 110 110 *115, 110, 127 220 *240, 230, 110, 100 *127, 110 200, 110, 220 220, 250	50 50 60 50 50, 60, 100 50, 40 50, 40
Italian Africa Cyrenaica Eritrea Libya (Tripoli) Somalland Morocco (Fr.) Morocco (Spanish) Madagascar (Fr.) Senegal (Fr.) Tunisla Uaion of South Africa	150 110 200 230 110 220, 230, 240, 110	*110, 150 127 125, 110, 270 *230 115, 110 *127, 110, 115 120 *110, 115, 220 *110, 115, 220	50 50, 42, 45 50 50 50 50 50 50 50 50 50
OCEANIA Australia New South Wales Victoria Queensland South Australia West Australia Tasmania New Zealand Fiji Islands Society Islands Somoa	*240 230 200, 230, 220 *200, 230, 220 *220, 110, 230 230 240, 110, 250	*240 *230 *240 250 *240 *230 *230 *230 *230 120 110	50 50 50 40 50 50 50 50 50

Note: Where both ac and dc are available, an asterisk (*) indicates the type of supply and voltage predominating. Where approximately equal quantities of ac and dc are available, an asterisk precedes each of the principal voltages. Voltages and frequencies are listed in order of preference.

The electrical authorities of Great Britain have adopted a plan of unifying electrical distribution systems. The standard potential for both ac and dc supplies will be 230 volts. Systems using other voltages will be changed over. The standard ac frequency will be 50 cycles.

Caution: The listings in these tables represent types of electrical supplies most generally used in particular countries. For power supply characteristics of particular cities of foreign countries, refer to the country section of *World Electrical Markets*, a publication of the U. S. Department of Commerce, Bureau of Foreign and Domestic Commerce, Washington, D. C. In cases where definite information relative to specific locations is necessary, the Electrical Division of the above-named Bureau should be consulted.

Alevtion Islands Tutvila, Samoa	Hawaiian Islands	Aleska Tehtti	San Francisco & Pacific Coast	Chicago, Central America (except Panama) Mexico, Winnipeg	Bogola, Havana Lima, Montreai New York, Panama	Buenos Aires, Bermuda Santiago, Puerto Rico Lapaz, Asuncion	Rio, Santos Sao Paulo	iceland Dakar	Algiers, Lisbon London, Paris Madrid	G. C. T.	Bengasi, Berlin, Oslo Rome, Tunis, Tripoli Warsaw, Stockholm	Cairo, Capetown Istanbul	Leningrad Moscow	Bombay, Ceylon New Delhi	Chungking Chengtu, Kunming	Cel ebes , Hong Kon g Manila, Shanghal	Chosen, Japan Manchukuo	Brisbane, Guam Melbourne, New Guinea Sydney, Khabarovsk	Solomon İsland s New Caledonia	Wellington Auckland
1:00pm	1:30pm	2:00pm	4:00pm	6:00pm	7:00pm	8:00pm	9:00pm	11:00pm	Midnite	0000	1:00am	2:00am	3:00am	5:30am	7:00am	8:00am	9:00am	10:00am	11:00am	11:30am
2:00pm	2:30pm	3:00pm	5:00pm	7:00pm	8:00pm	9:00pm	10:00pm	Midnite	1:00am	0100	2:00am	3:00am	4:00am	6:30am	8:00am	9:00am	10:00am	11:00am	Noon	12:30pm
3:00pm	3:3Opm	4:00pm	6:00pm	8:00pm	9:00pm	10:00pm	11:00pm	1:00am	2:00am	0200	3:00am	4:00am	5:00am	7:30am	9:00am	10:00am	11:00am	Noon	1:00pm	1:30pm
4:00pm	4:30pm	5:00pm	7:00pm	9:00pm	10:00pm	11:00pm	Midnite	2:00am	3:00am	0300	4:00am	5:00am	6:00am	8:30am	10:00am	11:00am	Noon	1:00pm	2:00pm	2:30pm
5:00pm	5:30pm	6:00pm	8:00pm	10:00pm	11:00pm	Midnite	1:00am	3:00am	4:00am	0400	5:00am	6:00am	7:00am	9:30am	11:00am	Noon	1:00pm	2:00pm	3:00pm	3:30pm
6:00pm	6:3Opm	7:00pm	9:00pm	11:00pm	Midnite	1:00am	2:00am	4:00am	5:00am	0500	6:00am	7:00am	8:00am	10:30am	Noon	1:00pm	2:00pm	3:00pm	4:00pm	4:30pm
7:00pm	7:30pm	8:00pm	10:00pm	Midnite	1:00am	2:00am	3:00am	5:00am	6:00am	0600	7:00am	8:00am	9:00am	11:30am	1:00pm	2:00pm	3:00pm	4:00pm	5:00pm	5:30pm
8:00pm	8:30pm	9:00pm	11:00pm	1:00am	2:00am	3:00am	4:00am	6:00am	7:00am	0700	8:00am	9:00am	10:00 a m	12:30pm	2:00pm	3:00pm	4:00pm	5:00pm	6:00pm	6:30pm
9:00pm	9:30pm	10:00pm	Midnite	2:00am	3:00am	4:00am	5:00am	7:00am	8:00am	0800	9:00am	10:00am	11:00am	1:30pm	3:00pm	4:00pm	5:00pm	6:00pm	7:00pm	7:30pm
10:00pm	10:30pm	11:00pm	1:00am	3:00am	4:00am	5:00am	6:00am	8:00am	9:00am	0900	10:00am	11:00am	Noon	2:30pm	4:00pm	5:00pm	6:00pm	7:00pm	8:00pm	8:30pm
11:00pm	11:30pm	Midnite	2:00am	4:00am	5:00am	6:00am	7:00am	9:00am	10:00am	1000	11:00am	Noon	1:00pm	3:30pm	5:00pm	6:00pm	7:00pm	8:00pm	9:00pm	9:30pm
Midnite	12:30am	1:00am	3:00am	5:00am	6:00am	7:00am	8:00am	10:00am	11:00am	1100	Noon	1:00pm	2:00pm	4:30pm	6:00pm	7:00pm	8:00pm	9:00pm	10:00pm	10:30pm
1:00am	1:30cm	2:00am	4:00am	6:00am	7:00am	8:00am		11:00am	Noon	1200	1:00pm	2:00pm	3:00pm	5:30pm	7:00pm	8:00pm	9:00pm	10:00pm	11:00pm	11:30pm
2:00am	2:30am	3:00am	5:00am	7:00am	8:00am	9:00am	10:00am	Noon	1:00pm	1300	2:00pm	3:00pm	4:00pm	6:30pm	8:00pm	9:00pm	10:00pm	11:00pm	Midnite	12:30am
3:00am	3:30 am	4:00am	6:00am	8:00am	9:00am	10:00am	11:00am	1:00pm	2:00pm	1400	3:00pm	4:00pm	5:00pm	7:30pm	9:00pm	10:00pm	11:00pm	Midnite	1:00am	1:30cm
4:00am	4:30am	5:00am	7:00am	9:00am	10:00am	11:00am	Noon	2:00pm	3:00pm	1500	4:00pm	5:00pm	6:00pm	8:30pm	10:00pm	11:00pm	Midnite	1:00am	2:00am	2:30am
5:00am	5:30am	6:00am	8:00am	10:00am	11:00am	Noon	1:00pm	3:00pm	4:00pm	1600	5:00pm	6:00pm	7:00pm	9:30pm	11:00pm	Midnite	1:00am	2:00am	3:00am	3:30am
6:00am	6:30am	7:00am		11:00am	Noon	1:00pm	2:00pm	4:00pm	5:00pm	1700	6:00pm	7:00pm	8:00pm	10:30pm	Midnite	1:00am	2:00am	3:00am	4:00am	4:30am
7:00am	7:30am	8:00am	10:00am	Noon	1:00pm	2:00pm	3:00pm	5:00pm	6:00pm	1800	7:00pm	8:00pm	9:00pm	11:30pm	1:00am	2:00am	3:00am	4:00am	5:00am	5:30am
8:00am	8:30cam	9:00am	11:00am	1:00pm	2:00pm	3:00pm	4:00pm	6:00pm	7:00pm	1900	8:00pm	9:00pm	10:00pm	12:30am	2:00am	3:00am	4:00am	5:00am	6:00am	6:30am
9:00am	9:30cm	10:00am	Noon	2:00pm	3:00pm	4:00pm	5:00pm	7:00pm	8:00pm	2000	9:00pm	10:00pm	11:00pm	1:30am	3:00am	4:00am	5:00am	6:00am	7:00am	7:30am
10:00am	10:30kam	11:00am	1:00pm	3:00pm	4:00pm	5:00pm	6:00pm	8:00pm	9:00pm	2100	10:00pm	11:00pm	Midnite	2:30am	4:00am	5:00am	6:00am	7:00am	8:00am	8:30am
11:00am	11:30am	Noon	2:00pm	4:00pm	5:00pm	6:00pm	7:00pm	9:00pm	10:00pm	2200	11:00pm	Midnite	1:00am	3:30am	5:00am	6:00am	7 :00am	8:00am	9:00am	9:30am
Noon	12:30pm	1:00pm	3:00pm	5:00pm	6:00pm	7:00pm	8:00pm	10:00pm	11:00pm	2300	Midnite	1:00am	2:00am	4:30am	6:00am	7:00am	8:00am	9:00am	10:00am	10:30am
1:00pm	1:30pm	2:00pm	4:00pm	6:00pm	7:00pm	8:00pm	9:00pm	11:00pm	Midnite	2400	1:00am	2:00am	3.00am	5:30am	7:00am	8:00am	9:00am	10:00am	11:00am	11:30am

This chart is based on STANDARD TIME.

Passing heavy line denotes change of date.

When passing the line going to the right ADD one day. When passing the line going to left SUBTRACT one day.

Courtesy, American Cable & Radio Corporation

World time chart

GENERAL INFORMATION

2

Radio frequency classifications

frequency in kilocycles	designations* 📜	abbreviations	wavelength in meters [†]	wavelength in feet [†]
10- 30 30- 300 300- 3,000 3,000- 30,000 30,000- 300,000 300,000- 3,000,000 3,000,000-30,000,000	Very Low Low Medium High Very High Ultra High Super High	VLF LF MF HF VHF UHF SHF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

* Official FCC designation, March 2, 1943.

[†] Based on the established practice of considering the velocity of propagation in air as 300,000 kilometers per second instead of the true velocity of propagation of 299,796 kilometers per second.

Wavelength vs frequency chart

for frequencies from	multiply f by	multiply λ by
30– 300 kilocycles	0.1	10.0
300 3,000 kilocycles	1.0	1.0
3,000- 30,000 kilocycles	10.0	0.1
30,000- 300,000 kilocycles	100.0	0.01
300,000- 3,000,000 kilocycles	1.000.0	0.001
3,000,000-30,000,000 kilocycles	10,000.0	0.0001

Wavelength vs frequency formulas

Wavelength in meters, λ_m		- 300,000	
		frequency in kilocycles	
Wavelength in feet, λ_{ft}	-	300,000 $ imes$ 3.28	
		frequency in kilocycles	

SIKC TOLING

001 . 0

Cairo revision 1938

frequency bands (wavelengths)	column 1	column 2
A. From 10 to 550 kc (30,000 to 545 meters);		
a. Fixed stations	0.1%	0.1%
b. Land stations	0.1%	0.1%
c. Mobile stations using frequencies other than those of		
bands indicated under (d)	0.5%	0.1%
d. Mobile stations using frequencies of the bands 110-160 kc	0.607 *	0.207*
(2,727 to 1,875 meters), 365–515 kc (822 to 583 meters)† e. Aircraft stations	0.5% * 0.5%	0.3%*
f. Broadcasting stations	50 cycles	20 cycles
	00 07000	20 cyclos
B. From 550 to 1,500 kc (545 to 200 meters):		
a. Broadcasting stations	50 cycles	20 cycles
b. Land stations	0.1%	0.05%
c. Mobile stations using the frequency of 1,364 kc (220	0.507	0.107
meters)	0.5%	0.1%
C. From 1,500 to 6,000 kc (200 to 50 meters):		
a. Fixed stations	0.03%	0.01%
b. Land stations	0.04%	0.02%
c. Mobile stations using frequencies other than those of		
bands indicated in (d):		
1,560 to 4,000 kc (192.3 to 75 meters)	0.1%*	0.05%*
4,000 to 6,000 kc (75 to 50 meters)	0.04%	0.02%
d. Mobile stations using frequencies within the bands:		
4,115 to 4,165 kc (72.90 to 72.03 meters) 5,500 to 5,550 kc (54,55 to 54.05 meters) }	0.1%*	0.05%*
e. Aircraft stations	0.05%	0.025%
f. Broadcasting:	0.00 /0	0.020 /0
between 1,500 and 1,600 kc (200 and 187.5 meters)	50 cycles	20 cycles
between 1,600 and 6,000 kc (187.5 and 50 meters)	0.01%	0.005%
		<u> </u>
D. From 6,000 to 30,000 kc (50 to 10 meters):	0.00.07	0.0107
a. Fixed stations	0.02 <i>%</i> 0.04%	0.01%
b. Land stations	0.04%	0.02%
 Mobile stations using frequencies other than those of bands indicated under (d) 	0.04%	0.02%
d. Mobile stations using frequencies within the bands:	0.04 /0	0.02 /0
6,200 to 6,250 kc (48.39 to 48 meters)		
8,230 to 8,330 kc (36.45 to 36.01 meters)		
11,000 to 11,100 kc (27.27 to 27.03 meters)	0.1%*	0.05%*
12,340 to 12,500 kc (24.31 to 24 meters)	0.170	0.03 %
16,460 to 16,660 kc (18.23 to 18.01 meters)		
22,000 to 22,200 kc (13.64 to 13.51 meters)	0.007	
e. Aircraft stations	0.05%	0.025%
f. Broadcasting stations	0.01%	0.005%

Column 1: Transmitters in service now and until January 1, 1944, after which date they will conform to the tolerances indicated in column 2.

Column 2: New transmitters installed beginning January 1, 1940.

* See preamble, under 3.

This recognized that a great number of spark transmitters and simple self-oscillator transmitters exist in this service which are not able to meet these requirements.

Frequency tolerances continued

The frequency tolerance is the maximum permissible separation beween the actual frequency of an emission and the frequency which this emission should have (frequency notified or frequency chosen by the operator).

This separation results from the following errors:

a. Error made when the station was calibrated; this error presents a semipermanent character.

b. Error made during use of the station (error variable from one transmission to another and resulting from actual operating conditions: ambient temperature, voltage of supply, antenna, skill of the operator, et cetera). This error, which is usually small in other services, is particularly important in the case of mobile stations.

c. Error due to slow variations of the frequency of the transmitter during a transmission.

Note: In the case of transmissions without a carrier wave, the preceding definition applies to the frequency of the carrier wave before its suppression.

In the case of ship stations, the reference frequency is the frequency on which the transmission begins, and the figures appearing in the present table, marked by an asterisk, refer only to frequency separations observed during a ten-minute period of transmission.

In the frequency tolerance, modulation is not considered.

Note 1: The administrations shall endeavor to profit by the progress of the art in order to reduce frequency tolerances progressively.

Note 2: It shall be understood that ship stations working in shared bands must observe the tolerances applicable to land stations and must conform to article 7, paragraph 21 (2) (a). [No. 186.]

Note 3: Radiotelephone stations with less than 25 watts power, employed by maritime beacons for communications with beacons isolated at sea, shall be comparable, with reference to frequency stability, to mobile stations indicated in C above.

Note 4: Ships equipped with a transmitter, the power of which is under 100 watts, working in the band of 1560–4000 kc (192.3–75 meters), shall not be subject to the stipulations of column 1.

Reproduced from "Treaty Series No. 948, Telecommunication—General Radio Regulations. (Cairo Revision, 1938) and Final Radio Protocol (Cairo Revision, 1938) annexed to the Telecommunication Convention (Madrid, 1932) Between the United States of America and Other Powers," Appendix 1, pp. 234, 235 and 236, United States Government Printing Office, Washington, D. C. References refer to this publication.

Frequency-band widths occupied by the emissions Cairo revision, 1938*

The frequency bands necessary for the various types of transmission, at the present state of technical development, are indicated below. This table is based solely upon amplitude modulation. For frequency or phase modulation, the band widths necessary for the various transmissions are many times greater.

_	type of transmission	total width of the band in cycles for transmission with two sidebands
Ã0	Continuous waves, no signaling	
Ā1	Telegraphy, pure, continuous wave Morse code Baudot code	Numerically equal to the telegraph speed in bauds for the fundamental frequency, 3 times this width for the 3d harmonic, etc.
	Stop-start printer	[For a code of 8 time elements (dots or blanks) per letter and 48 time elements per word, the speed in bauds shall be equal to 0.8 times the speed in words per minute.]
	Scanning-type printer	300-1,000; for speeds of 50 words per minute, according to the canditions of operation and the number of lines scanned (for example, 7 or 12). (Harmonics are not considered in the above values.)
A2	Telegraphy modulated to musical frequency	Figures appearing under A1, plus twice the highest modulation frequency.
Ā3	Commercial radiotelephony	Twice the number indicated by the C.C.I.F. Opinions (about 6,000 to 8,000). ¹
	Broadcasting	15,000 to 20,000.
A 4	Facsimile	Approximately the ratio between the number of picture components ² to be transmitted and the number of seconds necessary for the transmission.
Ā5	Television	Approximately the product of the number of picture components ² multiplied by the number of pictures transmitted per second.

¹ It is recognized that the band width may be wider for multiple-channel radiotelephony and secret radiotelephony.

2 Two picture components, one black and one white, constitute a cycle: thus, the modulation frequency equals one half the number of components transmitted per second. * See Footnote under Frequency Tolerance, Freaty Series No. 943, Telecommunication.

Tolerances for the intensity of harmonics

of fixed, land, and broadcasting stations¹

Cairo revision, 1938*

frequency bands	tolerances			
Frequency under 3,000 kc twavelength above 100 meters)	The field intensity produced by any harmonic must b under 300 μν/m at 5 kilometers from the trans mitting antenna.			
Frequency above 3,000 kc (wavelength under 100 meters)	The power of a harmonic in the antenna must be 40 db under the power of the fundamental, but in no case may it be above 200 milliwatts. ²			

¹ With regard to tolerances for mobile stations, an attempt shall be made to achieve, so far as possible, the figures specified for fixed stations. ² A transmitter, the harmonic intensity of which is not above the figures specified but which

nevertheless causes interference, must be subjected to special measures intended to eliminate such interference. * See Footnote under Frequency Tolerances, Treaty Series No. 948, Telecommunication

Classification of emissions Cairo revision, 1938*

1. Emissions shall be classified below according to the purpose for which they are used, assuming their modulation or their possible keying to be only in amplitude.

a. Continuous waves:

Type A0. Waves the successive oscillations of which are identical under fixed conditions.¹

Type A1. Telegraphy on pure continuous waves. A continuous wave which is keyed according to a telegraph code.

Type A2. Modulated telegraphy. A carrier wave modulated at one or more audible frequencies, the audible frequency or frequencies or their combination with the carrier wave being keyed according to a telegraph code. Type A3. Telephony. Waves resulting from the modulation of a carrier wave by frequencies corresponding to the voice, to music, or to other sounds.

Type A4. Facsimile. Waves resulting from the modulation of a carrier wave by frequencies produced at the time of the scanning of a fixed image with a view to its reproduction in a permanent form.

Type A5. Television. Waves resulting from the modulation of a carrier wave by frequencies produced at the time of the scanning of fixed or moving objects.²

Note: The band widths to which these emissions correspond are indicated under Frequency-Band Widths Occupied by the Emissions.

b. Damped waves:

Type B. Waves composed of successive series of oscillations the amplitude of which, after attaining a maximum, decreases gradually, the wave trains being keyed according to a telegraph code.

2. In the above classification, the presence of a carrier wave is assumed in all cases. However, such carrier wave may or may not be transmitted.

This classification does not contemplate exclusion of the use, by the administrations concerned, under specified conditions, of types of waves not included in the foregoing definitions.

3. Waves shall be indicated first by their frequency in kilocycles per second (kc) or in megacycles per second (Mc). Following this indication, there shall be given, in parentheses, the approximate length in meters. In the present Regulations, the approximate value of the wavelength in meters is the quotient of the number 300,000 divided by the frequency expressed in kilocycles per second.

¹ These waves are used only in special cases, such as standard frequency emissions.

² Objects is used here in the optical sense of the word.

*See Footnote under Frequency Tolerances, Treaty Series No. 948, Telecommunication.

Relation between decibels and power, voltage, and current ratios

The decibel, abbreviated db, is a unit used to express the ratio between two amounts of power, P_1 and P_2 , existing at two points.

By definition the number of db = 10 $\log_{10} \frac{P_1}{P_2}$

It is also used to express voltage and current ratios.

The number of db = 20
$$\log_{10} \frac{V_1}{V_2} = 20 \log_{10} \frac{I_1}{I_2}$$

Strictly, it can be used to express voltage and current ratios only when the two points at which the voltages or currents in question have identical impedances.

power ratio	voltage and current ratio	decibels	power ratio	voltage and current ratio	decibels
1.0233	1.0116	0.1	19.953	4.4668	13.0
1.0471	1.0233	0.2	25.119	5.0119	14.0
1.0715	1.0351	0.3	31.623	5.6234	15.0
1.0965	1.0471	0.4	39.811	6.3096	16.0
1.1220	1.0593	0.5	50.119	7.0795	17.0
1.1482	1.0715	0.6	63.096	7.9433	18.0
1.1749	1.0839	0.7	79.433	8.9125	19.0
1.2023	1.0965	0.8	100.00	-10.0000	20.0
1.2303	- 1.1092	0.9	158:49	12.589	22.0
1.2589	1.1220	1.0	251.19	15.849	24.0
1.3183	1.1482	1.2	398.11	19.953	26.0
1.3804	1.1749	1.4	630.96	25.119	28.0
1.4454	1.2023	1.6	1000.0	31.623	30.0
1.5136	1.2303	1.8	1584.9	39.811	32.0
1.5849	1.2589	2.0	2511.9	50.119	34.0
1.6595	1.2882	2.2	3981.1	63.096	36.0
1.7378	1.3183	2.4	6309.6	79.433	38.0
1.8197	1.3490	2.6	104	100.000	40.0
1.9055	1.3804	2.8	104 × 1.5849	125.89	42.0
1.9953	1.4125	3.0	104 × 2.5119	158.49	44.0
2.2387	1.4962	3.5	104 × 3.9811	199.53	46.0
2.5119	1.5849	4.0	104 × 6.3096	251.19	48.0
2.8184	1.6788	4.5	105	316.23	50.0
3.1623	1.7783	5.0	105 × 1.5849	398.11	52.0
3.5481	1.8836	5.5	10 ⁵ × 2.5119	501.19	54.0
3.9811	1.9953	6.0	10 ⁵ × 3.9811	630.96	56.0
5.0119	2.2387	7.0	10 ⁵ × 6.3096	794.33	58.0
6.3096	2.5119	8.0	10 ⁶	1,000.00	60.0
7.9433	2.8184	9.0	10 ⁷	3,162.3	70.0
10.0000	3.1623	10.0	10 ⁸	10,000.0	80.0
12.589	3.5481	11.0	10 ⁹	31,623	90.0
15.849	3.9811	12.0	10 10	100,000	100.0

To convert

Decibels to nepers multiply by 0.1151 Nepers to decibels multiply by 8.686 Where the power ratio is less than unity, it is usual to Invert the fraction and express the answer as a decibel loss.

Engineering and material data

Copper-wire table—standard annealed copper

American wire gauge (B & S)*

gauge	diam-	cross section		ohms per 1.000 ft	lb per	1	ft per ohm	ohms per lb	
no	eter, mils	circular mils			1,000 ft	ft per lb	at 20° C (68° F)	at 20° C (68° F)	
0000	460.0	211,600	0.1662	0.04901	640.5	1.561	20,400	0.00007652	
000	409.6	167,800	0.1318	0.06180	507.9	1.968	16,180	0.0001217	
00	364.8	133,100	0.1045	0.07793	402.8	2.482	12,830	0.0001935	
0	324.9	105,500	0.08289	0.09827	319.5	3.130	10,180	0.00030 76	
1	289.3	83,690	0.06573	0.1239	253.3	3.947	8,070	0.0004891	
2	257.6	66, 370	0.05213	0.1563	200.9	4.977	6,400	0.000 7778	
3	229.4	52,640	0.04134	0.1970	159.3	6.276	5,075	0.001237	
4	204.3	41,740	0.03278	0.2485	126.4	7.914	4,025	0.001966	
5	181.9	33,100	0.02600	0.3133	100.2	9.980	3,192	0.003127	
6	162.0	26,250	0.02062	0.3951	79.46	12.58	2,531	0.004972	
7	144.3	20,820	0.01635	0.4982	63.02	15.87	2,007	0.007905	
8	128.5	16,510	0.01297	0.6282	49.98	20.01	1,592	0.01257	
9	114.4	13,090	0.01028	0.7921	39.63	25.23	1,262	0.01999	
10	101.9	10,380	0.008155	0.9989	31.43	31.82	1,001	0.03178	
11	90.74	8,234	0.006467	1.260	24.92	40.12	794	0.05053	
12	80.81	6,530	0.005129	1.588	19.77	50.59	629.6	0.08035	
13	71.96	5,178	0.004067	2.003	15.68	63.80	499.3	0.1278	
14	64.08	4,107	0.003225	2.525	12.43	80.44	396.0	0.2032	
15	57.07	3,257	0.002558	3.184	9.858	101.4	314.0	0.3230	
16	50.82	2,583	0.002028	4.016	7.818	127.9	249.0	0.5136	
17	45.26	2,048j	0.001609	5.064	6.200	161.3	197.5	0.8167	
18	40.30	1,624	0.001276	6.385	4.917	203.4	156.6	1.299	
19	35.89	1,288	0.001012	8.051	3.899	256.5	124.2	2.065	
20	31.96	1,022	0.0008023	10.15	3.092	323.4	98.50	3.283	
21	28.46	810.1	0.0006363	12.80	2.452	407.8	78.11	5.221	
22	25.35	642.4	0.0005046	16.14	1.945	514.2	61.95	8.301	
23	22.57	509.5	0.0004002	20.36	1.542	648.4	49.13	13.20	
24	20.10	404.0	0.0003173	25.67	1.223	817.7	38.96	20.99	
25	17.90	320.4	0.0002517	32.37	0.9699	1,031.0	30.90	33.37	
26	15.94	254.1	0.0001996	.40.81	0.7692	1,300	24.50	53.06	
27	14.20	201.5	0.0001583	51.47	0.6100	1,639	19.43	84.37	
28	12.64	159.8	0.0001255	64.90	0.4837	2,067	15.41	134.2	
29	11.26	126.7	0.00009953	81.83	0.3836	2,607	12.22	213.3	
-30	10.03	100.5	0.00007894	103.2	0.3042	3,287	9.691	339.2	
31	8.928	79.70	0.00006260	130.1	0.2413	4,145	7.685	539.3	
32	7.950	63.21	0.00004964	164.1	0.1913	5,227	6.095	857.6	
33	7.080	50.13	0.00003937	206.9	0.1517	6,591	4.833	1,364	
34	6.305	39.75	0.00003122	260.9	0.1203	8,310	3.833	2,168	
35	5.615	31.52	0.00002476	329.0	0.09542	10,480	3.040	3,448	
36	5.000	25.00	0.00001964	414.8	0.07568	13,210	2.411	5,482	
37	4.453	19.83	0.00001557	523.1	0.06001	16,660	1.912	8,717	
38	3.965	15.72	0.00001235	659.6	0.04759	21,010	1.516	13,860	
39	3.531	12.47	0.000009793	831.8	0.03774	26,500	1.202	22,040	
40	3.145	9.888	0.000007766	1,049.0	0.02993	33,410	0.9534	35,040	

Temperature coefficient of resistance:

The resistance of a conductor at temperature t °C is given by

 $R_{1} = R_{20} \left[1 + \alpha_{20} (t - 20) \right]$

where Ras is the resistance at 20° C and as is the temperature coefficient of resistance at 20° C. For copper, as = 0.00373. That is, the resistance of a copper conductor increases approximately 4/10 of 1 percent per degree centigrade rise in temperature. * For additional data on wire, see pages 36, 37, 38, 60, and 126.

Copper-wire table—English and metric units†

	}	1		English units			metric onlis			
Amer wire gauge AW G (B&S)	Birm wire gauge BWG	imperial or British std SWG (NBS)	diam in inches	weight Ibs per wire mile	resistance ohms per wire mile 20° C (68° F)	diam in mm	weight kg per wire km	resistance ohms per wire km 20° C (68° F)		
_	_	-	.1968	618	1.415	5.0	174.0	.879		
_	[—	- 1	.1940	600	1.458	4.928	169.1	.905		
		6	.1920	589.2	1.485	4.875	166.2	.922		
		l — I	.1855	550	1.590	4.713	155.2	.987		
5	-		.1819	528.9 51 7.8	1.654 1.690	4.620 4.575	149.1 146.1	1.028 1.049		
	7		.1800							
-	- 1		.1771	500 495,1	1.749 1.769	4.5 4.447	141.2 140.0	1.086 1.098		
		7	.1762 .1679	495.1	1.769	4.447	127.1	1.208		
						4.190	123.0	}		
6	8		.1650	435.1 419.5	2.011 2.086	4.190	118.3	1.249 1.296		
0		8	.1600	409.2	2.139	4.062	115.3	1.328		
		_	.1582	400	2.187	4.018	113.0	1.358		
_			.1575	395.3	2.213	4.0	111.7	1.373		
i	9		.1480	350.1	2.500	3.760	98.85	1,552		
7	,		.1400	332.7	2.630	3.665	93.78	1,634		
-		9	.1440	331.4	2.641	3.658	93.40	1.641		
_	- 1	_	.1378	302.5	2.892	3.5	85.30	1.795		
_	_	-	.1370	300	2.916	3.480	84.55	1.812		
	10		.1341	287.0	3.050	3.405	80.95	1.893		
8			.1285	263.8	3 .317	3.264	74.37	2.061		
		10	.1280	261.9	3.342	3.252	73.75	2.077		
	-	- 1	.1251	250	3 .500	3.180	70.50	2.173		
-		-	.1181	222.8	3.930	3.0	62.85	2.440		
9			.1144	209.2 200	4.182 4.374	2.906 2.845	58.98 56.45	2.599 2.718		
_	_		.1120					·		
	12	10	.1090	189.9 172.9	4.609 5.063	2.768 2.640	53.50 48.70	2.862 3.144		
*10		12	.1040 .1019	165.9	5.274	2.588	46.77	3.277		
10				154.5	5.670	2.5	43.55	3,520		
_	<u> </u>		.0984	154.5	5.832	2.460	42.30	3.620		
	*14		.0830	110.1	7.949	2.108	31.03	4.930		
*12	14		.0808	104.4	8.386	2.053	29.42	5.211		
		14	.0801	102.3	8.556	2.037	28.82	5.315		
-	_		.0788	99.10	8.830	2.0	27.93	5.480		
*13	1	1	.0720	82.74	10.58	1.828	23.33	6.571		
*14			.0641	65.63	13.33	1.628	18.50	8.285		
*16	l		.0508	41.28	21.20	1.291	11.63	13.17		
*17	l		.0453	32.74	26.74	1.150	9.23	16.61		
*18			.0403	25.98 20.58	33.71 42.51	1.024 .912	7.32 5.802	20.95 26.42		
*19 *22		1	.0359	10.27	42.51 85.24	.644	2.894	52.96		
			.0201	6.46	135.5	.511	1.820	84.21		
*24 *26	l		.0201	4.06	215.5	.405	1.145	133.9		
*27			.0142	3.22	271.7	.361	.908	168.9		
*28	1	1	.0126	2.56	342.7	.321	.720	212.9		

* When used in cable, weight and resistance of wire should be increased about 3% to allow for increase due to twist. † For additional data on wire, see pages 35, 37, 38, 60, and 126.

-
Solid copperweld wire-mechanical and electrical properties

size AWG	diam Inch	Q)	section ea	pounds per	weight pounds	feel	resis ohms/1000	lance) ft at 68° F	breakin pou	nds		attenual per r	nile*			teristic
	inch	circular mils	square inch	1000 feet	per mile	per pound	40%	30%	40% conduct	30% conduct	40% dry	cond wet	30% dry	cond wet	40%	30%_
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 22 24 22 23 24 22 23 33 34 35 33 34 35 36 37 38 9 90	2043 1819 1620 1443 1285 1144 1019 0907 0808 0720 0641 0571 0508 0443 0359 0403 0359 0226 0221 0285 0226 0201 0159 0142 0159 0142 0159 0142 0159 0159 0159 0142 0159 0040 0050 0050 0055 0040 0055 0040 0031	41,740 33,100 24,250 20,820 16,510 13,090 10,380 8,234 6,530 5,178 4,107 3,257 2,583 2,048 1,624 1,288 1,622 810,1 642.5 509,5 404.0 320.4 254.1 201.5 159.8 126,7 159.8 126,7 159.8 159.8 159.8 15,72 2,500 19,83 15,72 12,47 9,89	.03278 .02062 .01035 .01028 .01028 .0008155 .000467 .0005129 .000467 .0005258 .000228 .001276 .001012 .0006363 .0005046 .0000626 .0001583 .00001583 .0000312 .00000312 .000000000000000000000000000000000000	115.8 91.86 72.85 57.77 45.81 36.33 28.81 12.285 18.12 14.37 11.40 9.038 7.167 5.684 4.507 3.575 2.238 1.414 1.121 0.889 0.705 0.559 0.443 0.352 0.279 0.110 0.067 0.069 0.045 0.035 0.027	611.6 485.0 384.6 305.0 241.9 152.1 120.6 95.68 75.88 60.17 47.72 37.84 30.01 23.80 18.87 14.97 11.87 9.413 7.465 5.920 4.695 3.723 2.953 2.953 2.953 2.953 2.953 2.342 1.467 1.168 0.582 0.734 0.582 0.462 0.734 0.582 0.462 0.290 0.230 0.183 0.183 0.183	8.63 10.89 13.73 21.83 27.52 34.70 43.76 45.519 69.59 87.75 110.6 139.5 175.9 279.8 3528 3528 3528 3444.8 444.8 444.8 444.8 444.8 444.8 444.8 4560.9 707.3 891.9 1,125 2,843 3,586 4,521 5,705 5,705 5	0.6337 0.7990 1.008 1.270 2.020 2.547 3.212 4.05 5.11 6.44 8.12 10.24 12.91 16.28 20.53 25.89 32.65 41.17 51.92 65.46 82.55 104.1 131.3 165.5 208.7 243.2 331.9 465.4 839.0 1,058 1,334 1,682 2,121	0.8447 1.065 1.343 1.694 2.136 2.693 3.396 4.28 5.40 6.81 3.565 17.22 21.71 27.37 34.52 21.71 27.37 34.52 43.52 54.88 69.21 87.27 110.0 138.8 175.0 220.6 278.2 350.8 442.4 557.8 703.4 887.0 1,119 1,410 1,778 2,243 2,828 3,566	3,541 2,938 2,433 2,011 1,660 1,368 1,130 896 711 490 300 250 185 153 122 100 73.2 58.0 46.0 36.5 28.9 23.0 18.2 14.4 11.4 11.4 9,08 3,599 2,285 2,226 1.79 1.42 2,130 100 2,50 18.2 11.4 2,130 2,60 18.5 100 19.5 100 19.5 100 18.5 100 18.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 18.5 11.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 11.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 11.5 100 19.5 11.5 100 19.5 11.5 100 19.5 11.5 100 19.5 11.5 100 19.5 11.5 11.5 11.5 11.5 11.5 100 19.5 11.5 11.5 100 19.5 10.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 19.5 100 100 100 100 100 100 100 100 100 10	3,934 3,250 2,680 2,207 1,815 1,491 1,231 975 770 330 270 205 170 135 110 81.1 64.3 51.0 40.4 320.1 25.4 20.1 15.9 12.6 10.0 7.95 6 30 5.00 3.977 3.14 2.49 1.98 1.57				 109 127 149 203 233 266		

Note: Copperweld wire in sizes from No. 25 to No. 40 may be difficult to obtain at present due to a shortage of facilities for making these smaller sizes. # DP insulators, 12-inch Wire Spacing, 1000 cycles for additional information on wire, see pages 35, 36, 39, 60, and 126.

5

Standard stranded copper conductors

٠

circular mils	size AWG	number of wires	individual wire diam inches	cable diam inches	area square inches	weight Ibs per 1000 ft	weighf Ibs per mile	*maximum resistance ohms/1000 ft at 20° C
211,600	4/0	19	.1055	.528	0.1662	653.3	3.450	0.05093
167,800	3/0	19	.1055	.320	0.1318	518.1	3,450 2,736	
133,100	2/0	19	.0940	.470	0.1045	410.9	2,136	0.06422
	1/0	19	.0637	.373	0.08286	325.7	1,720	0.1022
105,500 83,690	1/0	19	.0/45	.373	0.06573	258.4	1,364	0.1288
		17	.0664	.332	0.05213	204.9	1,082	
66,370	2 3 4 5 6 7	4			0.05213	162.5		0.1624
52,640	3	4	.0867	.260			858.0	0.2048
41,740	4	4	.0772	.232	0.03278	128.9	680.5	0.2582
33,100	5	<u> </u>	.0688	.206	0.02600	102.2	539.6	0.3256
26,250	6	<u> </u>	.0612	.184	0.02062	81.05	427.9	0.4105
20,820	7	<u> </u>	.0545	.164	0.01635	64.28	339.4	0.5176
16,510	8 9	<u> </u>	.0486	.146	0.01297	50.98	269.1	0.6528
13,090		7	.0432	.130	0.01028	40.42	213.4	0.8233
10,380	10	7	.0385	.116	0.008152	32.05	169.2	1.038
6,530	12	7	.0305	.0915	0.005129	20.16	106.5	1.650
4,107	14	7	.0242	.0726	0.003226	12.68	66.95	2.624
2,583	16	7	.0192	.0576	0.002029	7.975	42.11	4.172
1,624	18	7	.0152	.0456	0.001275	5.014	26.47	6.636
1,022	20	7	.0121	.0363	0.008027	3.155	16.66	10.54

American wire aquae

* The resistance values in this table are trade maxima for soft or annealed copper wire and are higher than the average values for commercial cable. The following values for the con-ductivity and resistivity of copper at 20° centigrade were used: Conductivity in terms of International Annealed Copper Shandard 98.16% Resistivity in pounds per mile-ohm 891.58 The resistance of hard drawn copper is slightly greater than the values given, being about 2% to 3% greater for sizes from 4/0 to 20 AWG.

Machine screw head styles

Method of length measurement

		crew	1			head		1	ſ	hex nut	1	- w	rasher	·	clearar	ce drill*	tap di	rillt
size and		depth		101	and [flat	Alli	ister			thick-			thick-				
no threads	od	of thread	minor diam	min od	max height	max od	min od	max height	across flat	corner	ness	od	id	ness	no	diam	no	diam
2-56	.086	.0116	.0628	.146	.070	.172	.124	.055	.187	.217	.062	1⁄4	.105	.020	42	.093	48	.076
3-48	.099	.0135	.0719	.169	.078	.199	,145	.063	.187	.217	.062	1⁄4	.105	.020	37	.104	44	.086
4-40	.112	.0162	.0795	.193	.086	.225	.166	.072	.250	.289	.078	%2	.120	.025	31	.120	40	.098
5-40	.125	.0162	.0925	.217	.095	.252	.187	.081	.250	.289	.078	3⁄8	.140	.032	29	.136	36	.106
6-32	.138	.0203	.0974	.240	.103	.279	.208	.089	.250 .312	.289 .361	.078 .109	5/16 3/8	.150	.026 .032	27	.144	33	.113
8-32	.164	.0203	.1234	.287	.119	.332	.250	.106	.250 .375	.289 .433	.078 .125	3%8 7/16	.170 .170	.032 .036	18	.169	28	.140
1032	.190	.0203	.1494	.334	.136	,385	.292	.123	.312 .375	.361 .433	.109 .125	7/16 1/2	.195 .195	.036 .040	9	.196	20	.161
1224	.216	.0271	.1619	.382	.152	.438	.334	.141	.375 .437	.433 .505	.125 .125	1/2 9/16	.228 .228	.060 .060	1	.228	15	.180
1⁄4-20	.250	.0325	.185	.443	.174	.507	.389	.163	.437	.505	.125	⁹ /16	.260	.040		1764	6	.204
									.500	.577	.156 .125 .156	11/16	.260	.051				Į

Standard machine screw data including hole sizes

All dimensions in inches.

* Clearance drill sizes are practical values for use of the engineer or technician doing his own shop work.

f Tap drill sizes are for use in hand tapping material such as brass or soft steel. For copper, aluminum, or Norway iron, the drill should be a size or two larger diameter than shown. For cast iron and bakelite, or for very thin material, the tap drill should be a size or two smaller diameter than shown. ENGINEERING AND MATERIAL DATA

ഷ

	1				electrical pr	operties ⁴	r		physical pro	perties
material	diel	ectric consi	ant	Í F	ower facto	r	dielectric	resistivity	thermai	softening
	60~	10"~	10 ⁸ ~	60~	10%~	108~	strength kv/mm†	ohms—cm 25° C	expansion per ° C	point
Aniline Formaldehyde Resin	3.6	3.5	3.4	.003	.007	.004	1625	>1012	5.4 × 10 ^{−5}	260° F
Casein	1	6.2	1		.052		16-28	Poor	5 × 10-5	200° F
Cellulose Acetate (plastic)	4.6	3.9	3.4	.007	.039	.039	10-14	1010	6-15 × 10 ⁻⁵	100-190° F
Cellulose Acetobutyrate	3.6	3.2	3.0	.004	.017	.019	10-16	1010	11-17 × 10-5	110-180° F
Ebonite	3.0	2.8	2.8	.008	.006	.004	18	2×10^{16}	7 × 10 ^{−5}	140° I
Ethyl Cellulose	4.0	3.4	3.2	.005	.028	.024	16-28	1015	3.4 × 10 ⁻⁴	120° I
Glass, Corning 707	4.0	4.0	4.0	.0006	.0008	.0012		1.5 × 10 ¹¹ at 250° C	31×10^{-7}	1400° I
Glass, Corning 774	5.6	5.2	5.0	.0136	.0048	.008		1.4 × 10 ⁸ at 250° C	33×10^{-7}	1500° i
Glass, Corning 790	3.9	3.9	3.9	.0006	.0006	.0006		5.2 × 10° at 250° C	8 × 10 ⁻⁷	2600° I
Glass, Corning 7052	5.2	5.1	5.1	.008	.0024	.0036		1 🗙 10° at 250° C	47×10^{-7}	1300° I
Halowax	3.8	3.7	3.4	.002	.0014	.105	·	1013-1014		190° I
Isolantite	I	6.0			.0018		l l			
Melamine Formaldehyde Resin	7.5	4.5	4.5	.08	.08	.03	18		3.5 × 10 ⁵	260° I
Methyl Methacrylate—a Lucite HM119	3.3	2.6	2.6	.066	.015	.007	16	1015	11−14 × 10 ⁻⁵	160° F
b Plexiglas	3.5	2.6	2.6	.064	.015	.007	16	1015	8×10^{-5}	160° i
Mica	5.45	5.4	5.4	.005	.0003	.0003		5 × 1018		
Mycalex 364	7.1	7.0	7.0	.0064	.0021	.0022	14		8-9 × 10 ⁻⁶	660° F
Nylon FM-1	3.6	3.6	3.6	.018	.020	.018	12	10ra	5.7 × 105	160° I
Paraffin Oil	2.2	2.2	2.2	.0001	.0001	.0004	15		7.1 × 10 4	liquid
Petroleum Wax (Paraffin Wax)	2.25	2.25	2.25	.0002	.0002	.0002	8-12	1016		M.P. 132° I
Phenol Formaldehyde Resins	5.5	4.5	4.0	010	A1 /					
a general purpose	5.5 4.6	4.5 4.4	4.0	.018 .024	.014	.014	14 20	1011	3–4 × 10⁻⁵	275°
b. mineral filled c. cast	8.0	4.4 8.0	4.3 8.0	.024	.006 .05	.012	10		R 6 16 16 10-5	212°
C. Cast Phenol Furfural Resins	7.0	5.0	4.0	.05	.05	.06	10		7. 515 × 10 ⁵	140° I
Polvethylene	2.25		4.0 2.25			.05	40	E TOT		
	2.25	2.25	2.25	.0003	.0003		40	>1015	Varies	220°
Polyisobutylene MW 100,000	2.20	2.22 2.53	2.22	.0003	.0003	.0004	00.00	1016	7.14.16-7	>0°
Polystyrene MW 80,000	2.55	2.53	2.52	.0002	.0002		20-30	1017	7 X 10 ⁻⁵	175°
Polyvinyl Carbazole	3.2		2.95		.0005	.0006	31-40		4.5 - 5.5 × 10 ⁻⁵	300° F
Polyvinyl Chlor-Acetate	3.2	2.9	2.8	.009	.014					180° F
Polyvinyl Chloride	4.5	3.0	2.9	.012	.016	.008	1.6	1015		180° I
Polyvinylidine Chloride-Saran	4.5 3.9	3.0	3.8	.03	.046	.014 .0002	15	1012	1.58×10^{-4}	175° F
Quartz (fused)				.0009	.0002		60	1014	5.7×10^{-7}	3000° F
Shellac	3.9	3.5	3.1	.006	.031	.030	20	1016	10 34 10-4	1000

.0043

0002

.0002

.05

.04

.013

30

15

1018

1018

.0012

.0002

.0002

.028

.03

.012

2.4 2.73

2.62

5.0

2.1

1.3

2.4 2.75 2.64

5.6

2.1

1.4

2.4 2.9

2.64

6.6

2.4

.0010

.003

.0002

.032

.01

.048

* Values given are average for the materials listed.

Styraloy 22

Styramic HT

Styramic

Urea Formaldehyde Resins

Wood—African Mahogany (dry) Balsa (dry)

To convert Kilovolts per millimeter to volts per mil, multiply by 25.4

Insulating materials

1.8 × 10⁻⁴ 7 × 10⁻⁶

 2.6×10^{-5}

150° F 175° F

250° F 260° F

. ~

ENGINEERING AND MATERIAL DATA 41

trade name	composition	trade name	composition
Acryloid	Methacrylate Resin	Indur	Phenol Formaldehyde
Alvar	Polyvinyl Acetal	Kodapak	Cellulose Acetate
Amerith	Cellulose Nitrate	Kodapak II	Cellulose Acetobutyrate
Ameripol	Butadiene Copolymer	Koroseal	Modified Polyvinyl Chloride
Ameroid	Casein	Lectrofilm	Polyvinyl Carbazole (con-
Bakelite	Phenol Formaldehyde		denser material; mica sub-
Bakelite	Urea Formaldehyde		stitute)
Bakelite	Cellulose Acetate	Loalin	Polystyrene
Bakelite	Polystyrene	Lucite	Methyl Methacrylate Resin
Beckamin e	Urea Formaldehyde Resins	Lumarith	Cellulose Acetate
Beetle	Urea Formaldehyde	Lumarith X	Cellulose Acetate
Butacite	Polyvinyl Butyral	Lustron	Polystyrene
Butvar	Polyvinył Butyral	Luvican	Polyvinyl Carbazole
Cardolit e	Phenol-aldehyde (cashew nut	Makalot	Phenol Formaldehyde
	derivative)	Marblette	Phenol Formaldehyde (cast)
Cerex	Styrene Copolymer	Marbon B	Cyclized Rubber
Catalin	Phenol Formaldehyde (cast)	Marbon C	Rubber Hydrochloride
Cellophane	Regenerated Cellulose Film	Melmac	Melamine Formaldehyde
Celluloid	Cellulose Nitrate	Methocel	Methyl Cellulose
Cibanite	Aniline Formaldehyde	Micabond	Glycerol Phthalic Anhydride,
Crystalite	Acrylate and Methacrylate Resin	Micarta	Mica Phenol Formaldehyde (lami-
Cumar	Cumarone-indene Resin		nation)
Dilectene 100	Aniline Formaldehyde Syn-	Monsanto	Cellulose Nitrate
	thetic Resin	Monsanto	Polyvinyl Acetals
Dilecto	Urea Formaldehyde (phenol	Monsanto	Cellulose Acetate
	formaldehyde)	Monsanto	Phenol Formaldehyde
Dilecto UF	Urea Formaldehyde	Mycalex	Mica Bonded Glass
Distrene	Polystyrene	Neoprene	Chloroprene Synthetic Rub-
Durez	Phenol Formaldehyde		ber
Durite	Phenol Formaldehyde	Nevidene	Cumarone-indene
Durite	Phenol Furfural	Nitron	Cellulose Nitrate
Erinofort	Cellulose Acetate	Nixonite	Cellulose Acetate
Erinoid	Casein	Nixonoid	Cellulose Nitrate
Ethocel	Ethyl Cellulose	Nylon	Synthetic Polyamides and
Ethocel PG	Ethyl Cellulose		Super Polyamides
Ethofoil	Ethyl Cellulose	Nypene	Polyterpene Resins
Ethomelt	Ethyl Cellulose (hot pouring	Opalon	Phenol Formaldehyde
Ethomulsion	compound) Ethyl Cellulose (lacquer	Panelyte	Phenol Formaldehyde (lami- nate)
	emulsion)	Panelyte	Phenol Formaldehyde
Fibestos	Cellulose Acetate	Parlon	Chloringted Rubber
Flamenol	Vinyl Chloride (plasticized)	Perspex	Methyl Methacrylic Ester
Formica	Phenol Formaldehyde (lami-	Plaskon	Urea Formaldehyde
	nation)	Plastacele	Cellulose Acetate
Formvar	Polyvinyl Formal	Plexiglas	Methyl Methacrylate
Galalith	Casein	Plexiglas	Acrylate and Methacrylate
Gelva	Polyvinyl Acetate		Resin
Gemstone	Phenol Formaldehyde	Plaskon	Urea Formaldehyde
Geon	Polyvinyl Chloride	Plastacele	Cellulose Acetate
Glyptal	Glycerol-phthalic Anhydride	Pliofilm	Rubber Hydrochloride
Haveg	Phenol Formaldehyde Asbes-	Plioform	Rubber Derivative
	tos	Pliolite	Rubber Derivative
Hercose AP	Cellulose Acetate Propionate	Polyfibre	Polystyrene
Heresite	Phenol Formaidehyde	Polythene	Polyethylene
•		. orginolog	

Plastics: trade names

Plastics: trade names continued

trade name	composition	trade name	composition
Protectoid	Cellulose Acetate	Styron	Polystyrene
Prystal	Phenol Formaldehyde	Super Styrex	Polystyrene
Pyralin	Cellulose Nitrate	Synthane	Phenol Formaldehyde
PVA	Polyvinyl Alcohol	Tenite	Cellulose Acetate
Pyralin	Cellulose Nitrate	Tenite II	Cellulose Acetobutyrate
Resinox	Phenol Formaldehyde	Textolite	Various
Resoglaz	Polystyrene	Textolite 1421	Cross-linked Polystyrene
Rhodolene M	Polystyrene	Tornesit	Rubber Derivative
Rhodoid	Cellulose Acetate	Trolitul	Polystyrene
Ronilla L	Polystyrene	Vec	Polyvinylidene Chloride
Ronilla M	Polystyrene	Victron	Polystyrene
Saflex	Polyvinyl Butyral	Vinylite A	Polyvinyl Acetate
Saran	Polyvinylidene Chloride	Vinylite Q	Polyvinyl Chloride
Styraflex	Polystyrene	Vinylite V	Vinyl Chloride-Acetate Co-
Styramic	Polystyrene-Chlorinated Di-		polymer
	phenyl	Vinylite X	Polyvinyl Butyral
Styramic HT	Polydichlorstyrene		

Wind velocities and pressures

indicated velocities	actual velocities	cylindrical surfaces	flat surfaces
miles per hour* Vi	miles per hour Va	pressure lbs per sq ft projected areas $\mathbf{P} = 0.0025\mathbf{Va}^2$	pressure lbs per square foot $\mathbf{P} = 0.0042 \mathbf{V} a^2$
			-
10	9.6	0.23	0.4
20	17.8	0.8	1.3
30	25.7	1.7	2.8
40	33.3	2.8	4.7
50	40.8	4.2	7.0
60	48.0	5.8	9.7
70	55.2	7.6	12.8
80	62.2	9.7	16.2
90	69.2	12.0	20.1
100	76.2	14.5	24.3
110	83.2	17.3	29.1
120	90.2	20.3	34.2
125	93.7	21.9	36.9
130	97.2	23.6	39.7
140	104.2	27.2	45.6
150	111.2	30.9	51.9
160	118.2	34.9	58.6
170	125.2	39.2	65.7
175	128.7	41.4	69.5
180	132.2	43.7	73.5
190	139.2	48.5	81.5
200	146.2	53.5	89.8

 $\ensuremath{^{*}}\xspace$ As measured with a cup anemometer, these being the average maximum for a period of five minutes.

,

Temperature chart of heated metals

Physical constants of various metals and alloys*

material relative resistence coefficient of resistivity of 20°C specific gravity gravity thermal cond k watts/cm°C meting ppint °C Advance (55 Cu 45 Ni) see Constantan				_		
20°C watts/cm°C °C Advance (55 Cu 45 Nii) Aluminum see Constantan 2.7 2.03 660 Aluminum 1.64 .004 2.7 2.03 660 Arsenic 19.33 .0042 5.73	material					melting
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				3	watts/cm°C	°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0.7	0.00	
Arsenic 19.33 .0042 5.73	· · · · · · · · · · · · · · · · · · ·					
Bismuth 69.8 .004 9.8 0.0755 270 Brass (66 Cu 34 Zn) 3.9 .002 8.47 1.2 920 Cadmium 4.4 .0038 8.44 0.92 321 Chromax (15 Cr 35 Ni balance Fe) 58.0 .00031 7.95 0.130 1380 Costantan (55Cu 45Ni) 28.45 ±.0002 8.9 0.218 1210 Costantan (55Cu 45Ni) 28.45 ±.0002 8.9 0.218 1210 Costantan (55Cu 45Ni) see Constantan - 3500 - - 3500 Gas carbon 2900 0005 - - 3500 - - 3500 Gold 1.416 .00320062 7.8 0.67 1535 1555 - 3500 - - 3500 - 3600 363 - 355 1663 - 155 0.67 1535 3600 363 - 355<					0.187	
Brass (66 Cu 34 Zn) 3.9 .002 8.47 1.2 920 Cadmium 4.4 .0038 8.64 0.92 321 Chromax (15 Cr 35 Ni balance Fe) 58.0 .00031 7.95 0.130 1380 Constantan (55Cu 45Ni) 28.45 ±.0002 8.9 0.218 1210 Copper-anneoled 1.00 .00393 8.89 - 1083 Eureka (55 Cu 45 Ni) see Constantan - - 3500 Gold 1.416 .0034 19.32 0.296 1063 Icon, pure 5.6 .00520062 7.8 0.67 1535 Kovar A (29 Ni 17 Co . . .004 1.74 1.58 651 Magnasium 2.67 .0041 1.74 1.58 651 .0633 -38.87 Molpdainum, drawn 2.64 - 8.2 0.132 1350 .0643 -38.87 Molpdainum, drawn 2.65 .00047 8.5 0.63					0.0755	
Cadmium 4.4 .0038 8.64 0.92 321 Chromax (15 Cr 35 Ni balance Fe) 58.0 .00031 7.95 0.130 1380 Cobolt 5.6 .0033 8.71 - 1480 Constanta (55Cu 45 Ni) 28.45 ±.0002 8.9 0.218 1210 Copper-anneoied 1.00 .00393 8.89 3.88 1083 bard drawn 1.03 .00382 8.89 - 1083 Goas carbon 2900 0005 - - 3500 Gold 1.416 .0034 19.32 0.296 1063 Ideal (35 Cu 45 Ni) see Constantan - 3500 - Gold 1.416 .0034 19.32 0.296 1063 - Kovar A (29 Ni 17 Co 0. .0042 11.37 0.344 327 Magnesium 2.67 .004 1.74 1.58 651 Manganin (84 Cu 12 Mn 4.87 .002						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
balance Fe) 58.0 .00031 7.95 0.130 1380 Cobolt 5.6 .0033 8.71 - 1480 Costontan (55Cu 45Ni) 28.45 ±.0002 8.9 0.218 1210 Copperanneoled 1.00 .00393 8.89 3.88 1083 bard drawn 1.03 .00382 8.89 - 1083 Eureka (55 Cu 45 Ni) see Constanton - 3500 Gold 1.416 .0034 19.32 0.296 1063 Ideal (55 Cu 45 Ni) see Constanton - 3500 Ideal (55 Cu 45 Ni) see Constanton - 8.2 0.67 1535 Kovar A (29 Ni 17 Co 0.3 Mn balance Fe) 28.4 - 8.2 0.130 1450 Lead 12.78 .0042 11.37 0.344 327 Magnanin (84 Cu 12 Mn 2.67 .004 1.74 1.58 651 Molybelanum, drawn 3.3 .0045		T . T	.0000	0.04	0.72	521
$\begin{array}{c ccccc} Cobalt & 5.6 & .0033 & 8.71 & - & 1480 \\ Constantan (55Cu 45Ni) & 28.45 & \pm.0002 & 8.9 & 0.218 & 1210 \\ Copper-annealed & 1.00 & .00393 & 8.89 & 3.88 & 1083 \\ hard drawn & 1.03 & .00382 & 8.89 & - & 1083 \\ \hline \\ Eureka (55Cu 45Ni) & see & Constantan & & & & & & & & & \\ Gas carbon & 2900 &0005 & - & - & 3500 \\ Gold & 1.416 & .0034 & 19.32 & 0.296 & 1063 \\ Ideal (55Cu 45Ni) & see & Constantan & & & & & & & \\ ron, pure & & 5.6 & .00520062 & 7.8 & 0.67 & 1535 \\ Kovar A (29 Ni 17 Co & & & & & & & & & \\ Nagnesium & 2.67 & .0042 & 11.37 & 0.344 & 327 \\ Magnesium & 2.67 & .0042 & 11.37 & 0.344 & 327 \\ Magnesium & 2.67 & .0044 & 1.74 & 1.58 & 651 \\ Manganin (84 Cu 12 Mn & & & & & & & & \\ A Ni) & 26 & \pm.00002 & 8.5 & 0.63 & 910 \\ Mercury & 55.6 & .00089 & 13.55 & 0.063 & - 38.87 \\ Molybdenum, drawn & 3.3 & .0045 & 10.2 & 1.46 & 2630 \\ Nichrome I (65 Ni 12 Cr & & & & & & & & & & \\ Nickel & 5.05 & .00017 & 8.25 & 0.132 & 1350 \\ Nickel silver (64 Cu & 1 & & & & & & & & & & \\ Nickel & 5.05 & .00047 & 8.85 & 0.6 & 1452 \\ Nickel silver (64 Cu & 1 & & & & & & & & & & & \\ Nickel Silver (64 Cu & 1 & & & & & & & & & & & & & \\ Nickel Silver (64 Cu & 1 & & & & & & & & & & & & & & \\ Nickel Silver (64 Cu & 1 & & & & & & & & & & & & & & & & & $		58.0	00031	7 95	0.130	1380
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 .				
Copper—annealed hard drawn 1.00 .00393 8.89 3.88 1083 Gas carbon .003 .00382 8.89 — 1083 Gas carbon 2900 0005 — — 3500 Gold 1.416 .0034 19.32 0.296 1063 Icon pure 5.6 .00520062 7.8 0.67 1535 Kovar A 129 Ni 17 Co .00520062 7.8 0.67 1535 Kovar A 129 Ni 17 Co .00520062 7.8 0.67 1535 Magnesium 2.67 .004 1.74 1.58 651 Manganin (84 Cu 12 Mn 2.67 .004 1.74 1.58 651 Marganin (84 Cu 12 Mn 2.67 .0045 10.2 1.46 2630 Moreury 55.6 .00089 13.55 0.063 -38.87 Molybdenum, drown 3.3 .0045 10.2 1.46 2630 Nickel 1.4 Fe 1 Mn) 27.8					0.218	
hard drawn 1.03 .00382 8.89 - 1083 Eureka (55 Cu 45 Ni) See Constantan - - 3500 Gold 1.416 .0034 19.32 0.296 1063 Ideal (55 Cu 45 Ni) see Constantan - - 3500 Iron, pure Kovar A (29 Ni 17 Co .00520062 7.8 0.67 1535 Kovar A (29 Ni 17 Co .00520062 7.8 0.67 1535 Lead 12.78 .0042 11.37 0.344 327 Magnesium 2.67 .004 1.74 1.58 651 Manganin (84 Cu 12 Mn 2 4 - 8.2 0.43 910 Mercury 55.6 .00002 8.5 0.63 -38.87 Molybdenum, drawn 3.3 .0045 10.2 1.46 2630 Nicher le (55 Ni 12 Cr 27.8 .002 8.8 0.25 1300-1350 Nichet silver (64 Cu 5.05 .0047 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Gas carbon Gold 2900 0005 - - 3500 Ideal (55 Cu 45 Ni) Iron, pure 5.6 Constantan 19.32 0.296 1063 Kovar A (29 Ni 17 Co 0.3 Mn balance Fe) 28.4 - 8.2 0.193 1450 Lead 12.78 .0042 11.37 0.344 327 Magnesium 2.67 .004 1.74 1.58 651 Manganin (84 Cu 12 Mn 4 Ni) 26 ±.00002 8.5 0.63 910 Mercury 55.6 .00089 13.55 0.063 -38.87 Molybdenum, drawn 3.3 .0045 10.2 1.46 2630 Nicher I (65 Ni 12 Cr 23 Fe) 5.05 .00017 8.25 0.132 1350 Nickel Silver (64 Cu 5.05 .0047 8.85 0.6 1452 110 Pallodium 6.2 .0038 21.4 0.695 1771 1557 Steel, Ranganese (13 Mn 1 C 86 Fe) 5.45 - 8.9 0.82					_	
Gas carbon Gold 2900 0005 - - 3500 Ideal (55 Cu 45 Ni) Iron, pure 5.6 Constantan 0.296 1063 Kovar A (29 Ni 17 Co 0.3 Mn balance Fe) 28.4 - 8.2 0.193 1450 Lead 12.78 .0042 11.37 0.344 327 Magnesium 2.67 .004 1.74 1.58 651 Manganin (84 Cu 12 Mn 4 Ni) 26 ±.00002 8.5 0.63 910 Mercury 55.6 .00089 13.55 0.063 -38.87 Molybdenum, drawn 3.3 .0045 10.2 1.46 2630 Nichrome I (65 Ni 12 Cr 23 Fe) 65.0 .00017 8.25 0.132 1350 Nickel Silver (64 Cu - - 8.9 0.62 1330-1350 Nickel Silver (64 Cu - - 8.9 0.62 1050 Nickel Silver (64 Cu - - 8.9 0.82 1050 Nickel Silver (64 Cu	Eureka (55 Cu 45 Ni)	see	Constantan			
Ideal (55 Cu 45 Ni) Iron, pure see 5.6 Constantan .00520062 7.8 0.67 1535 Kovar A (29 Ni 17 Co 0.3 Mn balance Fe) 28.4 — 8.2 0.193 1450 Lead 12.78 .0042 11.37 0.344 327 Maggensium 2.67 .004 1.74 1.58 651 Manganin (84 Cu 12 Mn 4 Ni) 26 ±.00002 8.5 0.63 910 Mercury 55.6 .00089 13.55 0.063 —38.87 Molpbdenum, drawn 3.3 .0045 10.2 1.46 2630 Nichrome I (65 Ni 12 Cr 23 Fe) 65.0 .00017 8.25 0.132 1350 Nickel silver (64 Cu 16.0 .00026 8.72 0.33 1110 Palladium 6.2 .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn .004 10.5 4.19 960.5 Steel, Manganese (13 Mn .12 1 C 86 Fe)	Gas carbon	2900		l —	. –	3500
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gold	1.416	.0034	19.32	0.296	1063
Kovar A (29 Ni 17 Co 0.3 Mn balance Fe)28.4—8.20.1931450Lead12.78.004211.370.344327Magnesium2.67.0041.741.58651Manganin (84 Cu 12 Mn 4 Ni)26 $\pm .00002$ 8.50.63910Mercury55.6.0008913.550.063 -38.87 Molybdenum, drawn Molybdenum, drawn3.3.004510.21.462630Monel metal (67 Ni 30 Cu 1.4 Fe 1 Mn)27.8.0028.80.251300–1350Nichrome I (65 Ni 12 Cr 23 Fe)65.0.000178.250.1321350Nickel5.05.00478.850.61452Nickel silver (64 Cu 18 Zn 18 Ni)16.0.000268.720.331110Palladium 0.5 P balance Cu)5.45—8.90.821050Platinum 1 C 86 Fel7.6–12.7—7.80.591480Steel, SAE 1045 (0.4–0.5 C balance Fel52.8—7.90.1631410Tantalum 1 C 18 Cr 8 Ni balance Fel52.8—7.90.1631410Tantalum 1 consten9.0.003316.60.5452850Tin 2 C 1.652.9.004519.21.63370Zirle3.4.00377.141.12419	ldeal (55 Cu 45 Ni)	see	Constantan	[[
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Iron, pure	5.6	.00520062	7.8	0.67	1535
Lead 12.78 .0042 11.37 0.344 327 Magnesium 2.67 .004 1.74 1.58 651 Manganin (84 Cu 12 Mn 26 ±.00002 8.5 0.63 910 Mercury 55.6 .00089 13.55 0.063 38.87 Molybdenum, drawn 3.3 .0045 10.2 1.46 2630 Nichrome I (45 Ni 30 Cu - - - 38.87 0.02 8.8 0.25 1300-1350 Nickrome I (45 Ni 12 Cr - <td< td=""><td>Kovar A (29 Ni 17 Co</td><td></td><td>· · · ·</td><td>1</td><td></td><td>1</td></td<>	Kovar A (29 Ni 17 Co		· · · ·	1		1
Magnesium Manganin (84 Cu 12 Mn 4 Nii) 2.67 .004 1.74 1.58 651 Manganin (84 Cu 12 Mn 4 Nii) 26 ±.00002 8.5 0.63 910 Mercury 55.6 .00089 13.55 0.063 -38.87 Molybdenum, drawn Monel metal (67 Ni 30 Cu 1.4 Fe 1 Mn) 27.8 .002 8.8 0.25 1300-1350 Nichrome I (65 Ni 12 Cr 23 Fe) 65.0 .00017 8.25 0.132 1350 Nickel 5.05 .0047 8.85 0.6 1452 Nickel silver (64 Cu 18 Zn 18 Nii 16.0 .00026 8.72 0.33 1110 Palladium 6.2 .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn 0.5 P balance Cu) 5.45 - 8.9 0.82 1050 Platinum 6.16 .0038 21.4 0.6955 1771 Silver 9.5 .004 10.5 4.19 960.5 Steel, Ba-B stainless (0.1 C 18 Cr 8 Ni) 7.6-12.7 - 7.8 0.59	0.3 Mn balance Fe)	28.4	_ ·	8.2	0.193	1450
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lead	12.78	.0042	11.37	0.344	327
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.67	.004	1.74	1.58	651
Mercury 55.6 .00089 13.55 0.063 -38.87 Molybdenum, drawn 3.3 .0045 10.2 1.46 2630 Monel metal (67 Ni 30 Cu 27.8 .002 8.8 0.25 1300–1350 Nichrome I (65 Ni 12 Cr 23 Fe) 65.0 .00017 8.25 0.132 1350 Nickel 5.05 .0047 8.85 0.6 1452 110 Nickel silver (64 Cu 18 Zn 18 Ni) 16.0 .00026 8.72 0.33 1110 Palladium 6.2 .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn						
Molybdenum, drawn Monel metal (67 Ni 30 Cu 3.3 .0045 10.2 1.46 2630 Nichromel (65 Ni 12 Cr 27.8 .002 8.8 0.25 1300–1350 Nichrome I (65 Ni 12 Cr 23 Fe) 65.0 .00017 8.25 0.132 1350 Nickel 5.05 .0047 8.85 0.6 1452 Nickel silver (64 Cu 16.0 .00026 8.72 0.33 1110 Palladium 6.2 .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn .004 10.5 4.19 960.5 Silver 9.5 .004 10.5 4.19 960.5 Silver 9.5 .004 10.5 4.19 960.5 Steel, Manganese (13 Mn 1 C 86 Fe) 7.6-12.7 . 7.8 0.59 1480 . Steel, 18-8 stainless 						
Monel metal (67 Ni 30 Cu 27.8 .002 8.8 0.25 1300–1350 Nichrome I (65 Ni 12 Cr 23 Fe) 65.0 .00017 8.25 0.132 1350 Nickrome I (65 Ni 12 Cr 23 Fe) 65.0 .00017 8.25 0.132 1350 Nickel 5.05 .0047 8.85 0.6 1452 Nickel silver (64 Cu 16.0 .00026 8.72 0.33 1110 Palladium 6.2 .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn - 8.9 0.82 1050 Pletinum 6.16 .0038 21.4 0.695 1771 Silver 9.5 .004 10.5 4.19 960.5 Steel, manganese (13 Mn - - 7.8 0.59 1480 Steel, 18–8 stainless 7.6–12.7 - 7.8 0.59 1480 Steel, 18–8 stainless - - 7.9 0.163 1410 Tantalum 9.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1.4 Fe 1 Mn) 27.8 .002 8.8 0.25 1300–1350 Nickrome I (65 Ni 12 Cr 65.0 .00017 8.25 0.132 1350 Nickel 5.05 .0047 8.85 0.6 1452 Nickel silver (64 Cu 18 27.8 .00026 8.72 0.33 1110 Palladium 6.2 .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn .0038 21.4 0.6955 1771 Silver 9.5 .004 10.5 4.19 960.5 Platinum 6.16 .0038 21.4 0.6955 1771 Silver 9.5 .004 10.5 4.19 960.5 Steel, SAE 1045 (0.4–0.5 7.6–12.7 — 7.8 0.59 1480 Steel, I8–8 stainless 7.6–12.7 — 7.8 0.59 1480 0.1 C 18 Cr 8 Ni 52.8 — 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3			.0045	10.2	1.46	2630
Nichrome I (65 Ni 12 Cr 23 Fe) 65.0 .00017 8.25 0.132 1350 Nickel Nickel silver (64 Cu 18 Zn 18 Ni) 5.05 .0047 8.85 0.6 1452 Palladium Obsphor-bronze (4 Sn 0.5 P balance Cu) 16.0 .00026 8.72 0.33 1110 Palladium O.5 P balance Cu) 5.45 8.9 0.82 1050 Plotinum 6.16 .0038 21.4 0.6955 1771 Silver 9.5 .004 10.5 4.19 960.5 Steel, manganese (13 Mn 1 C 86 Fe) 41.1 7.81 0.113 1510 Steel, I8-8 stainless (0.1 C 18 Cr 8 Ni balance Fe) 52.8 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .02-07 8.4 0.136 1400 Tantalum 9.2 .0045 19.2 1.6 3370 Tin 6.7 .02-07 8.4 0.136 1400						
23 Fe) 65.0 .00017 8.25 0.132 1350 Nickel 5.05 .0047 8.85 0.6 1452 Nickel silver (64 Cu - - 8.85 0.6 1452 Nickel silver (64 Cu - - 8.85 0.6 1452 Palladium 6.2 .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn - 8.9 0.82 1050 Plotinum 6.16 .0038 21.4 0.695 1771 Silver 9.5 .004 10.5 4.19 960.5 Steel, manganese (13 Mn - - 7.81 0.113 1510 Steel, SAE 1045 (0.4–0.5 - - 7.8 0.59 1480 Steel, 18–8 stainless - 7.6–12.7 - 7.8 0.59 1480 balance Fe) 52.8 - 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545			.002	8.8	0.25	1300-1350
Nickel 5.05 .0047 8.85 0.6 1452 Nickel silver (64 Cu 16.0 .00026 8.72 0.33 1110 Palladium 6.2 .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn 0.5 P balance Cu) 5.45 - 8.9 0.82 1050 Pletinum 6.16 .0038 21.4 0.695 1771 Silver 9.5 .004 10.5 4.19 960.5 Steel, manganese (13 Mn - 7.81 0.113 1510 Steel, SAE 1045 (0.4-0.5 C - 7.8 0.59 1480 Steel, 18-8 stainless (0.1 C 18 Cr 8 Ni - - 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 - Tin 6.7 .0042 7.3 0.64 231.9 - Tophet A (80 Ni 20 Cr) 62.5			00017	0.05	0.100	10.00
Nickel silver (64 Cu 16.0 .00026 8.72 0.33 1110 Palladium 6.2 .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn 8.9 0.82 1050 Plotinum 6.16 .0038 21.4 0.695 1771 Silver 9.5 .004 10.5 4.19 960.5 Steel, manganese (13 Mn 1.0 1510 Steel, SAE 1045 (0.4–0.5 C 7.81 0.113 1510 Steel, 18–8 stainless 7.6–12.7 - 7.8 0.59 1480 fol 1 C 18 Cr 8 Ni balance Fel 52.8 - 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042						
18 Zn 18 Nii) 16.0 .00026 8.72 0.33 1110 Palladium 6.2 .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn .0038 21.4 0.695 1771 Silver 9.5 .004 10.5 4.19 960.5 Steel, manganese (13 Mn 1 - 7.81 0.113 1510 Steel, SAE 1045 (0.4–0.5 7.6–12.7 - 7.8 0.59 1480 Steel, I8–8 stainless 7.6–12.7 - 7.8 0.59 1480 Steel, I8–8 stainless 52.8 - 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02–07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12		5.05	.0047	0.00	0.0	1452
Palladium 6.2 .0038 12.16 0.7 1557 Phosphor-bronze (4 Sn 0.5 P balance Cu) 5.45 8.9 0.82 1050 Platinum 6.16 .0038 21.4 0.695 1771 Silver 9.5 .004 10.5 4.19 960.5 Steel, manganese (13 Mn 1 C 86 Fe) 41.1 7.81 0.113 1510 Steel, SAE 1045 (0.4-0.5 7.6-12.7 7.8 0.59 1480 Steel, I8-8 stainless (0.1 C 18 Cr 8 Ni balance Fe) 52.8 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02-07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419		1/0	00004	0.70	0.22	1110
Phosphor-bronze (4 Sn 0.5 P balance Cu) 5.45 8.9 0.82 1050 Plotinum 6.16 .0038 21.4 0.695 1771 Silver 9.5 .004 10.5 4.19 960.5 Steel, manganese (13 Mn 1 C 86 Fe) 41.1 7.81 0.113 1510 Steel, SAE 1045 (0.4-0.5 C balance Fe) 7.6-12.7 7.8 0.59 1480 Steel, 18-8 stainless (0.1 C 18 Cr 8 Ni balance Fe) 52.8 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02-07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419						
0.5 P balance Cu) 5.45 8.9 0.82 1050 Pletinum 6.16 .0038 21.4 0.695 1771 Silver 9.5 .004 10.5 4.19 960.5 Steel, manganese (13 Mn 1 C 86 Fe) 41.1 7.81 0.113 1510 Steel, SAE 1045 (0.4-0.5 C balance Fe) 7.6-12.7 7.8 0.59 1480 Steel, 18-8 stainless (0.1 C 18 Cr 8 Ni balance Fe) 52.8 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02-07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419		0.2	.0030	12.10	0.7	1557
Platinum 6.16 .0038 21.4 0.695 1771 Silver 9.5 .004 10.5 4.19 960.5 Steel, manganese (13 Mn 1 C 86 Fe) 41.1 - 7.81 0.113 1510 Steel, SAE 1045 (0.4–0.5 C balance Fe) 7.6–12.7 - 7.8 0.59 1480 Steel, I8–8 stainless (0.1 C 18 Cr 8 Ni balance Fe) 52.8 - 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02–07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419		5.45	_	89	0.82	1050
Silver 9.5 .004 10.5 4.19 960.5 Steel, manganese (13 Mn 1 C 86 Fe) 41.1 - 7.81 0.113 1510 Steel, SAE 1045 (0.4–0.5 C balance Fe) 7.6–12.7 - 7.8 0.59 1480 Steel, I8–8 stainless (0.1 C 18 Cr 8 Ni balance Fe) 52.8 - 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02–07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419			0038			
Steel, manganese (13 Mn 1 C 86 Fe) 41.1 7.81 0.113 1510 Steel, SAE 1045 (0.4–0.5 C balance Fe) 7.6–12.7 7.8 0.59 1480 Steel, I8–8 stainless (0.1 C 18 Cr 8 Ni balance Fe) 7.6–12.7 7.8 0.59 1480 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02–07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419						
1 C 86 Fe) 41.1 - 7.81 0.113 1510 Steel, SAE 1045 (0.4–0.5 7.6–12.7 - 7.8 0.59 1480 Steel, 18–8 stainless (0.1 C 18 Cr 8 Ni balance Fe) 7.6–12.7 - 7.8 0.59 1480 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02–07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419	•			10.0	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Steel, SAE 1045 (0.4–0.5 C balance Fe) 7.6–12.7 — 7.8 0.59 1480 Steel, I8–8 stainless (0.1 C 18 Cr 8 Ni balance Fe) 7.6–12.7 — 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02–07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419			_	7.81	0.113	1510
C balance Fe) 7.6–12.7 – 7.8 0.59 1480 Steel, 18–8 stainless (0.1 C 18 Cr 8 Ni balance Fe) 52.8 – 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02–07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419		1	ł			
Steel, 18–8 stainless (0.1 C 18 Cr 8 Ni balance Fe) 52.8 — 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02–07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419		7.6-12.7	_	7.8	0.59	1480
(0.1 C 18 Cr 8 Ni balance Fe) 52.8 — 7.9 0.163 1410 Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02–.07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419						
Tantalum 9.0 .0033 16.6 0.545 2850 Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .02–.07 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419		-		ł		
Tin 6.7 .0042 7.3 0.64 231.9 Tophet A (80 Ni 20 Cr) 62.5 .0207 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419	balance Fe)	52.8	_	7.9	0.163	1410
Tophet A (80 Ni 20 Cr) 62.5 .0207 8.4 0.136 1400 Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419	Tantalum	9.0	.0033	16.6	0.545	2850
Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419		6.7	.0042	7.3	0.64	231.9
Tungsten 3.25 .0045 19.2 1.6 3370 Zinc 3.4 .0037 7.14 1.12 419	Tophet A (80 Ni 20 Cr)	62.5	.0207		0.136	
		3.25	.0045	19.2	1.6	3370
Zirconium 2.38 .0044 6.4 — 1860	Zinc		.0037		1.12	
	Zirconium	2.38	.0044	6.4	l —	1860

* See following page.

Physical constants of various metals and alloys continued

Definitions of physical constants in preceding table

The preceding table of relative resistances gives the ratio of the resistance of any material to the resistance of a piece of annealed copper of identical physical dimensions and temperature.

1. The resistance of any substance of uniform cross-section is proportional to the length and inversely proportional to the cross-sectioned area.

 $R = \frac{\rho L}{\Lambda}$, where ρ = resistivity, the proportionality constant,

L =length, A =cross-sectional area, R = resistance in ohms.

If L and A are measured in centimeters, ρ is in ohm-centimeters.

If L is measured in feet, and A in circular mils, ρ is in ohm-circular mils per foot. Relative resistance = ρ divided by the resistivity of copper (1.7241 \times 10⁻⁶ ohm-cm).

2. The temperature coefficient of resistivity gives the ratio of the change in resistivity due to a change in temperature of 1° C relative to the resistivity at 20° C. The dimensions of this quantity are ohms per ° C per ohm or $1/^{\circ}$ C.

The resistance at any temperature is:

 $R = R_0 (1 + \alpha T)$, R_0 = resistance at 0° in ohms, T = temperature in degrees centigrade, α = temperature coefficient of resistivity 1/° C.

3. The specific gravity of a substance is defined as the ratio of the weight of a given volume of the substance to the weight of an equal volume of water.

In the cgs system, the specific gravity of a substance is exactly equal to the weight in grams of one cubic centimeter of the substance.

4. Coefficient of thermal conductivity is defined as the time rate of heat transfer through unit thickness, across unit area, for a unit difference in temperature. Expressing rate of heat transfer in watts, the coefficient of thermal conductivity

$$K = \frac{WL}{A\Delta T}$$

W = watts, L = thickness in cm, A = area in sq cm, ΔT = temperature in °C.

5. Specific heat is defined as the number of calories required to heat one gram of a substance one degree Centigrade.

 $H = ms \Delta T$ or change in heat m = mass in grams $\Delta T = temperature change ^{\circ}C$ $s = specific heat in cal/gm/^{\circ}C$

Thermocouples and their characteristics

type	copper/	[/] constantan	iron/co	onstanfan	chromel/	constantan	chron	ne!/alumei		/platinum um (10)	platinum/ rhodivi		carbon carl	/silicon bide
Composition, percent	100Cu 99.9Cu	54Cu 46Ni 55Cu 45Ni 60Cu 40Ni		55Cu 44Ni .5Mn+Fe, Si	90Ni 10Cr	55Cu 45Ni		95Ni 2Al 2Mn 1Si 97Ni 3Al+Si 94Ni 2Al 1Si 2.5Mn 0.5Fe 1Fe 0.2Mn	Pt	90Pt 10Rh	Pt	87Pt 13Rh	с	SIC
Range of application, °C	-250 to	+600	-200 to	+1050	0 to 1100		0 to 1100		0 to 1550				to 2000	
Resistivity, micro-ohm-C.M.	1.75	49	10	49	70	49	70	29.4	10	21				
	1.0039	.00001	.005	.00001	.00035	.0002	.00035	.000125	.0030	.0018	1			
Melting temperature, ° C	1085	1190	1535	1190	1400	1190	1400	1430	1755	1700			3000	2700
EMF in my reference junc- tion at 0° C	100° C 200 300	4.24mv 9.06 14.42	100° C 200 400 600 800 1000	5.28mv 10.78 21.82 33.16 45.48 58.16	200 400 600	6.3mv 13.3 28.5 44.3	100° C 200 400 600 800 1000 1200 1400	4.1 mv 8.13 16.39 24.90 33.31 41.31 48.85 55.81	100° C 200 400 600 1000 1200 1400 1600	0.643mv 1.436 3.251 5.222 7.330 9.569 11.924 14.312 16.674	200 400 600 800 1000 1200 1400 1600	1.464 3.398 5.561 7.927 10.470 13.181 15.940 18.680	1210° C 1300 1360 1450	353.6mv 385.2 403.2 424.9
and gas atmosphère	and alter 400° C du 600° due wire. Ni Cu tube g fion, in a ing gas. tion of calibratio Resistance atm. good to redu good. Re tection fumes.	ation above constantan i-plating of ives protec- icid-contain- Contamina- Cu affects n greatly. a to oxid. d. Resistance cing atm. quires pro- from acid	ducing have littl accuracy in dry o Resistanc tion good Resistanc ing good. Pr oxygen, sulphur.	atmosphere e effect on Best used timosphere. e to oxida- d to 400° C. e to reduc- atmosphere otect from moisture,	sulphurous Resistance tion good to reduci phere poo	atmosphere, to oxida- Resistance ing atmos- r.	phere very g reducing a Affected by or sulphuror H ₂ S.	ood. Resistance to Imosphere poor. sulphur, reducing us gas, SO2 and	ing atmos good. Re reducing poor. Sus chemical c As, Si, P v ducing ga H ₂ S, SO: rodes ea 1000°. Us tight prote	phere very sistance to atmosphere icceptible to ilteration by vapor in re- s (CO2, H2, b). Pt cor- sily above red in gas- secting tube.			ment. sheath inert.	Carbon themically
	dustrial. In bustion e		dustrial. nealing, t tube still	Steel an- ooiler flues, s. Used in or neutral			Used in oxid Industrial, C stills, electric	lizing atmosphere. eramic kilns, tube : furnaces.	Internation ard 630 to	nal Stand- 1065°C,	Similar to F but has hig	her emf.	ladle temp	nace and peratures. y meas-

Thermocouples and their characteristics

continued

Characteristics of typical thermocouples

Compiled from "Temperature Measurement and Control" by R. L. Weber, pages 68-71.

Melting points of solder

pure	alloys	melting	g points
percent tin	percent lead	degrees centigrade	degrees fahrenheit
100		232	450
90	10	213	415
80	20	196	385
70	30	186	367
65	35	181	358
60	40	188	370
50	50	212	414
40	60	238	460
30	70	257	496
20	80	290	554
10	90	302	576
	100	327	620

Data for a voltage which is continuous or at a frequency low enough to permit complete deionization between cycles, between needle points or clean, smooth spherical surfaces in dustfree dry air. The following multiplying factors apply for atmospheric conditions other than those stated above:

	essure			tempere	ature ° C		
<u>″ Hg</u>	mmHg	40	- 20	0	20	40	60
5	127	0.26	0.24	0.23	0.21	0.20	0.19
10	254	0.28	0.24	0.23	0.39	0.20	0.34
15	381	0.68	0.64	0.60	0.56	0.53	0.50
20	508	0.87	0.82	0.77	0.72	0.68	0.64
25	635	1.07	0.99	0.93	0.87	0.82	0.77
30	762	1.25	1.17	1.10	1.03	0.97	0.91
35	889	1.43	1.34	1.26	1.19	1.12	1.05
40	1016	1.61	1.51	1.42	1.33	1.25	1.17
45	1143	1.79	1.68	1.58	1.49	1.40	1.31
50	1270	1.96	1.84	1.73	1.63	1.53	1.44
55	1397	2.13	2.01	1.89	1.78	1.67	1.57
60	1524	2.30	2.17	2.04	1.92	1.80	1.69

Head of water in feet and approximate discharge rate

Table I

I				đi	icharge in US	gallons per	minute				
1/2"	34" 1	1'	1/1//	1 11/2"	2'	21/2	3″	31/2	4	5°	6*
.19 .28 .40 .59 .68 .79 .89 .98 1.08 1.25 1.39 1.81 1.98 2.44 2.80 3.13 4.43	.54 .77 1.09 1.33 1.63 1.89 2.17 2.44 2.73 2.98 3.86 4.72 5.46 6.71 7.71 8.65 1225	1.11 1.59 2.25 3.36 3.90 4.48 5.02 5.61 6.14 7.10 7.94 9.73 11.23 13.81 15.85 17.77 25.10	1.96 2.76 3.92 4.78 5.86 6.77 7.82 8.74 9.78 10.71 12.37 13.81 16.93 19.58 23.90 27.62 30.81 43.71	3.09 4.36 6.17 7.35 9.26 10.69 12.37 13.81 15.50 16.93 19.58 21.86 26.78 30.81 37.83 43.59 48.88 69.05	6.34 8.96 12.73 15.49 19.09 21.98 25.34 28.34 31.70 34.59 40.23 44.92 54.88 63.41 77.94 89.59 100.52 141.71	11.07 15.61 22.10 27.02 33.27 38.43 44.31 49.48 45.5.36 60.65 70.01 78.30 95.96 95.96 110.72 139.19 139.19 175.34 247.39	17.41 24.62 34.95 42.63 52.36 60.53 69.77 77.94 87.19 95.47 110.49 122.50 150.12 174.14 213.77 246.19 276.22 390.31	25.58 36.15 \$1 .28 \$2 .69 76.98 \$6 .87 102.56 114.57 127.30 139.31 162.13 180.14 220.97 255.80 314.65 361.48 404.72 571.65	35.79 50.56 71.58 87.47 107.48 123.70 142.91 159.73 178.94 195.75 225.78 252.20 309.84 357.88 439.54 505.60 665.64	62.57 88.39 124.90 152.52 187.35 216.17 249.80 279.82 342.27 342.27 342.27 342.27 342.27 342.27 345.11 441.95 541.62 625.69 765.00 883.89 989.57 397.89	98.72 139.31 196.54 241.39 295.43 342.27 395.11 440.74 493.59 540.42 624.49 697.75 855.07 987.17 1,214.15 1,394.29 1,564.82 2,209.73
				o bore with	01610 9 6						Table II
50 4.47 1,750 0.7 56	3.1	é 10 2		200 2.237 3,000 0.577	300 1.827 4,000 0.500	400 1.580 5,000 0,447	500 1.414 7,500 0.365	750 1.154 10,000 0.316	1,000 1.0 5 mi. 0.195	1,250 0.895 10 mi. 0.138	1,500 0,817 50 mi. 0,0616
	.19 .28 .40 .48 .59 .68 .79 .98 1.08 1.25 1.39 1.51 1.98 2.44 2.80 3.13 4.43 https://www.solution.com/ .1,750 50 4.47 1,750	.19 .54 .28 .77 .40 1.09 .48 1.33 .59 1.63 .68 1.89 .79 2.17 .89 2.44 .98 2.73 1.08 2.98 1.25 3.46 1.39 3.86 1.89 5.46 2.44 6.71 2.80 7.71 3.13 8.65 4.43 12.25 .13 8.65 4.43 12.25 .13 8.65 4.43 12.25 .13 8.65 4.43 12.25	.19 .54 1.11 .28 .77 1.59 .40 1.09 2.25 .48 1.33 2.75 .59 1.63 3.36 .68 1.89 3.90 .79 2.17 4.48 .89 2.44 5.02 .98 2.73 5.61 1.08 2.98 6.14 1.25 2.46 7.10 1.39 3.86 7.94 1.89 5.46 11.23 2.44 6.71 13.81 2.80 7.71 15.85 3.13 8.65 17.77 4.43 12.25 2.5.10 ns per minute through pipe lengths see T 50 160 4.47 3.16 1.47 3.16 4.47 3.16 1.16 1.16	.19 .54 1.11 1.96 .28 .77 1.59 2.76 .40 1.09 2.25 3.92 .48 1.33 2.75 4.78 .59 1.63 3.36 5.86 .68 1.89 3.90 6.77 .89 2.44 5.02 8.74 .89 2.44 5.02 8.74 .98 2.73 5.61 9.78 .108 2.98 6.14 10.71 .125 2.46 7.10 12.37 .139 3.86 7.94 13.81 .171 1.381 23.90 2.44 .671 13.81 23.90 .244 6.71 13.81 23.90 .260 7.71 15.85 27.62 .313 8.65 17.77 30.81 .4.43 12.25 25.10 43.71 ns per minute through 1000 ft. pipe lengths see Table II. 1.670	$\frac{1}{2}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$.19 .54 1.11 1.96 3.09 .28 .77 1.59 2.76 4.36 .40 1.09 2.25 3.92 6.17 .48 1.33 2.75 4.78 7.55 .59 1.63 3.36 5.86 9.26 .79 2.17 4.48 7.82 12.37 .89 2.44 5.02 8.74 13.81 .98 2.73 5.61 9.78 15.60 1.08 2.98 6.14 10.71 16.93 1.25 2.46 7.10 12.37 19.58 1.39 2.86 7.74 13.81 21.80 30.81 2.44 6.71 13.81 23.90 37.83 30.81 2.44 6.71 13.81 23.90 37.83 30.81 2.44 6.71 13.81	$\frac{1}{2}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{6}{4}$ $\frac{3}{4}$ $\frac{6}{133}$ $\frac{2}{25}$ $\frac{3}{2}$ $\frac{6}{6}$ $\frac{8}{4}$ $\frac{1}{33}$ $\frac{2}{25}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{6}{6}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{6}{6}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{6}{6}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{3}{4}$ 1^{*} $\frac{1}{4}$ $\frac{1}{2}$ $\frac{2}{4}$ $\frac{2}{4}$ $\frac{2}{4}$ $\frac{1}{2}$ $\frac{2}{4}$ $\frac{1}{2}$ $\frac{2}{4}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{1}{6}$ $\frac{1}{2}$ <th< td=""><td>.19 .54 1.11 1.96 3.09 6.34 11.07 17.41 .28 .77 1.59 2.76 4.36 8.96 15.61 24.62 .40 1.09 2.25 3.92 6.17 12.73 22.10 34.95 .48 1.33 2.75 4.78 7.45 15.49 27.02 42.63 .68 1.89 3.36 5.86 9.26 19.09 33.27 52.36 .68 1.89 3.70 6.77 10.69 21.98 38.43 60.53 .79 2.17 4.48 7.82 12.37 25.34 44.31 69.77 .89 2.44 5.02 8.74 13.61 28.34 49.48 77.94 .98 2.73 5.61 9.78 15.60 31.70 55.36 87.19 1.08 2.98 6.14 10.71 16.93 34.59 60.65 95.47 1.39 3.86 7.94<</td><td>$\frac{1}{2}$ $\frac{3}{4}$ 1^{r} $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{2}{4}$ $\frac{2}{2}$ $\frac{3}{4}$ $\frac{2}{4}$ $\frac{2}{2}$ $\frac{3}{4}$ $\frac{2}{4}$ $\frac{2}{2}$ $\frac{3}{4}$ $\frac{2}{4}$ /td><td>$\frac{1}{2}$ $\frac{3}{2}$ $\frac{4}{2}$ 19 .54 1.11 1.96 3.69 6.34 11.07 17.41 25.58 35.79 .28 .77 1.59 2.76 4.36 8.96 15.61 24.62 36.15 50.56 .40 1.09 2.25 3.92 6.17 12.73 21.05 34.95 61.28 71.58 .48 1.33 3.36 5.86 9.26 14.05 13.92 25.34 44.31 60.77 102.56 142.91 .89 2.44 5.02 8.74 13.81 23.84 49.48 77.94 114.57 15.97.33 .98 2.73 5.61</td><td>$\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{3}{2}$ <</td></th<>	.19 .54 1.11 1.96 3.09 6.34 11.07 17.41 .28 .77 1.59 2.76 4.36 8.96 15.61 24.62 .40 1.09 2.25 3.92 6.17 12.73 22.10 34.95 .48 1.33 2.75 4.78 7.45 15.49 27.02 42.63 .68 1.89 3.36 5.86 9.26 19.09 33.27 52.36 .68 1.89 3.70 6.77 10.69 21.98 38.43 60.53 .79 2.17 4.48 7.82 12.37 25.34 44.31 69.77 .89 2.44 5.02 8.74 13.61 28.34 49.48 77.94 .98 2.73 5.61 9.78 15.60 31.70 55.36 87.19 1.08 2.98 6.14 10.71 16.93 34.59 60.65 95.47 1.39 3.86 7.94<	$\frac{1}{2}$ $\frac{3}{4}$ 1^{r} $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ $\frac{2}{4}$ $\frac{2}{2}$ $\frac{3}{4}$ $\frac{2}{4}$ $\frac{2}{2}$ $\frac{3}{4}$ $\frac{2}{4}$ $\frac{2}{2}$ $\frac{3}{4}$ $\frac{2}{4}$	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{4}{2}$ 19 .54 1.11 1.96 3.69 6.34 11.07 17.41 25.58 35.79 .28 .77 1.59 2.76 4.36 8.96 15.61 24.62 36.15 50.56 .40 1.09 2.25 3.92 6.17 12.73 21.05 34.95 61.28 71.58 .48 1.33 3.36 5.86 9.26 14.05 13.92 25.34 44.31 60.77 102.56 142.91 .89 2.44 5.02 8.74 13.81 23.84 49.48 77.94 114.57 15.97.33 .98 2.73 5.61	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{3}{2}$ <

Approximate discharge for the 1000 foot line from Table I = 195.75 gallons per minute. Factor from Table II = 0.447 . Approximate discharge = 195.75 × 0.447 = 87.5

<u>ج</u> ، د

Materials and finishes for tropical and marine use

Ordinary finishing of equipment fails in meeting satisfactorily conditions encountered in tropical and marine use. Under these conditions corrosive influences are greatly aggravated by prevailing higher relative humidities, and temperature cycling causes alternate condensation on, and evaporation of moisture from, finished surfaces. Useful equipment life under adverse atmospheric influences depends largely on proper choice of base materials and finishes applied. Especially important in tropical and marine applications is avoidance of electrical contact between dissimilar metals.

Dissimilar metals, widely separated in the galvanic series, should not be bolted, riveted, etc., without separation by insulating material at the faying surfaces. The only exception occurs when both surfaces have been coated with the same protective metal, e.g., electroplating, hot dipping, galvanizing, etc.

In addition to choice of deterioration-resistant materials, consideration must be given to weight, need for a conductive surface, availability of ovens, appearance, etc.

A-order of preference:

Base materials

- 1. Brass
- 2. Nickel silver
- 3. Phosphor-bronze
- 4. Monel
- 5. Stainless steel
- Finishes
- 1. Baked paint
- 2. Force dried paint
- 3. Air dried paint (pigmentless paint, e.g., varnish)

B-order of preference: (if A is impracticable)

Base materials

- 1. Copper
- 2. Steel

Finishes

- 1. Copper-nickel-chromium
- 2. Copper-nickel-oxide
- 3. Copper-nickel
- 4. Zinc, lacquered

- 5. Cadmium, lacquered
- 6. Zinc, phosphated
- 7. Cadmium, phosphated

- 6. Aluminum, anodized
- 7. Steel, zinc phosphated
- 8. Steel, cadmium phosphated
- 9. Steel, phosphated

Materials and finishes for tropical and marine use continued

Aluminum should always be anodized. Aluminum, steel, zinc, and cadmium should never be used bare.

Electrical contact surfaces should be given above finish B-1 or 3, and, in addition, they should be silver plated.

Variable capacitor plates should be silver plated.

All electrical circuit elements and uncoated metallic surfaces (except electrical contact surfaces) inside of cabinets should receive a coat of fungicidal moisture repellant varnish or lacquer.

Wood parts should receive:

- 1. Dip coat of fungicidal water repellant sealer.
- 2. One coat of refinishing primer.
- 3. Suitable topcoat.

Torque and horsepower

Torque varies directly with power and inversely with rotating speed of the shaft, or

$$T = \frac{KP}{N}$$

where T = torque in inch-pounds, P = hp, N = rpm, K (constant) = 63,000. Example 1: For a two-horsepower motor rotating at 1800 rpm,

$$T = \frac{63,000 \times 2}{1800} = 70$$
 inch-pounds.

If the shaft is 1 inch in diameter, the force at its periphery

$$F = \frac{T}{\text{Radius}} = \frac{70 \text{ inch-pounds}}{0.5} = 140 \text{ pounds}$$

Example 2: If 150 inch-pounds torque are required at 1200 rpm,

$$150 = \frac{63,000 \text{ hp}}{1200}$$
 hp $= \frac{150 \times 1200}{63,000} = 2.86 \text{ pounds}$

🖬 Audio and radio design

Color code voltage characteristic tolerance % rating AWS and RMA AWS JAN RMA significant 1938 decimal and 1938 mica JAN* color figure multiplier std std† capacitors Black ±20%M 0 A Brown 1 в 10 1 100 2 Red 100 2 ±2%G 200 С Orange 3 1,000 3 300 D Yellow 4 10,000 4 400 Ε 100,000 Green 5 5 500 F Blue 6 1,000,000 6 600 G Violet 7 10,000,000 7 700 8 100,000,000 8 Gray 800 1,000,000,000 9 9 900 White Gold 0.1 5 ±5%J 1.000 + Silver 0.01 ± 10 ±10%K 2.000 ± 20 500 No color

Resistors and capacitors

* Letter used to indicate tolerance in type designations.

† Applies to capacitors only.

Resistors, fixed composition

RMA Standard, American War Standard, and Joint Army-Navy Specifications for color coding of fixed composition resistors are identical in all respects.

The exterior body color of insulated axial-lead composition resistors is usually tan, but other colors, except black, are permitted. Non-insulated, axial-lead composition resistors have a black body color. Radial-lead composition resistors may have a body color representing the first significant figure of the resistance value.

axial leads	color	radiat ieads
Band A	indicates first significant figure of resistance value in ohms.	Body A
Band B	indicates second significant figure.	End B
Band C	indicates decimal multiplier.	Band C or dot
Band D	if any, indicates tolerance in percent about nominal resistance value. If no color appears in this position, tolerance is 20%.	Band D

Note: Low-power insulated wire-wound resistors have axial leads and are color coded similar to the left-hand figure above except that band A is double width.

Standard color coding for resistors

preferre	ferred values of resistance (ohms)		old standard resistance	resistance designation		indard resistance designation preferred values of resistance		sistance	old standard resistance	resista	nce desig	nation	
=20% D = no col	± 10% D = silver	±5% D = gold	values (ohms)	A .	В	с	= 20% D = no col	$\pm 10\%$ D = silver	=5% D = gold	values (ohms)		В	с
			50	Green	Black	Black	1,000	1,000	1,000	1,000	Brown	Black	Red
	·	51		Green	Brown	Black		.,	1,100	.,	Brown	Brown	Red
	56	56		Green	Blue	Black	1	1,200	1,200	1,200	Brown	Red	Red
		62		Blue	Red	Black		.,	1,300	.,	Brown	Orange	Red
68	68	68		Blue	Gray	Black	1,500	1,500	1500	1,500	Brown	Green	Red
		68 75	75	Violet	Green	Black		.,	1,600	.,	Brown	Blue	Red
	82	82		Gray	Red	Black	(1,800	1,800		Brown	Grav	Red
		91		White	Brown	Black	l i	.,	2,000	2.000	Red	Black	Red
100	100	100	100	Brown	Black	Brown	2,200	2,200	2,200	_,	Red	Red	Red
		110		Brown	Brown	Brown			2,400		Red	Yellow	Red
	120	120		Brown	Red	Brown	[2,100	2,500	Red	Green	Red
		130		Brown	Orange	Brown	[2,700	2,700		Red	Violet	Red
150	150	150	150	Brown	Green	Brown		-/	3,000	3.000	Orange	Black	Red
		160	-	Brown	Blue	Brown	3,300	3,300	3,300	-,	Orange	Orange	Red
	180	130		Brown	Gray	Brown		-,	-/	3,500	Orange	Green	Red
	,	200	200	Red	Black	Brown	1		3,600	0,000	Orange	Blue	Red
220	220	220		Red	Red	Brown		3,900	3,900		Orange	White	Red
		240		Red	Yellow	Brown		-,,	0,100	4,000	Yellow	Black	Red
	1		250	Red	Green	Brown	[4,300	.,	Yellow	Orange	Red
	270	270		Red	Violet	Brown	4,700	4,700	4,700		Yellow	Violet	Red
		300	300	Orange	Black	Brown		.,	.,	5,000	Green	Black	Red
330	330	330		Orange	Orange	Brown			5,100		Green	Brown	Red
			350	Orange	Green	Brown		5,600	5,600		Green	Blue	Red
		360		Orange	Blue	Brown		-,	6,200		Blue	Red	Red
	390	390		Oronge	White	Brown	6,800	6,800	6,800	[Blue	Gray	Red
			400	Yellow	Black	Brown		-,	7,500	7,500	Violet	Green	Red
j		430		Yellow	Orange	Brown	j	8,200	8,200		Grav	Red	Red
			450	Yellow	Green	Brown		-,	9,100	1	White	Brown	Red
470	470	470		Yellow	Violet	Brown	10,000	10,000	10,000	10.000	Brown	Black	Orange
-			500	Green	Black	Brown	,		11,000		Brown	Brown	Orange
1		510		Green	Brown	Brown	[12,000	12,000	12,000	Brown	Red	Orange
	560	560		Green	Blue	Brown	ŀ	/	13,000		Brown	Orange	Orange
1			600	Blue	Black	Brown	15,000	15.000	15,000	15,000	Brown	Green	Orange
. 1		620		Blue	Red	Brown		,	16,000	1	Brown	Blue	Orange
680	680	680		Blue	Gray	Brown	•	18,000	18,000		Brown	Gray	Orange
		750	750	Violet	Green	Brown	1		20,000	20,000	Red	Black	Orange
	820	820		Gray	Red	Brown	22,000	22,000	22,000		Red	Red	Orange
1		910		White	Brown	Brown			24,000		Red	Yellow	Orange
	•		-				-						

continued

Standard color coding for resistors

preferre	d values of m (ohms)	esistance	old standard resistance	resistance designation		preferred values of resistance (ohms)		esistance	old standard resistance	resistance designation			
±20 %	±10%	±5%	values		8	с	±20%	= 10%	±5 %	values	1.		-
D = no col	D = silver	D = gold	(ohrrs)	A	•		D = no col	D = silver	D = gold	(ohms)	A	В	С
	1		25,000	Red	Green	Urange	1	1	510,000	1	Green	Brown	Yellow
	27,000	27,000		Red	Violet	Orange		560,000	560,000	{	Green	Blue	Yellow
		30,000	30,000	Orange	Black	Orange				600,000	Blue	Black	Yellow
33,000	33,000	33,000		Orange	Orange	Orange			620,000		Blue	Red	Yellow
•		36,000		Orange	Blue	Orange	680,000	680,000	680,000	· ·	Blue	Gray	Yellow
	39,000	39,000		Orange	White	Orange			750,000	750,000	Violet	Green	Yellow
			40,000	Yellow	Black	Orange		820,000	820,000		Gray	Red	Yellow
		43,000		Yellow	Orange	Orange			910,000	1	White	Brown	Yellow
47,000	47,000	47,000		Yellow	Violet	Orange	1.0 Meg	1.0 Meg	1.0 Meg	1.0 Meg	Brown	Black	Green
			50,000	Green	Black	Orange		-	1.1 Meg	1	Brown	Brown	Green
	1	51,000		Green	Brown	Orange		1.2 Meg	1.2 Meg		Brown	Red	Green
	56,000	56,000		Green	Blue	Orange		-	1.3 Meg	t i	Brown	Orange	Green
	· ·		60,000	Blue	Black	Orange	1.5 Meg	1.5 Meg	1.5 Meg	1.5 Meg	Brown	Green	Green
		62,000		Blue	Red	Orange	· ·	-	1.6 Meg		Brown	Blue	Green
68,000	68,000	68,000		Blue	Gray	Orange		1.8 Meg	1.8 Meg	1	Brown	Gray	Green
		75,000	75,000	Violet	Green	Orange		-	2.0 Meg	2.0 Meg	Red	Biack	Green
	82,000	82,000		Gray	Red	Orange	2.2 Meg	2.2 Meg	2.2 Meg		Red	Red	Green
	· ·	91,000		White	Brown	Orange	, i	, i	2.4 Meg		Red	Yellow	Green
100,000	100,000	100 000	100,000	Brown	Black	Yellow		2.7 Meg	2.7 Meg	1	Red	Violet	Green
•		110 000		Brown	Brown	Yellow		-	3.0 Meg	3.0 Meg	Orange	Biack	Green
	120,000	120 000	120,000	Brown	Red	Yellow	3.3 Meg	3.3 Meg	3.3 Meg		Orange	Orange	Green
		130 000		Brown	Orange	Yellow		-	3.6 Meg		Orange	Brue	Green
150,000	150,000	150 000	150,000	Brown	Green	Yellow	1	3.9 Meg	3.9 Meg)	Orange	White	Green
-		160 000		Brown	Blue	Yellow		-	· ·	4.0 Meg	Yellow	Biack	Green
	180,000	180 000		Brown	Gray	Yellow	1		4.3 Meg		Yellow	Orange	Green
		200 000	200,000	Red	Black	Yellow	4.7 Meg	4.7 Meg	4.7 Meg	ļ	Yellow	Violet	Green
220,000	220,000	220 000		Red	Red	Yellow			l u	5.0 Meg	Green	Black	Green
•		240,000		Red	Yellow	Yellow	i i i i i i i i i i i i i i i i i i i		5.1 Meg		Green	Brown	Green
•			250,000	Red	Green	Yellow		5.6 Meg	5.6 Meg	(Green	Blue	Green
	270,000	270.000		Red	Violet	Yellow		, T	, i	6.0 Meg	Blue	Black	Green
		300 000	300,000	Orange	Black	Yellow		į i	6.2 Meg		Blue	Red	Green
330,000	330,000	330 000		Orange	Orange	Yellow	6.8 Meg	6.8 Meg	6.8 Meg	·	Blue	Gray	Green
		360 000	[Orange	Blue	Yellow		•		7.0 Meg	Violet	Black	Green
	390,000	390,000	1	Orange	White	Yellow	J		7.5 Meg		Violet	Green	Green
			400,000	Yellow	Black	Yellow	1			8.0 Meg	Gray	Black	Green
		430.000	í '	Yellow	Orange	Yellow		8.2 Meg	8.2 Meg		Grav	Red	Green
470,000	470,000	470,000	l	Yellow	Violet	Yellow	ł			9.0 Meg	White	Black	Green
	1	1	500,000	Green	Black	Yellow	ł	1	9.1 Meg		White	Brown	Green
	1		1	l	1	1	10 Meg	10 Meg	10 Meg	10 Meg	Brown	Black	Blue

.

.

AUDIO AND RADIO DESIGN 55

Capacitors, fixed mica dielectric

Fixed mica-dielectric capacitors of the American War Standards and Joint Army-Navy Specification are designated differently from the 1938 RMA Standard. AWS and JAN mica capacitors have a characteristic defined in Table I.

Table I

charac- teristic	Q	temperature coefficient parts/million/°C	maximum capacitance drift	verification of characteristics by production test
A	*	Not specified	Not specified	Not required
В	+	Not specified	Not specified	Not required
cl	÷	-200 to +200	0.5 percent	Not required
D	÷	-100 to +100	0.2 percent	Not required
E	ŧ	0 to + 100	0.05 percent	Not required
F	ŧ	0 to +50	0.025 percent	Required
G	ŧ	0 to -50	0.025 percent	

* Q must be greater than 1/3 of minimum allowable Q for other characteristics (JAN). † Minimum acceptable Q at 1 MC is defined by a curve; value varies with capacitance.

Type designations of AWS or JAN fixed mica-dielectric capacitors are a comprehensive numbering system used to identify the component. The capacitor type designation is given in the following form:

Component designation: Fixed mica-dielectric capacitors are identified by the symbol CM.

Case designation: The case designation is a 2-digit symbol which identifies a particular case size and shape.

Characteristic: The characteristic is indicated by a single letter in accordance with Table 1.

Capacitance value: The nominal capacitance value in micromicrofarads is indicated by a 3-digit number. The first two digits are the first two digits of the capacitance value in micromicrofarads. The final digit specifies the number of zeros which follow the first two digits. If more than two significant figures are required, additional digits may be used, the last digit always indicating the number of zeros.

Capacitance tolerance: The symmetrical capacitance tolerance in percent is designated by a letter as shown on page 52.

Capacitors, fixed mica dielectric

continued

AWS and JAN fixed capacitors

RMA fixed capacitors

The 1938 RMA Standard covers a simple 3-dot color code showing directly only the capacitance, and a more comprehensive 6-dot color code showing 3 significant figures and tolerance of the capacitance value, and a voltage rating. Capacitance values are expressed in micromicrofarads up to 10,000 micromicrofarads.

Examples

	t bottom row					w	1 •
		top rov	,			rance iplier	
type	left	center	right	left	center	right	description
RMA (3 dot) RMA RMA CM30B681 J CM35E332G	red brown brown black black	green black red blue orange	brown black green gray orange	none blue gold brown vellow	none green ved gold red	none brown brown brown red	250 $\mu\mu f \Rightarrow 20\%$, 500 volts 1000 $\mu\mu f \Rightarrow 5\%$, 600 volts 1250 $\mu\mu f \Rightarrow 2\%$, 1000 volts 680 $\mu\mu f \Rightarrow 2\%$, characteristic B 3300 $\mu\mu f \Rightarrow 2\%$, characteristic E

Capacitors, fixed ceramic

Tubular ceramic dielectric capacitors are used for temperature compensation of tuned circuits and have many other applications as well. If the capacitance, tolerance, and temperature coefficient are not printed on the capacitor body, the following color code will be used. The change in capacitance per unit capacitance per degree centigrade is the temperature coefficient, usually stated in parts per million per centigrade (ppm/°C).

· •			cap acitanc	temperature		
color	significant figure	multiplier	in % c > 10 μμf	in μμf c < 10 μμf	coefficient parts/million/° C	
black	0	1	±20	2.0	0	
brown	1	10	±۱		- 30	
red	2	100	土 l 土 2		- 80	
orange	3	1,000			- 150	
yellow	4				-220	
green	5	—	±5	0.5	-330	
blue	6	—			-470	
violet	7	—			-750	
gray	8	0.01		0.25	+30	
white	9	0.1	±10	1.0	-330 ± 500	

Examples

wide	r	arrow bo	ands or dot	5	1
band	A	, B	C	D	description
black blue violet	black red gray	red red red	black black brown	black green silver	2.0 $\mu\mu$ i ± 2 $\mu\mu$ i, zero temp coeff 22 $\mu\mu$ i ± 5%, -470 ppm/° C temp coeff 8:29 $\mu\mu$ i ±10%, -750 ppm/° C temp coeff

Inductance of single-layer solenoids

The approximate value of the *low-frequency* inductance of a single-layer solenoid is:

 $L = Fn^2 d$ microhenries*

where F = form factor, a function of the ratio d/l. The value of F may be read from the accompanying chart, Fig. 1:

n = number of turns, d = diameter of coil (inches), between centers of conductors, I = length of coil (inches) = n times the distance between centers of adjacent turns.

The formula is based on the assumption of a uniform current sheet, but the correction due to the use of spaced round wires is usually negligible for practical purposes. For higher frequencies skin effect alters the inductance slightly. This effect is not readily calculated, but is often negligibly small. However, it must be borne in mind that the formula gives approximately the true value of inductance. In contrast, the apparent value is affected by the shunting effect of the distributed capacitance of the coil.

Example: Required a coil of 100 microhenries inductance, wound on a form 2 inches diameter by 2 inches winding length. Then d/l = 1.00, and F = 0.0173 on the chart.

$$n = \sqrt{\frac{L}{Fd}} = \sqrt{\frac{100}{0.0173 \times 2}} = 54$$
 turns

Reference to Magnet Wire Data, page 60, will assist in choosing a desirable size of wire, allowing for a suitable spacing between turns according to the application of the coil. A slight correction may then be made for the increased diameter (diameter of form plus two times radius of wire), if this small correction seems justified.

In the use of various charts, tables, and calculators for designing inductors, the following relationships are useful in extending the range of the devices. They apply to coils of any type or design.

1. If all dimensions are held constant, inductance is proportional to n^2 .

2. If the proportions of the coil remain unchanged, then for a given number of turns the inductance is proportional to the dimensions of the coil. A coil with all dimensions m times those of a given coil (having the same number of turns) has m times the inductance of the given coil. That is, inductance has the dimensions of *length*.

* Formulas and chart (Fig. 1) derived from equations and tables in Bureau of Standards Circular No. 74.

Magnet wire data

size	bare nom	enam nom	scc*	DCC*	SCE*	SSC*	DSC*	SSE*	ь	ire	enan	reled
wire AWG	diam in inches	diam in inches	diam in inch e s	diam in inches	diam in inches	diam in inches	diam in inches	diam in inches	min diam inches	max diam inches	min diam inches	diam* in inches
10 11 12	.1019 .0907 .0808	.1039 .0927 .0827	.1079 .0957 .0858	.1129 .1002 .0903	.1104 .0982 .0882				.1009 .0898 .0800	.1029 .0917 .0816	.1024 .0913 .0814	.1044 .0932 .0832
13 14 15	.0720 .0641 .0571	.0738 .0659 .0588	.0770 .0691 .0621	.0815 .0736 .0666	.0793 .0714 .0643	.0591	.0611	.0613	.0712 .0634 .0565	.0727 .0647 .0576	.0726 .0648 .0578	.0743 .0664 .0593
16	.0508	.0524	.0558	.0603	.0579	.0528	.0548	.0549	.0503	.0513	.0515	.0529
17	.0453	.0469	.0503	.0548	.0523	.0473	.0493	.0493	.0448	.0457	.0460	.0473
18	.0403	.0418	.0453	.0498	.0472	.0423	.0443	.0442	.0399	.0407	.0410	.0422
19	.0359	.0374	.0409	.0454	.0428	,0379	.0399	.0398	.0355	.0363	.0366	.0378
20	.0320	.0334	.0370	.0415	.0388	.0340	.0360	.0358	.0316	.0323	.0326	.0338
21	.0285	.0299	.0335	.0380	.0353	.0305	.0325	.0323	.0282	.0287	.0292	.0303
22	.0253	.0266	.0303	.0343	.0320	.0273	.0293	.0290	.0251	.0256	.0261	.0270
23	.0226	.0238	.0276	.0316	.0292	.0246	.0266	.0262	.0223	.0228	.0232	.0242
24	.0201	.0213	.0251	.0291	.0266	.0221	.0241	.02 36	.0199	.0203	.0208	.0216
25	.0179	.0190	.0224	.0264	.0238	.0199	.0219	.0213	.0177	.0181	.0186	.0193
26	.0159	.0169	.0204	.0244	.0217	.0179	.0199	.0192	.0158	.0161	.0166	.0172
27	.0142	.0152	.0187	.0227	.0200	.0162	.0182	.0175	.0141	.0144	.0149	.0155
28	.0126	.0135	.0171	.0211	.0183	.0146	.0166	.0158	.0125	.0128	.0132	.0138
29	.0113	.0122	.0158	.0198	.0170	.0133	.0153	.0145	.0112	.0114	.0119	.0125
30	.0100	.0108	.0145	.0185	.0156	.0120	.0140	.0131	.0099	.0101	.0105	.0111
31	.0089	.0097	.0134	.0174	.0144	.0109	.0129	.0119	.0088	.0090	.0094	.0099
32	.0080	.0088	.0125	.0165	.0135	.0100	.0120	.0110	.0079	.0081	.0085	.0090
33	.0071	.0078	.0116	.0156	.0125	.0091	.0111	.0100	.0070	.0072	.0075	.0080
34	.0063	.0069	.0108	.0148	.0116	.0083	.0103	.0091	.0062	.0064	.0067	.0071
35	.0056	.0061	.0101	.0141	.0108	.0076	.0096	.0083	.0055	.0057	.0059	.0063
36	.0050	.0055	.0090	.0130	.0097	.0070	.0090	.0077	.0049	.0051	.0053	.0057
37	.0045	.0049	.0085	.0125	.0091	.0065	.0085	.0071	.0044	.0046	.0047	.0051
38	.0040	.0044	.0080	.0120	.0086	.0060	.0080	.0056	.0039	.0041	.0042	.0046
39	.0035	.0038	.0075	.0115	.0080	.0055	.0075	.0050	.0034	.0036	.0036	.0040
40 41 42	.0031 .0028 .0025	.0034 .0031 .0028	.0071	.0111	.0076	.0051	.0071	.0056	.0030 .0327 .0024	.0032 .0029 .0026	.0032 .0029 .0026	.0036 .0032 .0029
43 44	.0022 .0020	.0025 .0023				1 - 1 - 1 			.0021 .0019	.0023 .0021	.0023 .0021	.0026 .0024

* Nominal bare diameter plus maximum additions. For additional data on copper wire, see pages 35, 36, and 126.

Reactance charts

Figs 2, 3, and 4 give the relationships of capacitance, inductance, reactance, and frequency. Any one value may be determined in terms of two others by use of a straight edge laid across the correct chart for the frequency under consideration.

Fig. 2---1 cycle to 1000 cycles.

Reactance charts

Example: Given a capacitance of 0.001 μ f, find the reactance at 50 kilocycles and inductance required to resonate. Place a straight edge through these values and read the intersections on the other scales, giving 3,180 ohms and 10.1 millihenries.

62

AUDIO AND RADIO DESIGN

Reactance charts

continued

Fig. 4-1 megacycle to 1000 megacycles.

Impedance formulas

phase angle of the admittance

is — $\tan^{-1}\frac{X}{R}$

phase angle $\phi = \tan^{-1} \frac{X}{R}$ admittance $Y = \frac{1}{Z}$ mhos

magnitude $|\mathbf{Z}| = [\mathbf{R}^2 + \mathbf{X}^2]^{\frac{1}{2}}$ ohms

impedance Z = R + jX ohms

diagram	impedance	magnitude	phase angle	admittance
••••••••••••••••••••••••••••••••••••••	R	R	0	1 <i>R</i>
<u> </u>	jωL	ωL	$+\frac{\pi}{2}$	$-j\frac{1}{\omega L}$
⊶- ⁻ -¦ ∘	$-f\frac{1}{\omega C}$	<u>1</u> ωC	$-\frac{\pi}{2}$	jωC
<u>مربوں م</u> ورب	$j\omega$ ($L_1 + L_2 \pm 2M$)	$\omega(L_1 + L_2 \pm 2\hbar M)$	$+\frac{\pi}{2}$	$-f\frac{1}{\omega(l_1+l_3\pm 2M)}$
	$-j\frac{1}{\omega}\left(\frac{1}{C_1}+\frac{1}{C_2}\right)$	$\frac{1}{\omega}\left(\frac{1}{C_1}+\frac{1}{C_2}\right)$	$-\frac{\pi}{2}$	$j\omega \frac{C_1 C_2}{C_1 + C_2}$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	R + just	$[R^2 + \omega^2 L^2]^{\frac{1}{2}}$	$\tan^{-1}\frac{\omega L}{R}$	$\frac{R - j\omega L}{R^2 + \omega^2 L^2}$
^{ℯĸ} ∕∕∕᠆ᡰ <b>⊢</b> ∽	$R - j \frac{1}{\omega C}$	$\frac{1}{\omega C} \left[1 + \omega^2 C^2 R^2\right]^{\frac{1}{2}}$	$-\tan^{-1}\frac{1}{\omega CR}$	$\frac{R+j\frac{1}{\omega C}}{R^2+\frac{1}{\omega^2 C^2}}$
	$j\left(\omega \mathbf{L}-\frac{1}{\omega \mathbf{C}}\right)$	$\left(\omega L - \frac{1}{\omega C}\right)$	$\pm \frac{\pi}{2}$	$j \frac{\omega C}{1 - \omega^2 L C}$
<b>%</b> ^^	$R+j\left(\omega L-\frac{1}{\omega C}\right)$	$\left[R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}\right]^{\frac{1}{2}}$	$\tan^{-1}\frac{\left(\omega L - \frac{1}{\omega C}\right)}{R}$	$\frac{R-f\left(\omega L-\frac{1}{\omega C}\right)}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$

	$\frac{R_1 R_2}{R_1 + R_2}$	$\frac{\frac{R_1 R_2}{R_1 + R_2}}{R_1 + R_2}$	0	$\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$
- Configure-	$j\omega \left[\frac{L_1 L_2 - M^2}{L_1 + L_2 \mp 2M}\right]$	$\omega \left[ \frac{l_1 l_2 - M^2}{l_1 + l_2 \mp 2M} \right]$	$+\frac{\pi}{2}$	$-j\frac{1}{\omega}\left[\frac{L_1+L_2\mp 2M}{L_1L_2-M^2}\right]$
	$-j\frac{1}{\omega(C_1+C_2)}$	$\frac{1}{\omega (C_1 + C_2)}$	$-\frac{\pi}{2}$	$j\omega(C_1+C_2)$
	$\omega LR \left[ \frac{\omega L + jR}{R^2 + \omega^2 L^2} \right]$	$\frac{\omega LR}{[R^2 + \omega^2 L^2]^{\frac{1}{2}}}$	$\tan^{-1}\frac{R}{\omega L}$	$\frac{1}{R} - j \frac{1}{\omega L}$
	$\frac{R(1 - j\omega CR)}{1 + \omega^2 C^2 R^2}$	$\frac{R}{\left[1+\omega^2 C^2 R^2\right]^{\frac{1}{2}}}$	— tan ⁻¹ ωCR	$\frac{1}{R} + j\omega C$
ج <mark>ر ای</mark> ب	$j \frac{\omega L}{1 - \omega^2 LC}$	$\frac{\omega L}{1-\omega^2 LC}$	$\pm \frac{\pi}{2}$	$j\left(\omega C-\frac{1}{\omega L}\right)$
	$\frac{\frac{1}{R} - j\left(\omega C - \frac{1}{\omega L}\right)}{\left(\frac{1}{R}\right)^2 + \left(\omega C - \frac{1}{\omega L}\right)^2}$	$\frac{1}{\left[\left(\frac{1}{\bar{R}}\right)^2 + \left(\omega C - \frac{1}{\omega L}\right)^2\right]^{\frac{1}{2}}}$	$\tan^{-1} R\left(\frac{1}{\omega L} - \omega C\right)$	$\frac{1}{R} + j \left( \omega C - \frac{1}{\omega L} \right)$
	$R_{2} \frac{R_{1}(R_{1} + R_{2}) + \omega^{2}L^{2} + j\omega LR_{2}}{(R_{1} + R_{2})^{2} + \omega^{2}L^{2}}$	$R_{2}\left[\frac{R_{1}^{2}+\omega^{2}L^{2}}{(R_{1}+R_{2})^{2}+\omega^{2}L^{2}}\right]^{\frac{1}{2}}$	$\tan^{-1} \frac{\omega L R_2}{R_1 (R_1 + R_2) + \omega^2 L^2}$	$\frac{R_1(R_1 + R_2) + \omega^2 L^2 - j\omega L R_2}{R_2(R_1^2 + \omega^2 L^2)}$

AUDIO AND RADIO DESIGN

ទ



	impedance	$\frac{R_{1}R_{2}(R_{1}+R_{2})+\omega^{2}L^{2}R_{2}+\frac{R_{1}}{\omega^{2}C^{2}}}{(R_{1}+R_{2})^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}+j\frac{\omega LR_{2}^{2}-\frac{R_{1}^{2}}{\omega C}-\frac{L}{C}\left(\omega L-\frac{1}{\omega C}\right)}{(R_{1}+R_{2})^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$
ا ما ا	magnitude	$\left[\frac{(R_1^2 + \omega^2 L^2)\left(R_2^2 + \frac{1}{\omega^2 C^2}\right)}{(R_1 + R_2)^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}\right]^{\frac{1}{2}}$
	phase angle	$\tan^{-1}\left[\frac{\omega LR_2^2 - \frac{R_1^2}{\omega C} - \frac{L}{C}\left(\omega L - \frac{1}{\omega C}\right)}{R_1R_2(R_1 + R_2) + \omega^2 L^2R_2 + \frac{R_1}{\omega^2 C^2}}\right]$
	admittance	$ \bullet \frac{R_1 + \omega^2 C^2 R_1 R_2 (R_1 + R_2) + \omega^4 L^2 C^2 R_2}{(R_1^2 + \omega^2 L^2) (1 + \omega^2 C^2 R_2^2)} + j\omega \left[ \frac{CR_1^2 - L + \omega^2 L C (L - CR_2^2)}{(R_1^2 + \omega^2 L^2) (1 + \omega^2 C^2 R_2^2)} \right] $
	impedance	$\frac{R_1R_2(R_1+R_2)+R_1X_2^2+R_2X_1^2}{(R_1+R_2)^2+(X_1+X_2)^2}+j\frac{R_1^2X_2+R_2^2X_1+X_1X_2(X_1+X_2)}{(R_1+R_2)^2+(X_1+X_2)^2}$
พิ	magnitude	$\left[\frac{(R_1^2 + X_1^2)(R_2^2 + X_2^2)}{(R_1 + R_2)^2 + (X_1 + X_2)^2}\right]^{\frac{1}{2}}$
<u>ത</u> ് –	phase angle	$\tan^{-1} \frac{R_1^2 X_2 + R_2^2 X_1 + X_1 X_2 (X_1 + X_2)}{R_1 R_2 (R_1 + R_2) + R_1 X_2^2 + R_2 X_1^2}$
	admittance	$\frac{R_1(R_2^2 + X_2^2) + R_2(R_1^2 + X_1^2)}{(R_1^2 + X_1^2)(R_2^2 + X_2^2)} - j \frac{X_1(R_2^2 + X_2^2) + X_2(R_1^2 + X_1^2)}{(R_1^2 + X_1^2)(R_2^2 + X_2^2)}$

.

AUDIO AND RADIO DESIGN 67

### Impedance formulas continued

#### Parallel and series circuits and their equivalent relationships

 $B = \frac{T}{X_P}$ Conductance  $G = \frac{1}{R_{-}}$  $\omega = 2\pi f$ Susceptance  $B = \frac{1}{\chi_p} = \frac{1}{\omega L_p} - \omega C_p$  $C = \frac{1}{R_p}$ Reactance  $X_p = \frac{\omega L_p}{1 - \omega^2 L_p C_p}$ Admittance Y =  $\frac{I}{F} = \frac{1}{7} = G - jB$ Ε  $=\sqrt{C^2+B^2} \angle -\phi = |Y| \angle -\phi$ ;BE Impedance  $Z = \frac{E}{I} = \frac{1}{Y} = \frac{R_p X_p}{R_n^2 + X_n^2} (X_p + jR_p)$ I = YE  $= \frac{R_p X_p}{\sqrt{R_-^2 + X_p^2}} \angle \phi = |Z| \angle \phi$ parallel circuit Phase angle  $-\phi = \tan^{-1} \frac{-B}{G} = \cos^{-1} \frac{G}{|Y|} = -\tan^{-1} \frac{R_p}{X_p}$ Resistance  $= R_s$ Reactance  $X_s = \omega L_s - \frac{1}{\omega C_s}$ 000 Ls Impedance  $Z = \frac{E}{r} = R_s + jX_s$ E  $=\sqrt{R_s^2+X_s^2} \angle \phi = |Z| \angle \phi$ Phase angle  $\phi = \tan^{-1} \frac{\chi_s}{R_s} = \cos^{-1} \frac{R_s}{|Z|}$ ixi Vectors E and I, phase angle  $\phi$ , and Z, Y are identical for the parallel circuit and its equival-Ř.I ent series circuit equivalent series circuit  $Q = |\tan \phi| = \frac{|X_s|}{R} = \frac{R_p}{|X_s|} = \frac{|B|}{C}$ 

$$PF = \cos \phi = \frac{R_s}{|Z|} = \frac{|Z|}{R_p} = \frac{G}{|Y|} = \sqrt{\frac{R_s}{R_p}} = \frac{1}{\sqrt{Q^2 + 1}} = \frac{kw}{kva}$$
$$Z^2 = R_s^2 + X_s^2 = \frac{R_p^2 X_p^2}{R_p^2 + X_p^2} = R_s R_p = X_s X_p$$

Impedance formulas continued

$$Y^{2} = G^{2} + B^{2} = \frac{1}{R_{p}^{2}} + \frac{1}{X_{p}^{2}} = \frac{G}{R_{s}}$$

$$R_{s} = \frac{Z^{2}}{R_{p}} = \frac{G}{Y^{2}} = R_{p} \frac{X_{p}^{2}}{R_{p}^{2} + X_{p}^{2}} = R_{p} \frac{1}{Q^{2} + 1}$$

$$X_{s} = \frac{Z^{2}}{X_{p}} = \frac{B}{Y^{2}} = X_{p} \frac{R_{p}^{2}}{R_{p}^{2} + X_{p}^{2}} = X_{p} \frac{1}{1 + \frac{1}{Q^{2}}}$$

$$R_{p} = \frac{1}{G} = \frac{Z^{2}}{R_{s}} = \frac{R_{s}^{2} + X_{s}^{2}}{R_{s}} = R_{s} (Q^{2} + 1)$$
$$X_{p} = \frac{1}{B} = \frac{Z^{2}}{X_{s}} = \frac{R_{s}^{2} + X_{s}^{2}}{X_{s}} = X_{s} \left(1 + \frac{1}{Q^{2}}\right) = \frac{R_{s}R_{p}}{X_{s}} = \pm R_{p} \sqrt{\frac{R_{s}}{R_{p} - R_{s}}}$$

Approximate formulas

Reactor  $R_s = \frac{X^2}{R_p}$  and  $X = X_s = X_p$  (See Note 1) Resistor  $R = R_s = R_p$  and  $X_s = \frac{R^2}{X_s}$  (See Note 2)



### Impedance formulas

continued

$$X_p = \frac{-1}{\omega C_p}$$
  $B = -\omega C_p$   $X_s = \frac{-1}{\omega C_s}$ 

 $\tan \phi = \frac{-1}{\omega C_p R_p} = -\omega C_p R_p$ 

- $Q = \frac{1}{\omega C_p R_p} = \omega C_p R_p$
- $PF = \frac{\omega C_s R_s}{\sqrt{1 + \omega^2 C_s^2 R_s^2}} = \frac{1}{\sqrt{1 + \omega^2 C_s^2 R_s^2}}$

$$PF = \frac{1}{Q} \text{ approx} \quad \text{(See Note 3)}$$

$$R_s = R_p \frac{1}{Q^2 + 1} \qquad R_p = R_s (Q^2 + 1)$$

$$C_s = C_p \left(1 + \frac{1}{Q^2}\right) \qquad C_p = C_s \frac{1}{1 + \frac{1}{Q^2}}$$



#### Approximate formulas

Inductor  $R_s = \frac{\omega^2 L^2}{R_p}$  and  $L = L_p = L_s$  (See Note 1) Resistor  $R = R_s = R_p$  and  $L_p = \frac{R^2}{\omega^{2l}}$  (See Note 2) Capacitor  $R_s = \frac{1}{\omega^2 C^2 R_p}$  and  $C = C_p = C_s$  (See Note 1) Resistor  $R = R_s = R_p$  and  $C_s = \frac{1}{\omega^2 C_s R^2}$  (See Note 2) Note 1: (Small resistive component) Error in percent  $= -\frac{100}{\Omega^2}$  (for Q = 10, error = 1 percent low) Note 2: (Small reactive camponent) Error in percent =  $-100 Q^2$  (for Q =

0.1, error = 1 percent low)

Note 3: Error in percent =  $+\frac{50}{\Omega^2}$  approximately (for Q = 7, error = 1 percent high)

#### Skin effect

- A = correction coefficient
- D = diameter of conductor in inches
- f = frequency in cycles per second
- $R_{ac}$  = resistance at frequency f
- $R_{dc}$  = direct-current resistance
  - T = thickness of tubular conductor in inches
  - $T_1 = depth of penetration of current$
  - $\mu$  = permeability of conductor material ( $\mu$  = 1 for copper and other nonmagnetic materials)
  - $\rho$  = resistivity of conductor material at any temperature
  - $\rho_c$  = resistivity of copper at 20°C(1.724 microhm-centimeter)

Fig. 5 shows the relationship of  $R_{ac}/R_{dc}$  versus  $D\sqrt{f}$  for copper, or versus  $D\sqrt{f}\sqrt{\mu_{\rho}^{P_{c}}}$  for any conductor material, for an isolated straight solid conductor of circular cross section. Negligible error in the formulas for  $R_{ac}$  results when the conductor is spaced at least 10D from adjacent conductors. When the spacing between axes of parallel conductors carrying the same current is 4D, the resistance  $R_{ac}$  is increased about 3 percent. The formulas are accurate for concentric lines due to their circular symmetry.

For values of 
$$D\sqrt{f}\sqrt{\mu\frac{\rho_c}{\rho}}$$
 greater than 40,  
 $\frac{R_{ac}}{R_{ac}} = 0.0960 \ D\sqrt{f}\sqrt{\mu\frac{\rho_c}{\rho}} + 0.26$ 
(1)

The high-frequency resistance of an isolated straight conductor: either solid; or tubular for  $T < \frac{D}{8}$  or  $T_1 < \frac{D}{8}$ ; is given in equation (2). If the current flow is along the inside surface of a tubular conductor, D is the inside diameter.

$$R_{ac} = A \frac{\sqrt{f}}{D} \sqrt{\mu \frac{\rho}{\rho_c}} \times 10^{-6} \text{ ohms per foot}$$
(2)

The values of the correction coefficient A for solid conductors are shown in Table II and, for tubular conductors, in Table III.

The value of  $T\sqrt{f}\sqrt{\mu \frac{\rho_c}{\rho}}$  that just makes A = 1 indicates the penetration of



Fig. 5—Resistance ratio for isolated straight solid conductors of circular cross section.
## Skin effect continued

the currents below the surface of the conductor. Thus, approximately,

$$T_1 = \frac{3.5}{\sqrt{f}} \sqrt{\frac{\rho}{\mu \rho_c}} \text{ inches.}$$
(3)

When  $T_1 < \frac{D}{8}$  the value of  $R_{ac}$  as given by equation (2) (but not the value

of  $\frac{R_{ac}}{R_{do}}$  in Table III) is correct for any value  $T \ge T_1$ .

Under the limitation that the radius of curvature of all parts of the cross section is appreciably greater than  $T_1$ , equations (2) and (3) hold for isolated straight conductors of any shape. In this case the term D = (perimeter of cross section)  $\div \pi$ .

#### Examples

**1.** At 100 megacycles, a copper conductor has a depth of penetration  $T_1 = 0.00035$  inch.

**2.** A steel shield with 0.005-inch copper plate, which is practically equivalent in  $R_{ac}$  to an isolated copper conductor 0.005-inch thick, has a value of A = 1.23 at 200 kilocycles. This 23-percent increase in resistance over that of a thick copper sheet is satisfactorily low as regards its effect on the losses of the components within the shield. By comparison, a thick aluminum sheet

has a resistance  $\sqrt{\frac{\rho}{\rho_c}} = 1.28$  times that of copper.

## Table II—Solid conductors

# Table III—Tubular conductors

$D\sqrt{f}\sqrt{\mu \frac{p_o}{\rho}}$	A	$\left  \mathbf{T} \sqrt{\hat{f}} \sqrt{\mu \frac{\rho_o}{\rho}} \right $	A	$R_{ac}/R_{dc}$
> 370	1.000	= B  where	1.00	0.384 B
220 160	1.005 1.010	B > 3.5 ∫ 3.5	1.00	1.35
		3.15	1.01	1.23
98	1.02	2.85	1.05	1.15
48	1.05			
26	1.10	2.60	1.10	1.10
		2.29	1.20	1.06
13	1.20	2.08	1.30	1.04
9.6	1.30	1		
5.3	2.00	1.77	1.50	1.02
< 3.0 l	$R_{ac} pprox R_{dc}$	1.31	2.00	1.00
$R_{de} = \frac{10.37}{D^2} \frac{\rho}{\rho_e} \times 1$	0 ⁻⁶ ohms per foot	$= B \text{ where} \\ B < 1.3 $	2.60 B	1.00

# Network theorems

# **Reciprocity theorem**

If an emf of any character whatsoever located at one point in a linear network produces a current at any other point in the network, the same emf acting at the second point will produce the same current at the first point.

# Thévenin's theorem

If an impedance Z is connected between two points of a linear network, the resulting steady-state current I through this impedance is the ratio of the potential difference V between the two points prior to the connection of Z, and the sum of the values of (1) the connected impedance Z, and (2) the impedance  $Z_1$  of the network measured between the two points, when all generators in the network are replaced by their internal impedances

$$I = \frac{V}{Z + Z_1}$$

#### **Principle of superposition**

The current which flows at any point in a network composed of constant resistances, inductances, and capacitances, or the potential difference which exists between any two points in such a network, due to the simultaneous action of a number of emf's distributed in any manner throughout the network, is the sum of the component currents at the first point, or the potential differences between the two points, which would be caused by the individual emf's acting alone. (Applicable to emf's of any character.)

In the application of this theorem, it is to be noted that: for any impedance element Z through which flows a current I, there may be substituted a virtual source of voltage of value -ZI.

# **Electrical circuit formulas**

1. Self-inductance of circular ring of round wire at radio frequencies, for non-magnetic materials

$$L = \frac{\alpha}{100} \left[ 7.353 \log_{10} \frac{16\alpha}{d} - 6.370 \right]$$

L = inductance in microhenries

a = mean radius of ring in inches

d = diameter of wire in inches

$$\frac{a}{d} > 2.5$$

# 2. Capacitance of a parallel-plate capacitor

 $C = 0.0885 K \frac{(N-1) A}{K}$  micromicrofarads

A = area of one side of one plate in square centimeters

N = number of plates

t = thickness of dielectric in centimeters

K = dielectric constant

This formula neglects "fringing" at the edges of the plates.

# 3. Reactance of an inductor

 $X = 2\pi f L$  ohms

f = frequency in cycles per second

L = inductance in henries

or f in kilocycles and L in millihenries; or f in megacycles and L in microhenries

# 4. Reactance of a capacitor

 $X = \frac{-1}{2\pi fC}$  ohms

f = frequency in cycles per second

C = capacitance in farads

This may be written  $X = \frac{-159.2}{fC}$  ohms

f = frequency in kilocycles per second

C = capacitance in microfarads

or f in megacycles and C in milli-microfarads  $(0.001\mu f)$ .

# 5. Resonant frequency of a series-tuned circuit

 $f = \frac{1}{2\pi\sqrt{LC}}$  cycles per second

L = inductance in henries.

C = capacitance in farads

This may be written LC

$$=\frac{25,330}{r_2}$$

f = frequency in kilocycles

L = inductance in millihenries

 $C = capacitance in milli-microfarads (0.001 \mu f)$ 

or f in megacycles, L in microhenries, and C in micromicrofarads.

# 6. Dynamic resistance of a parallel-tuned circuit at resonance

$$r = \frac{X^2}{R} = \frac{L}{CR} \text{ ohms}$$

$$X = \omega L = \frac{1}{\omega C}$$

$$R = r_1 + r_2$$

$$L = \text{ inductance in henries}$$

$$C = \text{ capacitance in farads}$$

$$R = \text{ resistance in ohms}$$
The formula is accurate for engineering purposes provided  $\frac{X}{R} > 10$ .



### 7. Parallel impedances

If  $Z_1$  and  $Z_2$  are the two impedances which are connected in parallel, then the resultant impedance is

$$Z = \frac{Z_1 Z_2}{Z_1 + Z_2} = \frac{(R_1 + jX_1) (R_2 + jX_2)}{(R_1 + R_2) + j(X_1 + X_2)} = \frac{(R_1 R_2 - X_1 X_2) + j(R_1 X_2 + R_2 X_1)}{(R_1 + R_2) + j(X_1 + X_2)}$$

$$Z = \frac{|Z| |Z_2|}{|Z_1 + Z_2|} \angle \phi$$

$$\phi = \angle Z_1 + \angle Z_2 - \angle (Z_1 + Z_2)$$

$$= \tan^{-1} \frac{X_1}{R_1} + \tan^{-1} \frac{X_2}{R_2} - \tan^{-1} \frac{X_1 + X_2}{R_1 + R_2}$$

Given one impedance  $Z_1$  and the desired resultant impedance  $Z_2$ , the other impedance is

$$Z_2 = \frac{ZZ_1}{Z_1 - Z}$$

# 8. Impedance of a two-mesh network

$$Z_{11} = R_{11} + jX_{11}$$

is the impedance of the first circuit, measured at terminals 1 - 1 with terminals 2 - 2 open-circuited.

$$Z_{22} = R_{22} + j X_{22}$$

76

170

# audio and radio design 77

# Electrical circuit formulas continued

is the impedance of the second circuit, measured at terminals 2-2 with terminals 1-1 open-circuited.

$$Z_{12} = R_{12} + jX_{12}$$

is the mutual impedance between the two meshes, i.e., the open-circuit voltage appearing in either mesh when unit current flows in the other mesh.



Then the impedance looking into terminals 1 - 1 with terminals 2 - 2 short-circuited is

$$Z_{1}' = R_{1}' + jX_{1}' = Z_{11} - \frac{Z_{12}^{2}}{Z_{22}} = R_{11} + jX_{11} - \frac{R_{12}^{2} - X_{12}^{2} + 2jR_{12}X_{12}}{R_{22} + jX_{22}}$$

When

 $R_{12} = 0$ 

$$Z_{1}' = R_{1}' + jX_{1}' = Z_{11} + \frac{X_{12}^{2}}{Z_{22}} = R_{11} + jX_{11} + \frac{X_{12}^{2}}{R_{22}^{2} + X_{22}^{2}} (R_{22} - jX_{22})$$

Example 1: Two resistors in parallel.

$$Z_{11} = R_1$$
  $Z_{22} = R_1 + R_2$   
 $Z_{12} = R_1$ 

Hence  $Z_1' = R_1' = R_1 - \frac{R_1^2}{R_1 + R_2} = \frac{R_1 R_2}{R_1 + R_2}$ 

**Example 2:** A transformer with tuned secondary and negligible primary resistance.

$$Z_{11} = j\omega L_1$$

$$Z_{22} = R_2 \quad \text{since } X_{22} = 0$$

$$Z_{12} = j\omega M$$
Then  $Z_1' = j\omega L_1 + \frac{\omega^2 M^2}{R_2}$ 



#### 9. Currents in a two-mesh network

$$i_{1} = \frac{e_{1}}{Z_{1}'}$$

$$= e_{1} \frac{Z_{22}}{Z_{11}Z_{22} - Z_{12}^{2}}$$

$$= e_{1} \frac{R_{22} + jX_{22}}{(R_{11}R_{22} - X_{11}X_{22} - R_{12}^{2} + X_{12}^{2}) + j(R_{11}X_{22} + R_{22}X_{11} - 2R_{12}X_{12})}$$

$$i_{2} = e_{1} \frac{Z_{12}}{Z_{11}Z_{22} - Z_{12}^{2}}$$

#### 10. Power transfer between two impedances connected directly

Let  $Z_1 = R_1 + jX_1$  be the impedance of the source, and  $Z_2 = R_2 + jX_2$  be the impedance of the load.

The maximum power transfer occurs when

 $R_2 = R_1$  and  $X_2 = -X_1$ 

The reflection loss due to connecting any two impedances directly is

$$\frac{I_2}{I} = \frac{|Z_1 + Z_2|}{2\sqrt{R_1R_2}}$$

In decibels

db = 20 log₁₀ 
$$\frac{|Z_1 + Z_2|}{2\sqrt{R_1R_2}}$$

 $I_2$  = current which would flow in  $Z_2$  were the two impedances connected through a perfect impedance matching network.

I = current which flows when the impedances are connected directly.

#### Power transfer between two meshes coupled reactively

In the general case,  $X_{11}$  and  $X_{22}$  are not equal to zero and  $X_{12}$  may be any reactive coupling. When only one of the quantities  $X_{11}$ ,  $X_{22}$ , and  $X_{12}$  can be varied, the best power transfer under the circumstances is given by



For X₂₂ variable

$$X_{22} = \frac{X_{12}^2 X_{11}}{R_{11}^2 + X_{11}^2}$$
 (zero reactance looking into load circuit)

For  $X_{11}$  variable

 $X_{11} = \frac{X_{12}^2 X_{22}}{R_{22}^2 + X_{22}^2}$  (zero reactance looking into source circuit)

For  $X_{12}$  variable

 $X_{12}^{2} = \sqrt{(R_{11}^{2} + X_{11}^{2}) (R_{22}^{2} + X_{22}^{2})}$ 

When two of the three quantities can be varied, a perfect impedance match is attained and maximum power is transferred when

$$X_{12}^2 = \sqrt{(R_{11}^2 + X_{11}^2)} (R_{22}^2 + X_{22}^2)$$

and

 $\frac{X_{11}}{R_{11}} = \frac{X_{22}}{R_{22}}$  (both circuits of same Q or phase angle)

For perfect impedance match the current is

$$i_2 = \frac{e_1}{2\sqrt{R_{11}R_{22}}} \angle \tan^{-1}\frac{R_{11}}{X_{11}}$$

In the most common case, the circuits are tuned to resonance  $X_{11} = 0$  and  $X_{22} = 0$ . Then  $X_{12}^2 = R_{11}R_{22}$  for perfect impedance match.

# 12. Optimum coupling between two circuits tuned to the same frequency

From the last result in the preceding section, maximum power transfer (or an impedance match) is obtained for  $\omega^2 M^2 = R_1 R_2$  where M is the mutual inductance between the circuits  $R_1$  and  $R_2$  are the

where M is the mutual inductance between the circuits,  $R_1$  and  $R_2$  are the resistances of the two circuits.

## 13. Coefficient of coupling

By definition, coefficient of coupling k is

$$k = \frac{M}{\sqrt{L_1 L_2}}$$
 where  $M$  = mutual inductance

 $L_1$  and  $L_2$  are the inductances of the two coupled circuits.

Coefficient of coupling is a geometrical property, being a function of the proportions of the configuration of coils, including their relationship to any nearby objects which affect the field of the system. As long as these proportions remain unchanged, the coefficient of coupling is independent of the physical size of the system, and of the number of turns of either coil.

## 14. Selective circuits

Formulas and curves are presented for the selectivity and phase shift

Of *n* single tuned circuits

Of m pairs of coupled tuned circuits

The conditions assumed are

**1.** All circuits are tuned to the same frequency  $f_0$ .

**2.** All circuits have the same  $Q_1$  or each pair of circuits includes one circuit having  $Q_1$ , and the other having  $Q_2$ .

3. Otherwise the circuits need not be identical.

**4.** Each successive circuit or pair of circuits is isolated from the preceding and following ones by tubes, with no regeneration around the system.

Certain approximations have been made in order to simplify the formulas. In most actual applications of the types of circuits treated, the error involved is negligible from a practical standpoint. Over the narrow frequency band in question, it is assumed that

1. The reactance around each circuit is equal to  $2X_0 \frac{\Delta f}{f_0}$ .

**2.** The resistance of each circuit is constant and equal to  $\frac{\chi_0}{Q}$ .

**3.** The coupling between two circuits of a pair is reactive and constant. (When an untuned link is used to couple the two circuits, this condition frequently is far from satisfied, resulting in a lopsided selectivity curve.)

**4.** The equivalent input voltage, taken as being in series with the tuned circuit (or the first of a pair), is assumed to bear a constant proportionality to the grid voltage of the input tube or other driving source, at all frequencies in the band.

5. Likewise, the output voltage across the circuit (or the final circuit of a pair) is assumed to be proportional only to the current in the circuit.

The following symbols are used in the formulas

$$\frac{\Delta f}{f_0} = \frac{f - f_0}{f_0} = \frac{\text{deviation from resonance frequency}}{\text{resonance frequency}}$$
  

$$f = \text{signal frequency}$$
  

$$f_0 = \text{frequency to which all circuits are independently tuned}$$
  

$$X_0 = \text{reactance at } f_0 \text{ of inductor in tuned circuit}$$
  

$$Q = \text{quality factor of tuned circuit. For a pair of coupled circuits, there is}$$
  

$$used Q = \sqrt{Q_1Q_2}$$
  

$$Q_1 \text{ and } Q_2 \text{ are the values for the two circuits of a coupled pair}$$
  

$$Q' = \frac{2Q_1Q_2}{Q_1 + Q_2}$$
  

$$E = \text{amplitude of output voltage at frequency } f \) \text{ both for the same value}$$
  

$$F_0 = \text{amplitude of output voltage at frequency } f_0 \) \text{ of input voltage}$$
  

$$n = \text{number of single tuned circuits}$$
  

$$m = \text{number of pairs of coupled circuits}$$
  

$$\phi = \text{phase shift of signal at } f \text{ relative to shift at } f_0,$$
  

$$as \text{ signal passes through cascade of circuits}$$
  

$$k = \text{coefficient of coupling between two coupled circuits}$$
  

$$p = k^2Q^2 \text{ or } p = k^2Q_1Q_2, \text{ a parameter determining the form of the selec-
tivity curve of coupled circuits}$$

$$B = p - \frac{1}{2} \left( \frac{Q_1}{Q_2} + \frac{Q_2}{Q_1} \right)$$

# Selectivity and phase shift of single tuned circuits

$$\frac{E}{E_0} = \left[\frac{1}{\sqrt{1 + \left(2Q\frac{\Delta f}{f_0}\right)^2}}\right]^{f}$$
$$\frac{\Delta f}{f_0} = \pm \frac{1}{2Q}\sqrt{\left(\frac{E_0}{E}\right)^{\frac{2}{n}} - 1}$$



single tuned circuit

Decibel response = 20  $\log_{10} \left( \frac{E}{E_0} \right)$ 

(db response of n circuits) = n times (db response of single circuit)

$$\phi = n \tan^{-1} \left( -2Q \frac{\Delta f}{f_0} \right)$$

These equations are plotted in Fig. 6 and Fig. 7, following.



Fig. 6-Selectivity curves.

As an example of the use of the curves, suppose there are three single-tuned circuits (n = 3). Each circuit has a Q = 200 and is tuned to 1000 kilocycles. The results of this example are shown in the following table:

abscissa Q $\frac{\Delta f}{f_0}$	∆f kc	ordinate db response for n = 1	db response for n = 3	$\phi^*$ for n = 1	$\phi^*$ for n = 3
0.5	$\pm 2.5$	3.0	-9	∓45°	∓135°
1.5	$\pm 7.5$	10.0	-30	∓71½°	∓215°
5.0	$\pm 25.0$	20.2	-61	<del>∓</del> 84°	<del>∓</del> 252°

* $\phi$  is negative for  $\Delta f$  positive, and vice versa.



# Selectivity and phase shift of pairs of coupled tuned circuits

Case 1: When  $Q_1 = Q_2 = Q$ 

These formulas can be used with reasonable accuracy when  $Q_1$  and  $Q_2$  differ by ratios up to 1.5 or even 2 to 1. In such cases use the value  $Q = \sqrt{Q_1Q_2}$ .

$$\frac{E}{E_0} = \left[\frac{p+1}{\sqrt{\left[\left(2Q\frac{\Delta f}{f_0}\right)^2 - (p-1)\right]^2 + 4p}}\right]^m$$

$$\frac{\Delta f}{f_0} = \pm \frac{1}{2Q}\sqrt{(p-1)} \pm \sqrt{(p+1)^2\left(\frac{E_0}{E}\right)^{\frac{2}{m}} - 4p}$$

For very small values of  $\frac{E}{E_0}$  the formulas reduce to

one of several types of coupling



Decibel response = 20  $\log_{10}\left(\frac{E}{E_0}\right)$ 

(db response of m pairs of circuits) = m times (db response of one pair)

$$\phi = m \tan^{-1} \left[ \frac{-4Q \frac{\Delta f}{f_0}}{(p+1) - \left(2Q \frac{\Delta f}{f_0}\right)^2} \right]$$

As p approaches zero, the selectivity and phase shift approach the values for n single circuits, where n = 2m (gain also approaches zero).

The above equations are plotted in Figs. 6 and 7.

# For overcoupled circuits (p > 1)

Location of peaks: 
$$\left(\frac{\Delta f}{f_0}\right)_{peak} = \pm \frac{1}{2Q}\sqrt{p-1}$$
  
Amplitude of peaks:  $\left(\frac{E}{E_0}\right)_{peak} = \left(\frac{p+1}{2\sqrt{p}}\right)^m$   
Phase shift at peaks:  $\phi_{peak} = m \tan^{-1}(\pm \sqrt{p-1})$ 

Approximate pass band (where  $\frac{E}{E_0} = 1$ ):

$$\left(\frac{\Delta f}{f_0}\right)_{center} = 0 \quad \text{and} \left(\frac{\Delta f}{f_0}\right)_{unity} = \sqrt{2} \left(\frac{\Delta f}{f_0}\right)_{peak} = \pm \frac{1}{Q} \sqrt{\frac{p-1}{2}}$$

Case 2: General formula for any  $Q_1$  and  $Q_2$ 

$$\frac{E}{E_0} = \left[\frac{p+1}{\sqrt{\left[\left(2Q\frac{\Delta f}{f_0}\right)^2 - B\right]^2 + (p+1)^2 - B^2}}\right]^m \cdot \frac{\Delta f}{f_0} = \pm \frac{1}{2Q}\sqrt{B \pm \left[(p+1)^2 \left(\frac{E_0}{E}\right)^{\frac{2}{m}} - (p+1)^2 + B^2\right]^{\frac{1}{2}}} \phi = m \tan^{-1} \left[-\frac{2Q\frac{\Delta f}{f_0} \left(\sqrt{\frac{Q_1}{Q_2}} + \sqrt{\frac{Q_2}{Q_1}}\right)}{(p+1) - \left(2Q\frac{\Delta f}{f_0}\right)^2}\right]$$

# For overcoupled circuits

Location of peaks: 
$$\left(\frac{\Delta f}{f_0}\right)_{peak} = \pm \frac{\sqrt{B}}{2Q} = \pm \frac{1}{2}\sqrt{k^2 - \frac{1}{2}\left(\frac{1}{Q_1^2} + \frac{1}{Q_2^2}\right)}$$
  
Amplitude of peaks:  $\left(\frac{E}{E_0}\right)_{peak} = \left[\frac{p+1}{\sqrt{(p+1)^2 - B^2}}\right]^m$ 

Case 3: Peaks just converged to a single peak

Here 
$$B = 0$$
 or  $k^2 = \frac{1}{2} \left( \frac{1}{Q_1^2} + \frac{1}{Q_2^2} \right)$   

$$\frac{E}{E_o} = \left[ \frac{2}{\sqrt{\left( 2Q' \frac{\Delta f}{f_0} \right)^4 + 4}} \right]^m ; \frac{\Delta f}{f_0} = \pm \frac{\sqrt{2}}{4} \left( \frac{1}{Q_1} + \frac{1}{Q_2} \right) \sqrt[4]{\left( \frac{E_0}{E} \right)^{\frac{2}{m}} - 1}$$

$$\phi = m \tan^{-1} \left[ -\frac{4Q' \frac{\Delta f}{f_0}}{2 - \left( 2Q' \frac{\Delta f}{f_0} \right)^2} \right]$$
The curves of Figs. 6 and 7 may be applied to this case, using the value  $p = 1$ , and substituting Q' for Q.

# 15. T — $\pi$ or Y — $\Delta$ transformation

The two networks are equivalent, as far as conditions at the terminals are concerned, provided the following equations are satisfied. Either the impedance equations or the admittance equations may be used.



T or Y network



Impedance equations



Admittance equations

$$Y_{12} = \frac{Y_1 Y_2}{Y_1 + Y_2 + Y_3}$$

$$Y_{13} = \frac{Y_1 Y_3}{Y_1 + Y_2 + Y_3}$$

$$Y_{23} = \frac{Y_2 Y_3}{Y_1 + Y_2 + Y_3}$$

$$Y_1 = \frac{Y_{12} Y_{13} + Y_{12} Y_{23} + Y_{13} Y_{23}}{Y_{23}}$$

$$Y_2 = \frac{Y_{12} Y_{13} + Y_{12} Y_{23} + Y_{13} Y_{23}}{Y_{13}}$$

$$Y_3 = \frac{Y_{12} Y_{13} + Y_{12} Y_{23} + Y_{13} Y_{23}}{Y_{12}}$$

# 16. Amplitude modulation

In design work, usually the entire modulation is assumed to be in  $M_1$ . Then  $M_2$ ,  $M_3$ , etc, would be neglected in the formulas below.

When the expression  $(1 + M_1 + M_2 + ...)$  is used, it is assumed that  $\omega_1$ ,  $\omega_2$ , etc, are incommensurate.

 $i = I[1 + M_1 \cos (\omega_1 t + \phi_1) + M_2 \cos (\omega_2 t + \phi_2) + \dots] \sin (\omega_0 t + \phi_0)$ 

C.E. Tennis

continued

# Electrical circuit formulas



To determine the modulation percentage from an oscillogram of type illustrated apply measurements A and B to scales A and B and read percentage from center scale. Example: A = 3 inches, B = 0.7 inches. Modulation 62%. Any units of measurement may be used.

#### Fig. 8—Modulation percentage from oscillograms.

$$= I\{\sin (\omega_0 t + \phi_0) + \frac{M_1}{2} [\sin (\overline{\omega_0 + \omega_1} t + \phi_0 + \phi_1) + \frac{M_2}{2} [\sin (\overline{\omega_0 - \omega_1} t + \phi_0 - \phi_1)] + \frac{M_2}{2} [\sin (\overline{\omega_0 + \omega_2} t + \phi_0 + \phi_2) + \frac{M_2}{2} (\sin (\overline{\omega_0 - \omega_2} t + \phi_0 - \phi_2)] + \dots \}$$
Percent modulation =  $(M_1 + M_2 + \dots) \times 100$   

$$= \frac{\text{crest ampl} - \text{trough ampl}}{\text{crest ampl} + \text{trough ampl}} \times 100.$$

Percent modulation may be measured by means of an oscilloscope, the modulated carrier wave being applied to the vertical plates and the modulating voltage wave to the horizontal plates. The resulting trapezoidal pattern and a nomograph for computing percent modulation are shown in Fig. 8. The dimensions A



and B in that figure are proportional to the crest amplitude and trough amplitude, respectively.

Peak voltage at crest:  $V_{crest} = V_{carrier, rms} (1 + M_1 + M_2 + ...) \sqrt{2}$ 

Kilovolt-amperes at crest:  $kva_{crest} = kva_{carrier} (1 + M_1 + M_2 + ...)^2$ 

Average kilovolt-amperes over a number of cycles of lowest modulation frequency:

$$kva_{average} = kva_{carrier} \left( 1 + \frac{M_1^2}{2} + \frac{M_2^2}{2} + \dots \right)$$

Effective current of the modulated wave:

$$I_{eff} = I_{carrier, rms} \sqrt{1 + \frac{M_1^2}{2} + \frac{M_2^2}{2} + \dots}$$

# 17. Elementary R-C, R-L, and L-C filters

Simple attentuating sections of broad frequency discriminating characteristics, as used in power supplies, grid-bias feed, etc. The output load impedance is assumed to be high compared to the impedance of the shunt element of the filter.

# **Electrical circuit formulas**

continued

diagram	type	time constant or resonant freq	formula and approximation
	low-pass R — C	T = RC	$\frac{E_{out}}{E_{ia}} = \frac{1}{\sqrt{1+\omega^2 T^2}} \approx \frac{1}{\omega T}$
	high-pass R — C	T = RC	$\frac{E_{out}}{E_{in}} = \frac{1}{\sqrt{1 + \frac{1}{\omega^2 T^2}}} \approx \omega T$
	low-pass R — L	$T = \frac{L}{R}$	$\frac{E_{out}}{E_{in}} = \frac{1}{\sqrt{1+\omega^2 T^2}} \approx \frac{1}{\omega T}$
	high-pass R — L	$T = \frac{L}{R}$	$\frac{E_{out}}{E_{in}} = \frac{1}{\sqrt{1 + \frac{1}{\omega^2 T^2}}} \approx \omega T$
	low-pass L — C	$f_0 = \frac{0.1592}{\sqrt{LC}}$	$\frac{E_{out}}{E_{in}} = \frac{1}{\omega^2 L C - 1} = \frac{1}{\frac{f^2}{f_0^2} - 1} \approx \frac{1}{\omega^2 L C} = \frac{f_0^2}{f^2}$
	high-pass L — C	$f_0 = \frac{0.1592}{\sqrt{LC}}$	$\frac{E_{out}}{E_{in}} = \frac{1}{\frac{1}{\omega^2 LC} - 1} = \frac{1}{\frac{f_0^2}{f^2} - 1} \approx \omega^2 LC = \frac{f^2}{f_0^2}$

L in henries C in farads (1  $\mu f = 10^{-6}$  farad) R in ohms T = time constant (seconds)  $f_0$  = resonant frequency (cps)  $\omega$  =  $2\pi f$  $2\pi = 6.28$   $\frac{1}{2\pi} = 0.1592$   $4\pi^2 = 39.5$   $\frac{1}{4\pi^2} = 0.0253$ 

The relationships for low-pass filters are plotted in Figs. 9 and 10.

# Examples

1. Low-pass R-C filters

a. R = 100,000 ohms,  $C = 0.1 \times 10^{-6}$  (0.1 µf)

Then 
$$T = RC = 0.01$$
 second  
At  $f = 100$  cps,  $\frac{E_{out}}{E_{in}} = 0.16$ -

At 
$$f = 30,000 \text{ cps}, \frac{E_{out}}{E_{in}} = 0.00053$$



Fig. 9—Low-pass R-C and R-L filters.

# AUDIO AND RADIO DESIGN

# Electrical circuit formulas continued

b.  $R = 1,000 \text{ ohms}, C = 0.001 \times 10^{-6}$   $T = 1 \times 10^{-6} \text{ second} = 0.1 \div N, \text{ where } N = 10^{5}$ At  $f = 10 \text{ megacycles} = 100 \times N, \frac{E_{out}}{E_{in}} = 0.016 - 10^{5}$ 

2. Low-pass L - C filter

At 
$$f = 120$$
 cps, required  $\frac{E_{out}}{E_{in}} = 0.03$ 

Then from curves:  $LC = 6 \times 10^{-5}$  approximately. Whence, for  $C = 4 \mu f$ , we require L = 15 henries.



Fig. 10-Low-pass L-C filters.

# **18. Transients**

The complete transient in a linear network is, by the principle of superposition, the sum of the individual transients due to the store of energy in each inductor and capacitor and to each external source of energy connected to the network. To this is added the steady state condition due to each external source of energy. The transient may be computed as starting from any arbitrary time t = 0 when the initial conditions of the energy of the network are known.

**Convention of signs:** In the following formulas, one direction of current is assumed to be positive, and any emf on a capacitor or in an external source, tending to produce a current in the positive direction, is designated as positive. In the case of the charge of a capacitor, this results in the capacitor voltage being the negative of the value sometimes conventionally used, wherein the junction of the source and the capacitor is assumed to be grounded and potentials are computed with respect to ground.

Time constant (designated T): of the discharge of a capacitor through a resistor is the time  $t_2 - t_1$  required for the voltage or current to decay to  $\frac{1}{\epsilon}$  of its value at time  $t_1$ . For the charge of a capacitor the same definition applies, the voltage "decaying" toward its steady state value. The time constant of discharge or charge of the current in an inductor through a resistor follows an analogous definition. Energy stored in a capacitor =  $\frac{1}{2}$  CE² joules (watt-seconds). Energy stored in an inductor =  $\frac{1}{2}$  LI² joules (watt-seconds).

 $\epsilon = 2.718$   $\frac{1}{\epsilon} = 0.3679$   $\log_{10}\epsilon = 0.4343$  T and t in seconds R in ohms L in henries C in farads E in volts I in amperes

# Capacitor charge and discharge

Closing of switch occurs at time t = 0Initial conditions (at t = 0): Battery =  $E_{b}$ ;  $e_c = E_{o}$ . Steady state (at  $t = \infty$ ): i = 0;  $e_c = -E_{b}$ .

Transient:

$$i = \frac{E_b + E_0}{R} e^{-\frac{i}{RC}} = I_0 e^{-\frac{i}{RC}}$$
(i) 0.4343

$$\log_{10}\left(\frac{i}{I_0}\right) = -\frac{0.4343}{RC}t$$



 $\mathbf{e}_{c} = E_{0} - \frac{1}{C} \int_{0}^{t} i dt = E_{0} \, \epsilon^{-\frac{t}{RC}} - E_{b} \left( 1 - \epsilon^{-\frac{t}{RC}} \right)$ 

Time constant: T = RC

Fig. 11 shows current  $\frac{i}{I_0} = \epsilon^{-\frac{i}{T}}$ 

Fig. 11 shows discharge (for  $E_b = 0$ )  $\frac{e_c}{E_0} = e^{-\frac{b}{T}}$ 

Fig. 12 shows charge (for  $E_0 = 0$ )  $-\frac{e_c}{E_h} = \left(1 - e^{-\frac{t}{T}}\right)$ 





Fig. 11.

Fig. 12.

These curves are plotted on a larger scale in Fig. 13.

#### Two capacitors

Closing of switch occurs at time t = 0Initial conditions (at t = 0):  $e_1 = E_1$ ;  $e_2 = E_2$ . Steady state (at  $t = \infty$ ):  $e_1 = E_f$ ;  $e_2 = -E_f$ ; i = 0.

$$E_f = \frac{E_1 C_1 - E_2 C_2}{C_1 + C_2}$$
  $C' = \frac{C_1 C_2}{C_1 + C_2}$ 

**Transient:** 

$$i = \frac{E_1 + E_2}{R} \, \epsilon^{-\frac{t}{RC'}}$$



 $e_{1} = E_{f} + (E_{1} - E_{f}) \ e^{-\frac{t}{RC'}} = E_{1} - (E_{1} + E_{2}) \frac{C'}{C_{1}} \left(1 - e^{-\frac{t}{RC'}}\right)$   $e_{2} = -E_{f} + (E_{2} + E_{f}) \ e^{-\frac{t}{RC'}} = E_{2} - (E_{1} + E_{2}) \frac{C'}{C_{2}} \left(1 - e^{-\frac{t}{RC'}}\right)$ Original energy  $= \frac{1}{2} (C_{1}E_{1}^{2} + C_{2}E_{2}^{2})$  joules
Final energy  $= \frac{1}{2} (C_{1} + C_{2}) E_{f}^{2}$  joules
Loss of energy  $= \int_{0}^{\infty} i^{2} Rdt = \frac{1}{2} C' (E_{1} + E_{2})^{2}$  joules

(Loss is independent of the value of R.)



L-R circuits.

#### Inductor charge and discharge

Initial conditions (at t = 0): Battery =  $E_{bi}$ ;  $i = I_0$ 

Steady state (at  $t = \infty$ ):  $i = I_f = \frac{E_b}{R}$ 

Transient:

$$i = I_f \left( 1 - \epsilon^{-\frac{Rt}{L}} \right) + I_0 \epsilon^{-\frac{Rt}{L}}$$
$$e_L = -L \frac{di}{dt} = -(E_b - RI_0) \epsilon^{-\frac{Rt}{L}}$$

Time constant:  $T = \frac{L}{R}$ 

Fig. 11 shows discharge (for  $E_b = 0$ )  $\frac{i}{I_0} = \epsilon^{-\frac{i}{T}}$ 

Fig. 12 shows charge (for  $I_0 = 0$ )  $\frac{i}{I_f} = \left(1 - \epsilon^{-\frac{t}{T}}\right)$ 

These curves are plotted on a larger scale in Fig. 13.

# Series circuit of R, L, and C charge and discharge

Initial conditions (at t = 0): Battery =  $E_b$ ;  $e_c = E_0$ ;  $i = I_0$ Steady state (at  $t = \infty$ ): i = 0;  $e_c = -E_b$ 

Differential equation:

$$E_b + E_0 - \frac{1}{C} \int_0^t i dt - Ri - L \frac{di}{dt} = 0$$
  
whence  $L \frac{d^2i}{dt^2} + R \frac{di}{dt} + \frac{i}{C} = 0$ 

$$i = e^{-\frac{Rt}{2L}} \left[ \frac{2(E_b + E_0) - RI_0}{R\sqrt{D}} \sinh \frac{Rt}{2L}\sqrt{D} + I_0 \cosh \frac{Rt}{2L}\sqrt{D} \right]$$
  
where  $D = 1 - \frac{4L}{R^2C}$ 



E.

Case 1: When 
$$\frac{L}{R^2C}$$
 is small  
 $i = \frac{1}{(1 - 2A - 2A^2)} \left\{ \left[ \frac{E_b + E_0}{R} - I_0 (A + A^2) \right] e^{-\frac{i}{RC}(1 + A + 2A^2)} + \left[ I_0(1 - A - A^2) - \frac{E_b + E_0}{R} \right] e^{-\frac{Rt}{L}(1 - A - A^2)} \right\}$   
where  $A = \frac{L}{R^2C}$ 

For practical purposes, the terms  $A^2$  can be neglected when A<0.1. The terms A may be neglected when A < 0.01.

Case 2: When 
$$\frac{4L}{R^2C} < 1$$
 for which  $\sqrt{D}$  is real  

$$i = \frac{e^{-\frac{Rt}{2L}}}{\sqrt{D}} \left\{ \left[ \frac{E_b + E_0}{R} - \frac{I_0}{2} \left( 1 - \sqrt{D} \right) \right] e^{\frac{Rt}{2L}\sqrt{D}} + \left[ \frac{I_0}{2} \left( 1 + \sqrt{D} \right) - \frac{E_b + E_0}{R} \right] e^{-\frac{Rt}{2L}\sqrt{D}} \right\}$$

Case 3: When D is a small positive or negative quantity  

$$i = \epsilon^{-\frac{Rt}{2L}} \left\{ \frac{2(E_b + E_0)}{R} \left[ \frac{Rt}{2L} + \frac{1}{6} \left( \frac{Rt}{2L} \right)^3 D \right] + I_0 \left[ 1 - \frac{Rt}{2L} + \frac{1}{2} \left( \frac{Rt}{2L} \right)^2 D - \frac{1}{6} \left( \frac{Rt}{2L} \right)^3 D \right] \right\}$$

This formula may be used for values of D up to  $\pm 0.25$ , at which values the error in the computed current i is approximately 1 percent of  $I_0$  or of E_{0.}

**Case 3a:** When  $\frac{4L}{R^2C} = 1$  for which D = 0, the formula reduces to

$$i = \epsilon^{-\frac{Rt}{2L}} \left[ \frac{E_b + E_0}{R} \frac{Rt}{L} + I_0 \left( 1 - \frac{Rt}{2L} \right) \right]$$

or  $i = i_1 + i_2$ , plotted in Fig. 14. For practical purposes, this formula may be used when  $\frac{4L}{R^2C} = 1 \pm 0.05$  with errors of 1 percent or less.



The envelope of the voltage wave across the inductor is:

$$= \epsilon^{-\frac{Rt}{2L}} \frac{1}{\omega_0 \sqrt{LC}} \sqrt{\left(E_b + E_0 - \frac{RI_0}{2}\right)^2 + \omega_0^2 L^2 I_0^2}$$

Example: Relay with transient suppressing capacitor.

Switch closed till time t = 0, then opened.

Let 
$$L = 0.10$$
 henries,  $R_1 = 100$  ohms,

E = 10 volts

Suppose we choose  $C = 10^{-6}$  farads,  $R_2 = 100$  ohms.

Then R = 200 ohms,  $I_0 = 0.10$  amperes,  $E_0 = 10$  volts,  $\omega_0 = 3 \times 10^3$ ,  $f_0 = 480$  cps

Maximum peak voltage across L (envelope at t = 0) is approximately 30 volts. Time constant of decay of envelope is 0.001 second.

If it had been desired to make the circuit just non-oscillating, (Case 3a):

$$\frac{4L}{R^2C} = 1 \text{ or } R = 630 \text{ ohms for } C = 10^{-6} \text{ farads.}$$

$$R_2 = 530 \text{ ohms.}$$

Initial voltage at t = 0, across L is  $-E_0 + RI_0 = 53$  volts.



# Series circuit of R, L, and C with sinusoidal applied voltage

By the principle of superposition, the transient and steady state conditions are the same for the actual circuit and the equivalent circuit shown in the accompanying illustrations, the closing of the switch occurring at time t = 0. In the equivalent circuit, the steady state is due to the source e acting continuously from time  $t = -\infty$ , while the transient is due to short circuiting the source -e at time t = 0.

Source:  $e = E \sin (\omega t + \alpha)$ 

Steady state: 
$$i = \frac{e}{Z} \angle -\phi = \frac{E}{Z} \sin (\omega t + \alpha - \phi)$$

where

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} \quad ; \quad \tan \phi = \frac{\omega^2 L C - 1}{\omega C R}$$



actual circuit

equivalent circuit

The transient is found by determining current  $i = I_0$ and capacitor voltage  $e_e = E_0$  at time t = 0, due to the source -e. These values of  $I_0$  and  $E_0$  are then substituted in the equations of Case 1, 2, 3, or 4, above, according to the values of R, L, and C.

At time t = 0, due to the source -e:

$$i = I_0 = -\frac{E}{Z}\sin(\alpha - \phi)$$

$$\mathbf{e}_c = E_0 = \frac{-E}{\omega CZ} \cos (\alpha - \phi)$$

This form of analysis may be used for any periodic applied voltage e. The steady-state current and the capacitor voltage for an applied voltage —e are determined, the periodic voltage being resolved into its harmonic components for this purpose, if necessary. Then the instantaneous values  $i = I_0$  and  $e_c = E_0$  at the time of closing the switch are easily found, from which the transient is determined. It is evident, from this method of analysis, that the wave form of the transient need bear no relationship to that of the applied voltage, depending only on the constants of the circuit and the hypothetical initial conditions  $I_0$  and  $E_0$ .

#### 19. Effective and average values of alternating current

(Similar equations apply to a-c voltages)

 $i = I \sin \omega t$ 

Average value  $I_{av} = \frac{2}{\pi} I$ 

which is the direct current which would be obtained were the original current fully rectified, or approximately proportional to the reading of a rectifiertype meter.

Effective or root-mean-square (rms) value  $I_{eff} = \frac{I}{\sqrt{2}}$ 

which represents the heating or power effectiveness of the current, and is proportional to the reading of a dynamometer or thermal-type meter.

When

$$i = I_0 + I_1 \sin \omega_1 t + I_2 \sin \omega_2 t + \ldots$$

 $I_{eff} = \sqrt{I_0^2 + \frac{1}{2} (I_1^2 + I_2^2 + ...)}$ 

**Note:** The average value of a complex current is not equal to the sum of the average values of the components.

### 20. Constants of long transmission lines

$$\alpha = \sqrt{\frac{1}{2} \{ \sqrt{(R^2 + \omega^2 L^2)} (G^2 + \omega^2 C^2) + GR - \omega^2 LC \}}$$
  
$$\beta = \sqrt{\frac{1}{2} \{ \sqrt{(R^2 + \omega^2 L^2)} (G^2 + \omega^2 C^2) - GR + \omega^2 LC \} }$$

where

 $\alpha =$  attenuation constant in nepers

 $\beta$  = phase constant in radians

R = resistance constant in ohms

G = conductance constant in mhos

$$L =$$
 inductance constant in henries

C = capacitance constant in farads

 $\omega = 2\pi imes$  frequency in cycles per second

Using values per mile for R, G, L, and C, the db loss per mile will be 8.686  $\alpha$ and the wavelength in miles will be  $\frac{2\pi}{\beta}$ .

per unit length of line.

If vector formulas are preferred,  $\alpha$  and  $\beta$  may be determined from the following:

$$\alpha + j\beta = \sqrt{ZY} = \sqrt{(R + j\omega L)} (G + j\omega C)$$

where all constants have the same meaning as above. Characteristic impedance

$$Z_0 = \sqrt{\frac{Z}{Y}} = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

**Note:** For radio frequency applications, see formulas under R-F Transmission Line Data.

# Attenuators

An attenuator is a network designed to introduce a known loss when working between resistive impedances  $Z_1$  and  $Z_2$  to which the input and output impedances of the attenuator are matched. Either  $Z_1$  or  $Z_2$  may be the source and the other the load. The attenuation of such networks expressed as a power ratio is the same regardless of the direction of working.

Three forms of resistance network which may be conveniently used to realize these conditions are shown on page 106. These are the T section, the  $\pi$  section, and the Bridged-T section. Equivalent balanced sections also are shown. Methods are given for the computation of attenuator networks, the hyperbolic expressions giving rapid solutions with the aid of tables of hyperbolic functions on pages 313 to 315. Tables of the various types of attenuators are given on pages 108 to 114.

## In the formulas

 $Z_1$  and  $Z_2$  are the terminal impedances (resistive) to which the attenuator is matched.

N is the ratio of the power absorbed by the attenuator from the source to the power delivered to the load.

K is the ratio of the attenuator input current to the output current into the load. When  $Z_1 = Z_2$ ,  $K = \sqrt{N}$ .

Attenuation in decibels =  $10 \log_{10} N$ 

Attenuation in nepers  $= \theta = \frac{1}{2} \log_e N$ 

For a table of decibels versus power and voltage or current ratio, see page 34. Factors for converting decibels to nepers, and nepers to decibels, are given at the foot of that table.

# **General remarks**

The formulas and figures for errors, given in Tables IV to VIII, are based on the assumption that the attenuator is terminated approximately by its proper terminal impedances  $Z_1$  and  $Z_2$ . They hold for deviations of the attenuator arms and load impedances up to  $\pm 20$  percent or somewhat more. The error due to each element is proportional to the deviation of the element, and the total error of the attenuator is the sum of the errors due to each of the several elements.

When any element or arm R has a reactive component  $\Delta X$  in addition to a resistive error  $\Delta R$ , the errors in input impedance and output current are

$$\Delta Z = A \left( \Delta R + j \Delta X \right)$$
$$\frac{\Delta i}{i} = B \left( \frac{\Delta R + j \Delta X}{R} \right)$$

where A and B are constants of proportionality for the elements in question. These constants can be determined in each case from the figures given for errors due to a resistive deviation  $\Delta R$ .

The reactive component  $\Delta X$  produces a quadrature component in the output current, resulting in a phase shift. However, for small values of  $\Delta X$ , the error in insertion loss is negligibly small.

For the errors produced by mismatched terminal load impedance, refer to Case 1, page 105.

## Ladder attenuator



Fig. 15—Ladder attenuator.

Ladder attenuator, Fig. 15, input switch points  $P_0$ ,  $P_1$ ,  $P_2$ ,  $P_3$  at shunt arms. Also intermediate point  $P_m$  tapped on series arm. May be either unbalanced, as shown, or balanced.

Ladder, for design purposes, Fig. 16, is resolved into a cascade of  $\pi$  sections by imagining each shunt arm split into two resistors. Last section matches  $Z_2$ to  $2Z_1$ . All other sections are symmetrical, matching impedances  $2Z_1$ , with a



Fig. 16—Ladder attenuator resolved into a cascade of  $\pi$  sections.

terminating resistor  $2Z_1$  on the first section. Each section is designed for the loss required between the switch points at the ends of that section.

Input to  $P_0$ : Loss, db =  $10 \log_{10} \frac{(2Z_1 + Z_2)^2}{4Z_1Z_2}$ Input impedance  $Z_1' = \frac{Z_2}{2}$ Output impedance  $= \frac{Z_1Z_2}{Z_1 + Z_2}$ 

Input to  $P_1$ ,  $P_2$ , or  $P_3$ : Loss, db = 3 db + sum of losses of  $\pi$  sections between input and output. Input impedance  $Z_1' = Z_1$ 

1.

Input to  $P_m$  (on a symmetrical  $\pi$  section):

$$\frac{e_0}{e_m} = \frac{1}{2} \frac{m(1-m)(K-1)^2 + 2K}{K-m(K-1)}$$
where
$$e_0 = \text{output voltage when } m = .0 \text{ (Switch on } P_1\text{).}$$

$$e_m = \text{output voltage with switch on } P_m.$$
and
$$K = \text{current ratio of the section (from  $P_1 \text{ to } P_2\text{).} \quad K > 1$ 
Input impedance  $Z_1' = Z_1 \left[ m(1-m) \frac{(K-1)^2}{K} + 1 \right]$ 
Max  $Z_1' = Z_1 \left[ \frac{(K-1)^2}{4K} + 1 \right]$  for  $m = 0.5$ .$$

The unsymmetrical last section may be treated as a system of voltage dividing resistors. Solve for the resistance R from  $P_0$  to the tap, for each value of

output voltage with input on  $P_0$ output voltage with input on tap

A useful case:  $Z_1 = Z_2 = 500$  ohms.

Then loss on  $P_0$  is 3.52 db.

Let the last section be designed for loss of 12.51 db.

Then

 $R_{13} = 2444$  ohms (shunted by 1000 ohms)  $R_{23} = 654$  ohms (shunted by 500 ohms)  $R_{12} = 1409$  ohms.

The table shows the location of the tap and the input and output impedances for several values of loss, relative to the loss on  $P_0$ .

rélativé loss db	tap R ohms	input impedance ohms	output impedance ohms	-
0	o	250	250	
2	170	368	304	
4	375	478	353	•••
6	615	562	394	
8	882	600	428	
10	1157	577	4.54	
12	1409	500	473	



Fig. 17—A variation of the ladder attenuator, useful when  $Z_1 = Z_2 = Z$ . Simpler in design, with improved impedance characteristics, but having minimum insertion loss 2.5 db higher than attenuator of Fig. 16. All  $\pi$  sections are symmetrical.

# 104

#### Attenuators continued

Input to  $P_0$ : Output impedance = 0.6 Z (See Fig. 17.)

Input to  $P_0$ ,  $P_1$ ,  $P_2$ , or  $P_3$ : Loss = 6 db + sum of losses of  $\pi$  sections between input and output. Input impedance = Z

Input to  $P_m$ :  $\frac{e_0}{e_m} = \frac{1}{4} \frac{m(1-m)(K-1)^2 + 4K}{K-m(K-1)}$ Input impedance  $Z' = Z \left[ \frac{m(1-m)(K-1)^2}{2K} + 1 \right]$ Max  $Z' = Z \left[ \frac{(K-1)^2}{8K} + 1 \right]$  for m = 0.5.

# Effect of incorrect load impedance on operation of an attenuator

In the applications of attenuators the question frequently arises as to the effect upon the input impedance and the attenuation by the use of a load impedance which is different from that for which the network was designed. The following results apply to all resistive networks which, when operated between resistive impedances  $Z_1$  and  $Z_2$ , present matching terminal impedances  $Z_1$  and  $Z_2$ , respectively. The results may be derived in the general case by the application of the network theorems, and may be readily confirmed mathematically for simple specific cases such as the T section.

For the designed use of the network, let

 $Z_1$  = input impedance of properly terminated network  $Z_2$  = load impedance which properly terminates the network N = power ratio from input to output K = current ratio from input to output  $K = \frac{i_1}{i_2} = \sqrt{\frac{NZ_2}{Z_1}}$  (different in the two directions of operation except when  $Z_2 = Z_1$ ).

For the actual conditions of operation, let

$$\begin{aligned} (Z_2 + \Delta Z_2) &= Z_2 \left( 1 + \frac{\Delta Z_2}{Z_2} \right) = \text{ actual load impedance} \\ (Z_1 + \Delta Z_1) &= Z_1 \left( 1 + \frac{\Delta Z_1}{Z_1} \right) = \text{ resulting input impedance} \\ (K + \Delta K) &= K \left( 1 + \frac{\Delta K}{K} \right) = \text{ resulting current ratio.} \end{aligned}$$

While  $Z_1$ ,  $Z_2$ , and K are restricted to real quantities by the assumed nature of the network,  $\Delta Z_2$  is not so restricted, e.g.,

$$\Delta Z_2 = \Delta R_2 + j \Delta X_2$$

As a consequence  $\Delta Z_1$  and  $\Delta K$  can become imaginary or complex. Furthermore  $\Delta Z_2$  is not restricted to small values.

The results for the actual conditions are

$$\frac{\Delta Z_1}{Z_1} = \frac{2\frac{\Delta Z_2}{Z_2}}{2N + (N-1)\frac{\Delta Z_2}{Z_2}} \quad \text{and} \quad \frac{\Delta K}{K} = \left(\frac{N-1}{2N}\right)\frac{\Delta Z_2}{Z_2}$$

#### Certain special cases may be cited

**Case 1:** For small  $\frac{\Delta Z_2}{Z_2}$  $\frac{\Delta Z_1}{Z_1} = \frac{1}{N} \frac{\Delta Z_2}{Z_2} \quad \text{or} \quad \Delta Z_1 = \frac{1}{K^2} \Delta Z_2 \qquad \frac{\Delta i_2}{i_2} = -\frac{1}{2} \frac{\Delta Z_2}{Z_2}$ but the error in insertion power loss of the attenuator is neglibly small. **Case 2:** Short-circuited output  $\frac{\Delta Z_1}{Z_2} = \frac{-2}{N + 1}$ or input impedance =  $\left(\frac{N-1}{N+1}\right)Z_1 = Z_1 \tanh \theta$ where  $\theta$  is the designed attenuation in nepers. **Case 3:** Open-circuited output  $\frac{\Delta Z_1}{Z_1} = \frac{2}{N-1}$ or input impedance =  $\left(\frac{N+1}{N-1}\right)Z_1 = Z_1 \operatorname{coth} \theta$ Case 4: For N = 1 (possible only when  $Z_1 = Z_2$  and directly connected)  $\frac{\Delta Z_1}{Z_1} = \frac{\Delta Z_2}{Z_2}$  and  $\frac{\Delta K}{K} = 0$ **Case 5:** For large N  $\frac{\Delta K}{K} = \frac{1}{2} \frac{\Delta Z_2}{Z_2}$ 

# Attenuator

	configuration		
description	unbalanced	balanced	
Unbalanced T and balanced H see Table VIII	$\begin{array}{c} \sim R_1 \\ \sim R_2 \\ \sim R_3 \\ \sim R_3 \\ \sim R_3 \end{array}$	$\begin{array}{c} \circ & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \\ \hline$	
Symmetrical T and H $(Z_1 = Z_2 = Z)$ see Table IV	$\begin{array}{c} \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ $	$\begin{array}{c} \bullet & \bullet \\ R_1 \\ \bullet \\ R_2 \\ \hline \\ R_1 \\ \hline \\ R_2 \\ \hline \\ R_2 \\ \hline \\ R_1 \\ \hline \\ R_2 \\ \hline \\ R_1 \\ \hline \\ R_2 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ R$	
Minimum loss pad matching Z ₁ and Z ₂ (Z ₁ > Z ₂ ) see Table VII	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$	$\begin{array}{c} \bullet & \bullet \\ \hline Z_1 & \hline 2 \\ \hline R_2 \\ \hline R_2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ R_3 \\ \hline R_2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_1 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \\ C \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} Z_2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} Z_2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} Z_2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} Z_2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} Z_2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Z_2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Z_2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	
Unbalanced $\pi$ and balanced 0	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	$\begin{array}{c} \bullet \\ Z_1 \\ \bullet \\ R_1 \\ R_2 \\ R_1 \\ R_2 \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ $	
Symmetrical $\pi$ and 0 ( $Z_1 = Z_2 = Z$ ) see Table V	$\begin{array}{c} & & R_3 \\ \hline \\ Z \\ \hline \\ R_1 \\ \hline \\ R_1 \\ \hline \\ \\ R_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	
Bridged T and bridged H see Table VI	$\begin{array}{c} R_{4} \\ \hline \\ R_{7} \\ R_{7} \\ R_{7} \\ R_{4} \\ R_{4} \\ R_{4} \\ R_{4} \\ R_{4} \\ R_{5} \\ R_{$	$\begin{array}{c} \hline R_{1} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $	

# network design

see page 100 for symbols

design formulas					
hyperbolic	arithmetical	checking formulas			
$R_3 = \frac{\sqrt{Z_1 Z_2}}{\sinh \theta}$	$R_3 = \frac{2\sqrt{NZ_1Z_2}}{N-1}$				
$R_1 = \frac{Z_1}{\tanh \theta} - R_3$	$R_1 = Z_1 \left( \frac{N+1}{N-1} \right) - R_2$				
$R_2 = \frac{Z_2}{\tanh \theta} - R_3$	$R_2 = Z_2 \left(\frac{N+1}{N-1}\right) - R_3$				
7	27VN 27K	$R_1 R_3 = \frac{Z^2}{1 + \cosh \theta} = Z^2 \frac{2K}{(K+1)^2}$			
$R_3 = \frac{Z}{\sinh \theta}$	$R_{\rm g} = \frac{2Z\sqrt{N}}{N-1} = \frac{2ZK}{K^2-1}$	$\frac{R_1}{R_3} = \cosh \theta - 1 = 2 \sinh^2 \frac{\theta}{2}$			
$R_1 = Z \tanh \frac{\theta}{2}$	$R_1 = Z \frac{\sqrt{N-1}}{\sqrt{N+1}} = Z \frac{K-1}{K+1}$	$=\frac{(K-1)^2}{2K}$			
		$Z = R_1 \sqrt{1 + 2\frac{k_3}{k_1}}$			
$\cosh \theta = \sqrt{\frac{Z_1}{Z_2}}$	$R_1 = Z_1 \sqrt{1 - \frac{Z_2}{Z_1}}$	$R_1 R_3 = Z_1 Z_2$ $\frac{R_1}{R_3} = \frac{Z_1}{Z_2} - 1$			
$\cosh 2\theta = 2\frac{Z_1}{Z_3} - 1$	$R_3 = \frac{Z_2}{\sqrt{1 - \frac{Z_2}{Z_1}}}$	$N = \left(\sqrt{\frac{Z_1}{Z_2}} + \sqrt{\frac{Z_1}{Z_2} - 1}\right)^2$			
$R_3 = \sqrt{Z_1 Z_2} \sinh \theta$	$R_3 = \frac{N-1}{2} \sqrt{\frac{Z_1 Z_2}{N}}$				
$\frac{1}{R_1} = \frac{1}{Z_1 \tanh \theta} - \frac{1}{R_3}$	$\frac{1}{R_1} = \frac{1}{Z_1} \left( \frac{N+1}{N-1} \right) - \frac{1}{R_3}$				
$\frac{1}{R_2} = \frac{1}{Z_2} \tanh \theta = \frac{1}{R_3}$	$\frac{1}{R_2} = \frac{1}{Z_2} \left( \frac{N+1}{N-1} \right) - \frac{1}{R_3}$				
$R_3 = Z \sinh \theta$	$R_3 = Z \frac{N-1}{2\sqrt{N}} = Z \frac{K^2 - 1}{2K}$	$R_1 R_3 = Z^2 (1 + \cosh \theta) = Z^2 \frac{(K+1)^2}{2K}$			
$R_1 = \frac{Z}{\tanh \frac{\theta}{2}}$	- V IN 2K	$\frac{R_3}{R_1} = \cosh \theta - 1 = \frac{(K-1)^2}{2K}$			
tanh $\overline{2}$	$R_1 = Z \frac{\sqrt{N+1}}{\sqrt{N-1}} = Z \frac{K+1}{K-1}$	$Z = \frac{R_1}{\sqrt{1 + 2\frac{R_1}{R_3}}}$			
	$R_1 = R_2 = Z$	0.0 - 72			
	$R_4 = Z(K-1)$	$R_3R_4 = Z^2$			
	$R_3 = \frac{Z}{K-1}$	$\frac{R_4}{R_3} = (K-1)^2$			

Four-terminal networks: The hyperbolic formulas above are valid for passive linear four-terminal networks in general, working between input and output impedances matching the respective image impedances; not his take inage transfer constant.  $\theta = \alpha + \beta\beta$ , where  $\alpha$  is the image attenuation constant and  $\beta$  is the image phase constant.

# Table IV—Symmetrical T or H attenuator

# Z = 500 ohms resistive (diagram page 106)

attenuation db	series arm R ₁ ohms	shunt arm R ₃ ohms	1000 R ₃	log ₁₀ R ₃
0.0	0.0	inf	0.0000	
0.2	5.8	21,700	0.0461	
0.2	, 11.5	10,850	0.0921	
0.4	, 11.5	10,000	0.0721	
0.6	17.3	7,230	0.1383	
0.8	23.0	5,420	0.1845	
1.0	28.8	4,330	0.2308	
2.0	57,3	2.152	0.465	
		1,419		·
3.0	85.5		0.705	
4.0	113.1	1,048	0.954	
5.0	140.1	822	1.216	
6.0	166.1	669	1,494	2.826
7.0	191.2	558		2.747
				0.075
8.0	215.3	473.1		2.675
9.0	238.1	405.9		2.608
10.0	259.7	351.4		2.546
12.0	299.2	268.1		2.428
14.0	333.7	207.8		2.318
16.0	363.2	162.6		2.211
18.0	388.2	127.9		2.107
20.0	409.1	101.0		2.004
22.0	426.4	79.94	1	1.903
24.0	440.7	63.35		1.802
24.0	452.3	50.24		1.701
28.0	461.8	39.87		1.601
20.0	401.0	37.07		1.001
30.0	469.3	31.65		1.500
35.0	482.5	17.79	•	1.250
40.0	490.1	10.00		1.000
50.0	496.8	3.162		0.500
	496.8	1.000		0.000
60.0				
80.0	499.9	0.1000		-1.000
100.0	500.0	0.01000		-2.000
	•	-		
## Interpolation of symmetrical T or H attenuators

Column  $R_1$  may be interpolated linearly. Do not interpolate  $R_3$  column. For 0 to 6 db, interpolate the  $\frac{1000}{R_3}$  column. Above 6 db, interpolate the column Log₁₀  $R_3$  and determine  $R_3$  from the result.

Errors in symmetrical T or H attenuators

Series arms R₁ and R₂ in error Error in input impedances:

$$\Delta Z_1 = \Delta R_1 + \frac{1}{K^2} \Delta R_2$$

and

$$\Delta Z_2 = \Delta R_2 + \frac{1}{K^2} \Delta R_1$$

$$\begin{array}{c} & & R_1 \\ & & & R_2 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

nominally  $R_1 = R_2$  and  $Z_1 = Z_2$ 

# Error in insertion loss, db = 4 $\left(\frac{\Delta R_1}{Z_1} + \frac{\Delta R_2}{Z_2}\right)$ , approximately.

#### Shunt arm R₃ in error (10 percent high)

	designed loss, db	error in insertion loss, db	error in input impedance 100 $\frac{\Delta Z}{Z}$ percent
	0.2	-0.01	0.2
	1	-0.05	1.0
	6	-0.3	3.3
	12	-0.5	3.0
•	20	-0.7	1.6
	40	-0.8	0.2
	100	-0.8	0.0

Error in input impedance:  $\frac{\Delta Z}{Z} = 2 \frac{K-1}{K(K+1)} \frac{\Delta R_3}{R_3}$ 

Error in output current:  $\frac{\Delta i}{i} = \frac{K-1}{K+1} \frac{\Delta R_3}{R_3}$ 

See General Remarks on page 101.

# Table V—Symmetrical $\pi$ and 0 attenuators



#### T section

## Table VI-Bridged T or H attenuator

#### Z = 500 ohms resistive $R_1 = R_2 = 500$ ohms (diagram page 106)

attenvation db	bridge arm R4 ohms	shunt arm R ₃ ohms	attenuation db	bridge arm R ₄ bhms	shunt arm R ₃ ohms
0.0	0.0	∞	12.0	1,491	167.7
0.2	11.6	21,500	14.0	2,006	124.6
0.4	23.6	10,610	16.0	2,655	94.2
0.6	35.8	6,990	18.0	3,472	72.0
0.8	48.2	5,180	20.0	4,500	55.6
1.0	61.0	4,100	25.0	8,390	29.8
2.0	129.5	1,931	30.0	15,310	16.33
3.0	206.3	1,212	40.0	49,500	5.05
4.0	292.4	855	50.0	157,600	1.586
5.0	389.1	642	60.0	499,500	0.501
6.0	498	502	80.0	5.00 × 10 ⁶	0.0500
7.0	619	404	100.0	50.0 × 10 ⁶	0.00500
8.0 9.0 10.0	756 909 1,081	331 275.0 231.2			

## Interpolation of bridged T or H attenuators

Bridge arm  $R_4$ : Use the formula  $\log_{10} (R_4 + 500) = 2.699 + \frac{db}{20}$  for Z = 500 ohms. However, if preferred, the tabular values of  $R_4$  may be interpolated linearly, between 0 and 10 db only.

Shunt arm  $R_3$ : Do not interpolate  $R_3$  column. Compute  $R_3$  by the formula

$$R_3 = \frac{10^6}{4R_4}$$
 for  $Z = 500$  ohms.

**Note:** For attenuators of 60 db and over, the bridge arm  $R_4$  may be omitted, provided a shunt arm is used having twice the resistance tabulated in the  $R_3$  column. (This makes the input impedance 0.1 of 1 percent high at 60 db.)

## Errors in bridged T or H attenuators

#### For resistance of any one arm 10 percent higher than the correct value

designed loss db	col 1* db	col 2* percent	col 3* percent
0.2	0.01	0.005	0.2
1	0.05	0.1	1.0
6	0.2	2.5	2.5
12	0.3	5.6	1.9
20	0.4	8.1	0.9
40	0.4	10	0.1
100	0.4	10	0.0

* Refer to following tabulation.

element in error	error in	error in terminal	remarks
(10 percent high)	loss	impedance	
Series arm R1 (analogous	Zero	Col 2, for adjacent	Error in impedance at op-
for arm R2)		terminals	posite terminals is zero
Shunt arm R ₃	-Col 1	Col 3	Loss is lower than de- signed loss
Bridge arm $R_4$	+Col 1	Col 3	Loss is higher than de- signed loss

Error in input impedance:  $\frac{\Delta Z_1}{Z_1} = \left(\frac{K-1}{K}\right)^2 \frac{\Delta R_1}{R_1} + \frac{K-1}{K^2} \left(\frac{\Delta R_3}{R_3} + \frac{\Delta R_4}{R_4}\right)$ For  $\frac{\Delta Z_2}{Z_2}$  use subscript 2 in formula in place of subscript 1. Error in output current:  $\frac{\Delta i}{i} = \frac{K-1}{2K} \left(\frac{\Delta R_3}{R_2} - \frac{\Delta R_4}{R_4}\right)$ 

See General Remarks on page 101.

# Table VII—Minimum loss pads

## Matching $Z_1$ and $Z_2$ — both resistive (diagram page 106)

Z ₁ ohms	Z ₂ ohms	$\frac{\mathbf{Z}_1}{\mathbf{Z}_2}$	ioss db	series arm R ₁ ohms	shunt arm R3 ohms
· · · · · · · · · · · · · · · · · · ·			1		
10,000	500	20.00	18.92	9,747	513.0
8,000	500	16.00	17.92	7,746	516.4
6,000	500	12.00	16.63	5,745	522.2
5,000	500	10.00	15.79	4,743	527.0
4,000	500	8.00	14.77	3,742	534.5
3,000	500	6.00	13.42	2,739	547.7
2,500	500	5.00	12.54	2,236	559.0
,				-,	1
2,000	500	4.00	11.44	1,732	577.4
1,500	500	3.00	9.96	1,224.7	612.4
1,200	500	2.40	8.73	916.5	654.7
1,000	500	2.00	7.66	707.1	707.1
800	500	1.60	6.19	489.9	816.5
600	500	1.20	3.77	244.9	1,224.7
500	400	1.25	4.18	223.6	894.4
500	300	1.667	6.48	316.2	474.3
500	250	2.00	7.66	353.6	353.6
			,		
500	200	2.50	8.96	387.3	258.2
500	160	3.125	10.17	412.3	194.0
500	125	4.00	11.44	433.0	144.3
500	100	5.00	12.54	447.2	111.80
500	80	6.25	13.61	458.3	87.29
500	65	7.692	14.58	466.4	69.69
500	50	10.00	15.79	474.3	52.70
500 500	50 40	10.00	16.81	479.6	41.70
500 500	40 30	12.50	18.11	4/9.6	30.94
500	- 30	10.0/	10.11	404.0	-30.74
500	25	20.00	18.92	487.3	25.65

# Interpolation of minimum loss pads

This table may be interpolated linearly with respect to  $Z_1$ ,  $Z_2$ , or  $\frac{Z_1}{Z_2}$  except when  $\frac{Z_1}{Z_2}$  is between 1.0 and 1.2. The accuracy of the interpolated value becomes poorer as  $\frac{Z_1}{Z_2}$  passes below 2.0 toward 1.2, especially for  $R_3$ .

# For other terminations

If the terminating resistances are to be  $Z_A$  and  $Z_B$  instead of  $Z_1$  and  $Z_2$ , respectively, the procedure is as follows. Enter the table at  $\frac{Z_1}{Z_2} = \frac{Z_A}{Z_B}$  and read the loss and the tabular values of  $R_1$  and  $R_3$ . Then the series and shunt arms are, respectively,  $MR_1$  and  $MR_3$ , where  $M = \frac{Z_A}{Z_1} = \frac{Z_B}{Z_2}$ .

$\frac{\mathbf{Z}_1}{\mathbf{Z}_2}$	col 1* db	col 2* percent	col 3* percent
1.2	0.2	+4.1	+1.7
2.0	0.3	7.1	1.2
4.0	0.35	8.6	0.6
• 10.0	0.4	9.5	0.25
20.0	0.4	9.7	0.12

#### Errors in minimum loss pads

# * Notes

Series arm  $R_1$  10 percent high: Loss is increased by col 1. Input impedance  $Z_1$  is increased by col 2. Input impedance  $Z_2$  is increased by col 3.

Shunt arm  $R_3$  10 percent high: Loss is decreased by col 1. Input impedance  $Z_2$  is increased by col 2. Input impedance  $Z_1$  is increased by col 3.

# Errors in input impedance

$\frac{\Delta Z_1}{Z_1} =$	$\sqrt{1}$ –	$\frac{\overline{Z_2}}{\overline{Z_1}} \left( \frac{\Delta R_1}{R_1} - \right)$	$+\frac{1}{N}$	$\left(\frac{\Delta R_3}{R_3}\right)$
$\frac{\Delta Z_2}{Z_2} =$	$\sqrt{1}$ –	$\frac{\overline{Z_2}}{\overline{Z_1}} \left( \frac{\Delta R_3}{R_3} - \right)$	$+\frac{1}{N}$	$\left(\frac{\Delta R_1}{R_1}\right)$

Error in output current, working either direction

$$\frac{\Delta i}{i} = \frac{1}{2}\sqrt{1 - \frac{Z_2}{Z_1}} \left(\frac{\Delta R_3}{R_3} - \frac{\Delta R_1}{R_1}\right)$$

See General Remarks on page 101.

## Table VIII—Miscellaneous T and H pads

#### (diagram page 106)

resistive terminations				attenuator arms	
Z ₁ ohms	Z ₂ ohms	loss db	series R ₁ ohms	series R ₂ ohms	shunt R ₃ ohms
5,000	2,000	10	3,889	222	2,222
5,000	2,000	15	4,165	969	1,161
5,000	2,000	20	4,462	1,402	639
5,000	500	20	4,782	190.7	319.4
2,000	500	15	1,763	165.4	367.3
2,000	500	20	1,838	308.1	202.0
2,000	200	20	1,913	76.3	127.8
500	200	10	388.9	22.2	.222.2
500	200	15	416.5	96.9	116.1
500	200	20	446.2	140.2	63.9
500	50	20	478.2	19.07	31.94
200	50	15	176.3	16.54	36.73
200	50	20	183.8	30.81	20.20

## Errors in T and H pads

Series arms  $R_1$  and  $R_2$  in error. Error in input impedances:

$$\Delta Z_1 = \Delta R_1 + \frac{1}{N} \frac{Z_1}{Z_2} \Delta R_2 \quad \text{and} \quad \Delta Z_2 = \Delta R_2 + \frac{1}{N} \frac{Z_2}{Z_1} \Delta R_1$$
  
Error in insertion loss, db = 4  $\left(\frac{\Delta R_1}{Z_1} + \frac{\Delta R_2}{Z_2}\right)$ , approximately.

Shunt arm R₃ in error (10 percent high)

			error in inpu	Ji Impedance
$\frac{\mathbf{Z}_1}{\mathbf{Z}_2}$	designed loss db	error in loss db	$100 \frac{\Delta \mathbf{Z}_1}{\mathbf{Z}_1}$	100 $\frac{\Delta \mathbf{Z}_2}{\mathbf{Z}_2}$
2.5 2.5 2.5	10 15 20	-0.4 -0.6 -0.7	1.1% 1.2 0.9	7.1% 4.6 2.8
4.0 4.0	15 20	0.5 0.65	0.8 0.6	6.0 3.6
10	20	-0.6	0.3	6.1

 $\frac{\Delta Z_1}{Z_1} = \frac{2}{N-1} \left( \sqrt{\frac{NZ_2}{Z_1}} + \sqrt{\frac{Z_1}{NZ_2}} - 2 \right) \frac{\Delta R_3}{R_3} \begin{cases} \text{for } \frac{\Delta Z_2}{Z_2} & \text{interchange subscripts} \\ 1 & \text{and } 2. \end{cases}$  $\frac{\Delta i}{i} = \frac{N+1 - \sqrt{N} \left( \sqrt{\frac{Z_1}{Z_2}} + \sqrt{\frac{Z_2}{Z_1}} \right)}{N-1} \frac{\Delta R_3}{R_3} \begin{cases} \text{where } i \text{ is the output current.} \end{cases}$ 

# AUDIO AND RADIO DESIGN 115

# Filter networks

**Explanation:** Table IX shows, in the first column, the fundamental series impedance,  $Z_1$ , and the fundamental shunt impedance,  $Z_2$ , from which the various types of filter sections shown in subsequent columns are composed. For example, a T section (third column) is composed of two half-series arms,  $\frac{Z_1}{2}$  in series, with a full shunt arm  $Z_2$  connected to their junction point. The subsequent tables (Tables X, XI, XII, and XIII) give formulas for computing the full series arm and the full shunt arm. These must then be modified according to the type of section used.

**Example:** Design a series M derived high-pass, T-section filter to terminate in 500 ohms, with cutoff frequency equal to 1000 cycles, and peak attenuation frequency equal to 800 cycles.



Thus for the series arm use  $2C_1$ , or 0.53 microfarad. The accompanying figure shows the final result.

# Filter networks continued

# Table IX—Combination of filter elements



# Table X—Band-pass filters

type	configuration	series arm	shunt arm	notations
Constant K	<u>مس</u> ابه ۲٬۴۰۲-۲٬	$L_1 = \frac{R}{\pi (f_2 - f_1)}$ $C_1 = \frac{f_2 - f_1}{4\pi f_2 f_1 R}$	$L_2 = \frac{f_2 - f_1}{4\pi f_1 f_2} R$ $C_2 = \frac{1}{\pi (f_2 - f_1) R}$	$f_2 = upper cutoff$ frequency
Three element series type	^{L1} C1 c1 c2 c2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C	$L_{1} = \frac{R}{\pi (f_{2} - f_{1})}$ $C_{1} = \frac{f_{2} - f_{1}}{4\pi f_{1}^{2}R}$	$C_2 = \frac{1}{\pi (f_1 + f_2)R}$	f1 = lower cutoff frequency R = nominal terminating resistance
Three element shunt type		$C_1 = \frac{f_1 + f_2}{4\pi f_1 f_2 R}$	$L_{2} = \frac{f_{2} - f_{1}}{4\pi f_{1} f_{2}} R$ $C_{2} = \frac{f_{1}}{\pi f_{2} (f_{2} - f_{1}) R}$	

# Table XI—Band-elimination filters

type	configuration	series arm	shunt arm	notations
Constant K	ĹĹ Ĵŗ Ĵ'n	$L_{1} = \frac{f_{2} - f_{1}}{\pi f_{1} f_{2}} R$ $C_{1} = \frac{1}{4\pi (f_{2} - f_{1}) R}$	$L_2 = \frac{R}{4\pi(f_2 - f_1)}$ $C_2 = \frac{f_2 - f_1}{\pi f_1 f_2 R}$	f ₂ = upper cutoff frequency f ₁ = lower cutoff frequency R = nominal terminating resistance

# Filter networks co

# continued

# Table XII—Low-pass filters

type	configuration	series arm	shunt arm	notations
Constant K	ᡨ᠁ᡨ	$L = \frac{R}{\pi f_c}$	$C = \frac{1}{\pi f_c R}$	$f_{c} = \text{cutoff}$ frequency
Series M derived	^{د،} میلود میلود مرکز میلود	$L_1 = mL$	$L_2 = \frac{1 - m^2}{4m} L$ $C_2 = mC$	$f_{\infty} = \text{frequency of} \\ \text{peak} \\ \text{attenuation} \\ m = \sqrt{1 - \left(\frac{f_c}{f_{\infty}}\right)^2}$
Shunt M derived		$L_1 = mL$ $C_1 = \frac{1 - m^2}{4m}C$	$C_2 = mC$	R = nominal terminating resistance

# Table XIII—High-pass filters

type	configuration	series arm	shunt arm	notations
Constant K	مىيىسە ب	$C = \frac{1}{4\pi f_c R}$	$L=\frac{R}{4\pi f_{\sigma}}$	$f_c = cutoff$ frequency
Series M derived		$C_1 = \frac{C}{m}$	$L_2 = \frac{L}{m}$ $C_2 = \frac{4m}{1 - m^2}C$	$f_{\infty} = \frac{\text{frequency of}}{\frac{\text{peak}}{\text{attenuation}}}$ $m = \sqrt{1 - \left(\frac{f_{\infty}}{f_c}\right)^2}$
Shunt M derived	۹۹۳۹۹۹ ۲۲۲۰ ۲ ۲۲۲۰ ۲	$C_1 = \frac{C}{m}$ $L_1 = \frac{4m}{1 - m^2} L$	$L_2 = \frac{L}{m}$	R = nominal terminating resistance

# 118 CHAPTER FOUR

s

# ■ Rectifiers and filters

rectifier type	single-phase full-wave	single-phase full-wave (bridge)	3-phase half-wave	3-phase half-wave
of circuit transformer	single-phase center-tap	single-phase	d <b>eita</b> -wye	delta-zig zag
secondaries circuits primaries		00000000000000000000000000000000000000		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
Number of phases of supply Number of tubes*	1 2	1 4	3 3	3 3
Ripple voltage Ripple frequency	0. <b>48</b> 2f	0.48 2f	0.18 3f	0.18 3f
Line voltage Line current Line power factor †	1.11 1 0.90	1.11 1 0.90	0.855 0.816 0.826	0.855 0.816 0.826
Trans primary volts per leg Trans primary amperes per leg Trans primary kva	1.11 1.11	1.11	0.855 0.471 1.21	0.855 0.471 1.21
Trans average kva	1.34	1.11	1.35	1.46
Trans secondary volts per leg Trans secondary am- peres per leg Transformer second- ary kva	1.11(A) 0.707 1.57	1.11 1 7.11	0.855 0.577 1.48	0.493(A) 0.577 1.71
Peak inverse voltage per tube Peak current per tube Average current per tube	3.14 1 0.5	1.57 1 0.5	2.09 1 0.338	2.09 1 <b>0.333</b>

Unless otherwise stated, factors shown express the ratio of the RMS value of the circuit quantities designated to the average DC output values of the rectifier. Factors are based on a sine wave voltage input, infinite impedance choke and no transformer or rectifier losses.

# Typical rectifier circuit

# connections and circuit data

6-phase half-wave	6-phase baif-wave	ó-phase (double 3-phase) half-wave	3-phase full-wave	3-phase foll-wave
deita-star	delta-6-pha <b>se</b> fork	delta-double wye with balance coil	delta-wye	delta-dèita
Land Land Land	A Les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les and a les	Social States		A Constant of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
3 6	3 6	3 6	3 6	3 6
0.042 6f	0.042 6f	0.042 6f	0.042 6f	0.042 6f
0.740 0.816 0.955	0.428 1.41 0.955	0.855 0.707 0.955	0.428 1.41 0.955	0.740 0.816 0.955
0.740	0.428	0.855	0.428	0.740
0.577 1.28	0.816 1.05	0.408 1.05	0.816 1.05	0.471 1.05
1.55	1.42	1.26	1.05	1.05
0.740(A)	0.428(A)	0.855(A)	0.428	0.740
C.408	{ 0.577 (B) 0.408 (C) }	0.289	0.816	0.471
1.81	1.79	1.48	1.05	1.05
2.09 1	2.09 1	2.4⁄2 0.5	1.05	1.05 1
0.167	0.167	0.167	0.333	0.333

* These circuit factors are eaually applicable to tube or dry plate rectifying elements. † Line PF  $\Rightarrow$  DC output watts/line volt-omperes



# Rectifier filter design

#### Ripple voltage vs LC for choke-input filters

Minimum inductance for a choke-input filter is determined from

$$L = \frac{KE}{If}$$

#### where

- L = minimum inductance in henries
- E = d-c output in volts
- I =output current in amperes
- f = supply frequency in cps
- K = 0.0527 for full-wave, single-phase
  - = 0.0132 for half-wave, three-phase
  - = 0.0053 for full-wave, two-phase
  - = 0.0016 for full-wave, three-phase

# Rectifier filter design continued





#### Ripple voltage vs RC for capacitor-input filters

The above chart applies to a capacitance filter with resistance load as shown at the right.

For each additional R'C' section, obtain R by adding a l resistances and add db =  $104 - 20 \log fR'C'$ . For each additional LC' section, add db =  $882 - 40 \log f$ 

 $-20 \log LC'$ .

The above assumes that the impedance of C' is small with respect to that of R, R', and L.

- f = ripple frequency in cps
- R' = series filter resistance in ohms
- C' = shunt filter capacitance in microfarads
- L = series filter inductance in henries.



# Iron-core transformers and reactors

# Major transformer types

1. Audio transformers: Carry audio communication frequencies or some single control frequency.

**a.** Input transformers: Couple a signal source, e.g., microphone or line, to the grid (s) of an amplifier.

**b.** Interstage transformers (usually step-up voltage): Couple the plate(s) of a vacuum tube (except a driver stage) to the grid(s) of a succeeding stage of amplification.

c. Output transformers: Couple the plate(s) of an amplifier to an output load.

**d.** Driver transformers (usuallystep-down voltage): Couple the plate (s) of a driver stage (pre-amplifier) to the grid(s) of an amplifier stage in which grid current is drawn.

e. Modulation transformers: Couple the plate(s) of an audio output stage to the grid or plate of a modulated amplifier.

**2.** Power supply transformers: Supply appropriate plate and/or filament voltage to vacuum tubes in a unit of equipment.

**a.** Plate transformers: Supply potential to the plate(s) of high-vacuum or gasfilled tube(s) in a rectifier circuit.

**b.** Filament transformers: Supply current to heat the filaments of vacuum or gas-filled tubes.

c. Plate-filament transformers: Combinations of 2a and 2b.

**d.** Isolation transformers: Insulate or isolate two circuits, such as a grounded circuit from an ungrounded circuit.

e. Scott-transformers: Scott-connection utilizes two transformers to transmit power from two-phase to three-phase systems, or vice versa.

**f.** Auto-transformers: Provide increased or decreased voltage by means of a single winding suitably tapped for the primary and secondary circuits, part of the winding being common to both circuits.

# Major reactor types

**1.** Reactors: Single-winding units that smooth current flow, provide d-c feed, or act as frequency-selective units (in suitable arrangement with capacitors).

a. Audio reactors: Single-winding units that supply plate current to a vacuum tube in parallel with the output circuit.

#### Major reactor types continued

**b.** Wave-filter reactors: Function as filter unit components which aid in the acceptance or rejection of certain frequencies.

c. Filter reactors: Smooth the d-c output current in rectifier circuits.

**d.** Saturable reactors: Regulate voltage, current, or phase in conjunction with glow-discharge tubes of the thyratron type. They are also used as voltage-regulating devices with dry-type rectifiers.

# Temperature, humidity, and pressure effects

A maximum ambient temperature of 40° C is usually assumed. Final operating temperatures with organic insulation (Class A), such as silk, cotton, or paper, are restricted to values less than 95° C. When weight and space requirements dictate undersized iron cores and wire, with resultant higher temperature rise, inorganic insulation and cooling expedients may be used. Cooling expedients include: open-frame; semi-enclosed (coil-covered, core-exposed) design; and fully-enclosed design having compound or liquid-filled insulant and cooling by convection, or forced cooling by air blast.

Relative humidities from zero to 97 percent should be assumed so that coils and leads should be impregnated with moisture-resistant insulating coatings or, alternatively, cases should be sealed vacuum tight. Pressure variation, in addition to moisture and temperature changes, due to altitude from sealevel up to 7,000 feet (greater for aircraft) may be encountered.

## **General limitations**

## **Core material**

a. For audio transformers and reactors: Core material should be such that core distortion is not greater than 0.75 percent at the lowest frequency.
b. For power supply transformers: Core loss should be less than 0.82 watts per pound at 60 cps, for a flux density of 10,000 gauss. Filter reactors may have a core loss of 1.2 watts per pound at 60 cps, for 10,000 gauss.

# **Terminal facilities**

**a.** All leads or winding ends: Must remain inside the case for hermetically sealed units.

**b.** Leads may terminate: In studs in a Bakelite board or bushing when voltage is less than 1000 volts peak. For higher voltages, Isolantite or wet process porcelain may be used.

#### Protective gaps

Protective gaps are frequently used on filter reactors or plate transformers in rectifier circuits delivering more than 1000 volts dc.

# **Design of power-supply transformers**

The following may be used as a guide in the design of power supply transformers for receivers and small transmitters.

# Nomenclature

- $A_c = ab = cross$  section area of core in square inches
  - a = stack width in inches
  - b = stack height in inches
- $B_{max}$  = maximum core flux density in gauss. Usually assumed to be 10,000 gauss (64.5 kilolines per square inch) at 60 cps, or 12,000 gauss at 25 cps
  - $E_p$  = primary terminal voltage
  - $E_s$  = secondary terminal voltage
    - f = frequency in cycles per second
  - h = minimum height of a coil section above core in inches
  - h' = maximum height of a coil section above core in inches
  - K = stacking factor (usually K = 0.9)
- MLT = mean length of turn of a coil section in feet
  - $T_p =$  number of primary turns
  - $T_s =$  number of secondary turns
- $VD_p$  = voltage drop due to primary resistance
- $VD_s$  = voltage drop due to secondary resistance

# **Design procedure**

1. Determine secondary output volt-ampere requirements.

**2.** Calculate primary current based on a wattage 10 percent greater than the volt-amperes determined in (1). Use the given primary voltage  $E_p$ .

3. The core area is determined roughly by the formula

Core area = 
$$\frac{\sqrt{\text{wattage}}}{5.58} \sqrt{\frac{60}{f}}$$

Select a lamination (from a transformer manufacturer's lamination data book) that will fit the transformer space requirements and provide the proper core area when stacked to a sufficient height.

4. Compute the number of primary turns

$$T_p = \frac{E_p \times 10^8}{4.44 \text{ f } B_{max} \text{ A}_c \text{ K}}$$

5. Compute the number of secondary turns  $T_s = \frac{E_s}{E_p} T_p$ 

6. Determine the wire sizes needed for primary and secondary on the basis of an optimum current density of 1000 amperes per square inch, using Table I and the currents carried by the primary and secondary. Greater or smaller densities may be used as required. For very small transformers, densities up to 2500 amperes per square inch are sometimes used.

# Design of power-supply transformers continued

7. Calculate the number of turns per layer that can be placed in the lamination window space, deducting margin space from the window length.

**8.** From this value, calculate the total number of primary and secondary layers needed.

**9.** Calculate the total wire height, using the wire diameter and the number of layers.

**10.** Determine the total insulation thickness required between wire layers (from Table I), and under and over coil sections.

**11.** Add the results of (9) and (10) and multiply the figure obtained by 10/9 to allow for bulge in winding wire and wrapping insulation. Revise the design, as necessary, to make this over-all thickness figure (coil build) slightly less than the lamination window width.

**12.** Calculate the mean length of turns for the primary and for each secondary coil section

$$MLT = \frac{2a + 2b + 2\pi \frac{(h' + h)}{2}}{12}$$

**13.** Calculate the total wire length in feet of each primary and secondary coil by multiplying the *MLT* value of the coil by the corresponding total number of turns in that coil.

**14.** The resistance of each coil is obtained by multiplying the total wire length obtained above by the resistance per foot.

**15.** Calculate the voltage drop in each primary and secondary from the calculated resistance and the current flow.

**16.** Compensate for the voltage drop in the primary and in each secondary by determining the corrected number of turns

(corrected 
$$T_p$$
) =  $\frac{E_p - VD_p}{E_p} \times (\text{original } T_p)$ 

(corrected  $T_s$ ) =  $\frac{E_s + VD_s}{E_s} \times \text{(original } T_s)$ 

**17.** Revise the number of layers of each winding according to the corrected number of turns.

**18.** Calculate the copper loss in both primary and secondary windings from the resistance of each coil times the square of the current flowing in it.

#### Design of power-supply transformers continued

19. Calculate the core loss from the weight (in pounds) of the core used and the core loss per pound obtained from the core loss curve given by the manufacturer for the iron used.

20. The efficiency of the transformer is

wattage output  $\times$  100 Percent efficiency = wattage output + core loss + copper loss

AWG (B&S)	diameter inches	turns per inch	current capacity amperes*	ohms per 1000 ft at 50° C	coil margin inches	interlayer insulation† inches
10 11, 12 13 14	0.1039 0.0927 0.0827 0.0738 0.0659	9 10 11 12 13	8.2 6.5 5.1 4.1 3.2	1.12 1.41 1.78 2.24 2.82	0.25 0.25 0.25 0.25 0.25 0.25	0.010 0.010 0.010 0.010 0.010
15 16 17 18 19 20	0.0588 0.0524 0.0469 0.0418 0.0374 0.0334	14 16 19 21 24 26	2.6 2.0 1.61 1.28 1.01 0.80	3.56 4.49 5.66 7.14 9.0 11.4	0.188 0.188 0.188 0.125 0.125 0.125	0.010 0.010 0.005 0.005 0.005
21 22 23 24 25	0.0299 0.0266 0.0238 0.0213 0.0190	30 34 39 43 48	0.64 0.50 0.40 0.32 0.25	14.3 18.1 22.8 28.7 36.2	0.125 0.125 0.125 0.125 0.125 0.125	0.005 0.003 0.003 0.003 0.003 0.002
26 27 28 29 30	0.0169 0.0152 0.0135 0.0122 0.0108	54 59 68 74 84	0.20 0.158 0.126 0.100 0.079	45.6 57.5 72.6 91 115	0.125 0.125 0.125 0.125 0.125 0.125	0.002 0.002 0.002 0.002 0.0015
31 32 33 34 35	0.0097 0.0088 0.0078 0.0069 0.0061	94 104 117 131 146	0.063 0.050 0.039 0.031 0.025	146 183 231 292 368	0.125 0.094 0.094 0.094 0.094	0.0015 0.0015 0.0015 0.001 0.001
36 37 38 39 40	0.0055 0.0049 0.0044 0.0038 0.0034	162 183 204 227 261	0.0196 0.0156 0.0124 0.0098 0.0078	464 585 737 930 1173	0.094 0.094 0.063 0.063 0.063	0.001 0.001 0.001 0.00075 0.00075

# Table I-Round enameled copper wire

* Current capacity at 1000 amperes per square inch. For other current densities, multiply by lcurrent density//1000. † Interlayer insulation is usually Kraft paper.

See also page 60.

CHAPTER SIX 127



# Nomenclature *

 $e_c = instantaneous total grid voltage$  $e_b = instantaneous total plate voltage$  $i_c$  = instantaneous total grid current  $i_b$  = instantaneous total plate current  $E_c$  = average value of grid voltage  $E_b =$  average or guiescent value of plate voltage  $I_c$  = average or guiescent value of grid current  $I_b$  = average or quiescent value of plate current  $e_a$  = instantaneous value of varying component of grid voltage  $e_p$  = instantaneous value of varying component of plate voltage  $i_a$  = instantaneous value of varying component of grid current  $i_p$  = instantaneous value of varying component of plate current  $E_a$  = effective or maximum value of varying component of grid voltage  $E_p$  = effective or maximum value of varying component of plate voltage  $I_g$  = effective or maximum value of varying component of grid current  $I_p$  = effective or maximum value of varying component of plate current  $I_f =$  filament or heater current  $I_s$  = total electron emission (from cathode)  $r_i$  = external plate load resistance  $C_{qp} = \text{grid-plate direct capacitance}$  $C_{ak} =$ grid-cathode direct capacitance  $C_{pk} = plate-cathode direct capacitance$  $\theta_p$  = plate current conduction angle  $r_p$  = variational (a-c) plate resistance  $R_{pb}$  = total (d-c) plate resistance

**Note:** In the following text, the superscript M indicates the use of the maximum or peak value of the varying component, i.e.,  ${}^{M}E_{p} = maximum$  or peak value of the alternating component of the plate voltage.

* From IRE standard symbols (Electronics Standards, 1938)

# Coefficients

Amplification factor  $\mu$ : Ratio of incremental plate voltage to controlelectrode voltage change at a fixed plate current with constant voltage on other electrodes.

 $\mu = \left[\frac{\delta \mathbf{e}_{b}}{\delta \mathbf{e}_{c1}}\right]_{I_{b}} \\ E_{c2} - \dots - E_{cn} \\ \mathbf{f}_{l} = 0 \\ \mathbf{f}_{l} = 0$ 

# Coefficients continued

**Transconductance**  $s_m$ : Ratio of incremental plate current to control-electrode voltage change at constant voltage on other electrodes.

$$s_{m} = \left[\frac{\delta i_{b}}{\delta e_{c1}}\right] E_{br} E_{c2} - \dots E_{cn} \text{ constant}$$
$$r_{l} = 0$$

When electrodes are plate and control grid, the ratio is the mutual conductance  $g_m$  of the tube.

$$g_m = \frac{\mu}{r_p}$$

Variational (a-c) plate resistance  $r_p$ : Ratio of incremental plate voltage to current change at constant voltage on other electrodes.

$$r_{p} = \left[\frac{\delta e_{b}}{\delta i_{b}}\right]_{E_{c1}} E_{cn} \text{ constant}$$
$$r_{l} = 0$$

Total (d-c) plate resistance  $R_p$ : Ratio of total plate voltage to current for constant voltage on other electrodes.

$$R_{p} = \left[\frac{e_{b}}{i_{b}}\right]_{E_{c1}} E_{cn} \text{ constant}$$
$$r_{l} = 0$$

# Terminology

**Control grid:** Electrode to which plate-current-controlling signal voltage is applied.

Space-charge grid: Electrode, usually biased to constant positive voltage, placed adjacent to cathode to reduce current-limiting effect of space charge.

Suppressor grid: Grid placed between two electrodes to suppress the effect of secondary electrons.

Screen grid: Grid placed between anode and control grid to reduce the capacitive coupling between them.

Primary emission: Thermionic emission of electrons from a surface.

Secondary emission: Usually of electrons, from a surface by direct impact not thermal action, of electronic or ionic bombardment.

**Total emission**  $I_s$ : Maximum (saturated, temperature-limited) value of electron current which may be drawn from a cathode. Available total emission is that peak value of current which may safely be drawn.

# Terminology continued

**Transfer characteristic:** Relation, usually graphical, between voltage on one electrode and current to another, voltages on all other electrodes remaining constant.

Electrode characteristic: Relation, usually graphical, between the voltage on, and current to, a tube electrode, all other electrode voltages remaining constant.

**Composite-diode lines:** Relation, usually two curves, of the currents flowing to the control grid and the anode of a triode as a function of the equal voltage applied to them (grid-plate tied).

Critical grid voltage: Instantaneous value of grid voltage (with respect to cathode) at which anode current conduction is initiated through a gas tube.

Constant current characteristics: Relation, usually graphical, between the voltages on two electrodes, for constant specified current to one of them and constant voltages on all other electrodes.

nd nanticible saturation of catho

# Formulas

function	parallel plane cathode and plate	cylindrical cathode
Diode plate current (amperes)	G ₁ e _b ³	G ₁ e _b ²
Triode plate current (amperes)	$G_2\left(\frac{e_b+\mu e_c}{1+\mu}\right)^{\frac{3}{2}}$	$G_2\left(\frac{e_b+\mu e_c}{1+\mu}\right)^{\frac{3}{2}}$
Diode perveance G ₁	$2.3\times10^{-6}\frac{A_b}{d_b^2}$	$2.3\times10^{-6}\frac{A_b}{\beta^2rb^2}$
Triode perveance G ₂	$2.3  imes 10^{-6} rac{A_b}{d_b d_c}$	$2.3\times10^{-6}\frac{A_b}{\beta^2 r_b r_e}$
Amplification factor $\mu$	$\frac{2.7  d_c  \left(\frac{d_b}{d_c} - 1\right)}{\rho \log \frac{\rho}{2\pi r_g}}$	$\frac{2\pi d_o}{\rho} \frac{\log \frac{d_b}{d_o}}{\log \frac{\rho}{2\pi r_o}}$
<b>Mutual conductance g</b> ain An Conductance gains An Conductation and conductance a conductation and conductance	$1.5G_{g} \frac{\mu}{\mu+1} \sqrt{e'_{g}}$ $e'_{g} = \frac{E_{b} + \mu E_{c}}{1+\mu}$	$1.5G_2 \frac{\mu}{\mu+1} \sqrt{e}^{t}$ $e'_g = \frac{E_b + \mu E_c}{1+\mu}$

# Formulas continued

#### where

 $\begin{array}{l} A_b = \text{effective anode area in square centimeters} \\ d_b = \text{anode-cathode distance in centimeters} \\ d_c = \text{grid-cathode distance in centimeters} \\ \beta = \text{geometrical constant, a function of ratio of anode to cathode radius;} \\ \beta^2 &\cong 1 \text{ for } \frac{r_b}{r_k} > 10 \text{ (see curve Fig. 1)} \\ \rho = \text{pitch of grid wires in centimeters} \\ r_g = \text{grid wire radius in centimeters} \\ r_b = \text{anode radius in centimeters} \\ r_k = \text{cathode radius in centimeters} \\ \end{array}$ 

 $r_c = \text{grid radius in centimeters}$ 

Note: These formulas are based on theoretical considerations and do not provide accurate results; for practical structures, however, they give a fair idea of the relationship between the tube geometry and the constants of the tube.



Fig. 1—Values of  $\beta^2$  for values of  $\frac{r_b}{r_c} < 10$ .

# **Performance limitations**

Tube performance limitation factors include electrode dissipation, filament emission, and the transit time of electrons in the active part of the tube. For a given tube, the ultimate limitation may be any one or a combination of these factors.

# Electrode dissipation data

Tube performance is limited by electrode dissipation. In turn, tube dissipation is limited by the maximum safe operating temperatures of the glass-to-metal seals (approximately 200° C), glass envelope, and tube electrodes. Thus excessive dissipation may result in breakage, loss of vacuum, and destruction of the tube.

type	average cooling surface temperature °C	specific dissipation watts/cm ² of cooling surface	cooling medium supply
Radiation Water	4001000 3060	4–10 30–110	0.25–0.5 gpm per kw
Forced-air	150200	0.5–1	50-150 cfm per kw

Typical operating data for common types of cooling are roughly

The operating temperature of radiation-cooled anodes for a given dissipation is determined by the relative total emissivity of the anode material. Thus, graphite electrodes which approach black-body radiation conditions operate at the lower temperature range indicated, while untreated tantalum and molybdenum work at relatively high temperatures. In computing coolingmedium flow, a minimum velocity sufficient to insure turbulent flow at the dissipating surface must be maintained. In the case of water and forced-air cooled tubes, the figures above apply to clean cooling surfaces, and may be reduced to a small fraction of these values by heat-insulating coatings such as mineral scale or dust. Cooling surfaces should, thus, be closely observed and cleaned periodically.

# Dissipation and temperature rise of cooling water

$$KW = 0.264 Q(T_2 - T_1)$$

where KW = power in kilowatts, Q=flow in gallons per minute,  $T_2$  and  $T_1 =$  outlet and inlet temperatures in degrees centrigrade. An alternate formula is

$$KW = \frac{\text{liters per minute } (T_2 - T_1)}{14.3}$$

or KW =liters per minute when the temperature rise is a reasonable figure, namely 14.3° C.

# Air flow and temperature rise

$$Q = 5.92 (T_1 + 273) \frac{P}{T_2 - T_1}$$

where Q = air flow in cubic feet per minute.

# Filament characteristics

The sum of the instantaneous peak currents drawn by all of the electrodes must be within the available total emission of the filament. This emission is determined by the filament material, area, and temperature.

type	efficiency ma/watt	specific emission Is amp/cm ²	watt/cm²	operating temperature Kelvin	ratio hot-to-cold resistance
Ruretungsten (W)	5-10	0.25-0.7	70-84	25002600	14:1
Th <del>ariated</del> tungsten (ThW)	40100	0. <del>5</del> –3	26–28	1950-2000	10:1
Oxide coated WaCaSr)	50-150	0.5 <b>2.5</b>	5-10	11001250	2.5 to 5.5:1

Typical data on the three types of file	ament most used are
-----------------------------------------	---------------------

In the cases of thoriated-tungsten and oxide-coated filament tubes, the emission data vary widely between tubes around the approximate range indicated in the table. The figures for specific emission refer to the peak or saturated value which is usually two or more times the total available value for these filaments. Instantaneous peak current values drawn during operation should never exceed the published available emission figure for the given tube.

Thoriated-tungsten and oxide-coated type filaments should be operated close to the specified published voltage. Deviation from these values will result in rapid destruction of the cathode surface.

In the case of pure tungsten, the filament may be operated over a considerable temperature range. It should be borne in mind, however, that the total filament-emission current available varies closely as the seventh power of the filament voltage. Likewise, the expected filament life is critically dependent on the operating temperature. The relationship between filament voltage and life is shown by Fig. 2. It will be seen that an increase of 5 percent above rated filament voltage reduces the life expectancy by 50 percent. Where the full normal emission is not required, a corresponding increase in life may be secured by operating a pure tungsten filament below rated filament voltage.

From the above tabulated values of hot-to-cold resistance, it may be seen that a very high heating current may be drawn by a cold filament, particularly one of the tungsten type. In order to avoid destruction by mechanical stresses which are proportional to  $I^2$ , it is imperative to limit the current to a safe value, say, 150 percent of normal hot value for large tubes and 250 percent for medium types. This may be accomplished by resistance and time-delay relays, high-reactance transformers, or regulators.

# Filament characteristics

400

percent of normal life and emission

continued

percent of rated filament voltage



# Filament characteristics continued

In the case where a severe overload has temporarily impaired the emission of a thoriated-tungsten filament, the activity can sometimes be restored by operating the tube with filament voltage only in accordance with one of the following schedules:

**1.** At normal filament voltage for several hours or overnight. Or, if the emission fails to respond.

**2.** At 30 percent above normal for 10 minutes, then at normal for 20 to 30 minutes. Or, in extreme cases when 1 and 2 have failed to give results and at the risk of burning out the filament.

3. At 75 percent above normal for 30 seconds followed by schedule 2.

# Ultra-high-frequency tubes

Tubes for u-h-f application differ widely in design among themselves and from those for lower frequency. The theory of their operation and the principles of their design have not been fully expounded, and great progress in this field still lies ahead.

Ultra-high-frequency tubes may be classified according to principle of operation as follows:

- 1. Negative-grid tubes
- 2. Positive-grid tubes
- 3. Velocity-modulated tubes
- 4. Magnetrons

1. Negative-grid tubes: Effectiveness of negative-grid tubes at ultra-high-frequencies is limited by two factors

a. difficulty of designing the circuit associated with the tube

b. effect of electron inertia.

a. Design of u-h-f circuit associated with negative-grid tubes: The circuit must be tunable at the operating frequency. This leads to the use of transmission lines as associated circuits of the parallel or coaxial type. The tubes themselves are constructed so as to be part of the associated transmission line.

Lines in some cases are tuned on harmonic modes, thus making possible the use of larger circuit elements.

Circuit impedance must match the optimum loading impedance of the tube, a requirement difficult to satisfy inasmuch as the capacitive reactances are very small and u-h-f losses are important in both conductors and insulators. Difficulty in obtaining the proper Q of the circuit is increased with frequency.

# Ultra-high-frequency tubes continued

**b.** Effect of electron inertia: The theory of electron inertia effect in receiving tubes has been formulated by Llewelyn, but no comparable, complete theory is now available for transmitting tubes. In both cases the time of flight of an electron from cathode to anode must be a small fraction of the oscillating period. When this period is so short as to be of the same order of magnitude as the transit time, receiving tubes cease to amplify and transmitting tubes cease to oscillate.

Small tubes with close spacing between electrodes have been built that can be operated up to about 3000 megacycles.

To compare results obtained with different tubes and circuits pertaining to a family ruled by the law of similitude, it is useful to know that dimensionless magnitudes, such as efficiency, or signal-noise ratio, are the same when the dimensionless parameter

 $\phi = \frac{f \times d}{\sqrt{V}}$  remains constant

where

f =frequency in megacycles

d = cathode-to-anode distance in centimeters

V = anode voltage in volts.

Transit-time effect appears when  $\phi$  becomes greater than 1. Spacing between electrodes of u-h-f tubes then must be small, and operation at high voltage is necessary. In addition cathodes must be designed for high current density operation.

**2.** Positive-grid tubes: Utilize an oscillating space charge produced by acceleration of electrons through the positive grid toward a negative reflecting anode. This principle has been used for generating waves down to lengths of one centimeter. Low power output and low efficiency have hitherto limited their wide application.

**3. Velocity-modulated tubes:** Utilize, the acceleration and retarding action of an alternating electron voltage on an electron beam to vary the velocity in the beam. After passage of the beam through a field-free drift space, the beam arrives with variations of space-charge density. In passing through the opening of a resonant cavity at this point, the variation of the beam density induces a current in the external circuit. Several types of amplifiers and oscillators employ this principle of operation; some, such as the reflex Klystron, have a single cavity. While a theoretical efficiency of about 50 percent may thereby be achieved, the actual efficiency in the frequency range around 10 centimeters is only a few percent.

4. Magnetrons: May be considered as another form of velocity-modulated tube in which the electron stream instead of being accelerated linearly is

# Ultra-high-frequency tubes continued

given a circular trajectory by means of a transverse magnetic field. Energy from this beam is not lost directly to an acceleration electrode at d-c potential as in the linear case and accordingly a higher operating efficiency may be obtained. Usually acceleration and retardation of the rotary beam is accomplished by one or more pairs of electrodes associated with one or more resonant circuits.

Wavelengths down to a centimeter are produced by the so-called first order (n = 1) oscillations generated in a magnetron having a single pair of plates. Relatively low efficiency and power output are obtained in this mode of operation. Design formulas relating dimensions, d-c anode voltage, magnetic field strength, and output frequency for this case are obtained from the basic relation for electron angular velocity

2

$$\omega_m = H \frac{e}{m}$$

$$\lambda = \frac{10,700}{H}$$

$$E_b = 0.022 r_b^2 \left[ 1 - \left(\frac{r_b}{r_b}\right)^2 \right]^2 H$$

where

H = field intensity in gauss  $E_b$  = d-c accelerating voltage in volts  $\lambda$  = generated wavelength in centimeters

 $r_h = anode radius in centimeters$ 

 $\mathbf{r}_k = \mathbf{cathode \ radius \ in \ centimeters}$ 

Higher order oscillations of the magnetron may be obtained at high outputs and efficiencies exceeding that of the linear velocity-modulated tubes.

# **Cathode-ray tubes**

# Electrodes*

Control electrode (modulating electrode, grid, or grid No. 1): Is operated at a negative potential with respect to the cathode in conventional cathoderay tubes. The negative potential controls the beam current and, therefore, the trace brightness.

* Sections on Electrodes, Characteristics, and Application Notes prepared by I. E. Lempert, Allen B. Dumont Laboratories, Inc.

Screen grid (grid No. 2): Is not utilized in all cathode-ray tube designs. Its introduction makes the control characteristic independent of the accelerating potential when operated at fixed positive potential. In electrostatic-focus, it makes the screen current (beam current to fluorescent screen) substantially independent of the focusing electrode voltage over the focus region. In some tube designs, it is used to change the control characteristic dynamically by application of varying potential.



Fig. 3—Electrode arrangement of typical electrostatic focus and deflection cathode-ray tube. A heater. B cathode. C control electrode. D screen grid or pre-accelerator. E focusing electrode. F accelerating electrode. G deflection plate pair. H deflection plate pair. J conductive coating connected to accelerating electrode. K intensifier electrode terminal. L intensifier electrode (conductive coating on glass). M fluorescent screen.

Focusing electrode (anode No. 1): Is used in electrostatic-focus cathode-ray tubes and operates at a positive potential,* adjustable to focus the spot.

Accelerating electrode (anode No. 2 or anode): In usual usage, the second anode is the last electrode, prior to deflection, which produces acceleration. The second anode potential is the potential of the electron beam in the deflection region.

Intensifier electrode (post-accelerating electrode, anode No. 3): Provides acceleration after deflection.

**Preaccelerating electrode:** In common usage, is an electrode like a screen grid or second grid, but connected to the accelerating electrode internally. It makes the screen current (beam current to fluorescent screen) substantially independent of the focusing electrode voltage over the focus region.

Deflection plates (deflection electrodes): Conventional cathode-ray tubes have two pairs of deflection plates at right angles to each other. The electric field between the plates of a pair causes deflection of the beam and, therefore, displacement of spot, in a direction perpendicular to plates of a pair.

* All potentials are with respect to the cathode except when otherwise indicated.

# **Characteristics**

**Cutoff voltage** ( $E_{co}$ ): Negative grid potential at which screen current becomes zero (as indicated by visual extinction of a focused undeflected spot), or some specified low value. It varies directly with the accelerating electrode potential except in tubes with independently connected screen grids where it varies approximately as the screen-grid potential, the accelerating electrode potential having a second order effect ( $E_{co}$  increases slightly with accelerating electrode potential).  $E_{co}$  is independent of intensifier electrode potential.

**Control characteristic (modulation characteristic):** Is a curve of beam current versus grid potential. It is often expressed in terms of grid drive (grid potential above cutoff) rather than actual grid potential. This method of expressing it has the advantage that the characteristic then varies less with accelerating potential and with individual tubes of a given design.

**Focusing voltage:** In electrostatic focus tubes, the focusing electrode voltage at which the spot comes to a focus varies directly with accelerating electrode voltage in most tube designs and is substantially independent of the intensifier electrode potential.

Focusing current or focusing ampere turns: Applies to magnetic-focus cathode-ray tubes and is usually expressed in terms of a definite focus coil in a definite location on the tube. While more than one value of current will focus, the best focus is obtained with the minimum value, i.e., the one ordinarily specified. The focusing current (or ampere turns) increases with accelerating potential.

**Deflection factor (for electrostatic-deflection tubes):** Is defined as the voltage required between a pair of deflection plates to produce unit deflection of the spot, and is usually expressed in d-c volts per inch of displacement. It varies directly with the accelerating potential in intensifier-type tubes so long as the ratio of the intensifier potential to accelerating-electrode potential (all potentials with respect to cathode) is constant. The application of twice the accelerating electrode potential to the intensifier electrode increases the deflection factor 15 percent to 30 percent above the value with the accelerating electrode and intensifier electrode at the same potential, depending on the tube design.

**Deflection factor (for magnetic deflection tubes):** Usually expressed in terms of a definite deflection yoke in a definite location on the tube, in amperes or milliamperes per inch of spot deflection, it varies as the square root of the accelerating electrode potential.

**Deflection sensitivity:** Is the reciprocal of the deflection factor. Usually, however, it is expressed in millimeters per volt for electrostatic deflection tubes.

**Spot size:** Must be expressed in terms of a defined method of measurement since spot edges are not usually sharp. When the accelerating potential is varied and the screen current maintained constant, the spot size usually decreases with increasing accelerating potential. If the brightness is held constant while varying the accelerating potential, the spot size decreases even more with increasing accelerating potential.

**Brightness:** Increases with beam current and with accelerating potential. At constant screen current, it usually increases with accelerating potential at a rate between the first and second power of the accelerating potential, approaching a maximum depending upon the screen material.

# **Application notes**

**Grid voltage:** To permit variation of brightness over the entire range, the grid voltage, should be variable from the maximum specified cutoff bias of a cathode-ray tube to zero. Allowance should be made for a-c grid voltages if they are applied, and for potential drops which may occur in d-c grid-return circuits due to allowable grid leakage.

Focusing electrode voltage source (electrostatic-focus tubes): Bleeder design should be such as to cover the range of focus voltage over which tubes are permitted to vary by specifications, both at the value of focusing-electrode current that may be encountered in operation, and at cutoff (zero focusing-electrode current).

**Deflection-plate potentials (electrostatic-deflection tubes):** To avoid deflocusing of the spot, the instantaneous average potential of the plates of each deflection-plate pair should always be the same as that of the accelerating electrode.

**Magnetic shielding:** Magnetic shielding is necessary if it is desired to eliminate magnetic effects on the beam. The earth's and other magnetic fields may shift the beam considerably.

# Approximate formulas

**Electrostatic deflection:** Is proportional to deflection voltage, inversely proportional to accelerating voltage, and at right angles to the plane of the plates and toward the more positive plate. For deflection electrode structures using straight parallel deflection plates

$$D = \frac{E_d U}{2E_d}$$

2E_aA

D = deflection

 $E_d = deflection voltage$ 

 $E_a$  = accelerating voltage

A = separation of plates

I =length of plates

L = length from center of plates to screen

D, A, I, L are all in the same units

**Electromagnetic deflection:** Is proportional to flux or current in coil, inversely proportional to the square root of the accelerating voltage, and at right angles to the direction of the field

$$D = \frac{0.3LIH}{\sqrt{E_a}}$$

D = deflection in centimeters

- L = length in centimeters between screen and point where beam enters deflecting field
- I =length of deflection field in centimeters

H = flux density in gauss

 $E_a = \text{accelerating voltage}$ 

NI = deflecting coil ampere turns



**Deflection sensitivity:** Is linear up to frequency where phase of deflecting voltage begins to reverse before electron has reached end of deflecting field. Beyond this frequency, sensitivity drops off reaching zero and then passing through a series of maxima and minima as  $n = 1, 2, 3 \dots$  Each succeeding maximum is of smaller magnitude

$$D_{zero} = n\lambda \left(\frac{v}{c}\right).$$
$$D_{max} = (2n - 1) \left(\frac{\lambda}{2}\right) \left(\frac{v}{c}\right)$$

D = deflectionv = electron velocity c = speed of light (3 × 10¹⁰ cm/sec)

Electron velocity: For accelerating voltages up to 10,000 v (km per sec) =  $593\sqrt{E_a}$ 

Beyond 10,000 volts, apply Einstein's correction for the increase in mass of the electron.

## Earth's magnetic field:

Maximum 0.4 gauss horizontal (Philippine Islands)

0.6 gauss vertical (Canada)

City of New York 0.17 gauss horizontal; 0.59 gauss vertical

Magnetic focusing: There is more than one value of current that will focus. Best focus is at minimum value.

For an everage coil

$$IN = 220\sqrt{\frac{V_0 d}{f}}$$

 $X = \frac{d_1}{20}$ 

IN = ampere turns  $V_0$  = kv accelerating voltage d = mean diameter of coil f = focal length

d and f are in the same units

A well-designed, shielded coil will require fewer ampere turns. Example of good shield design



# Army-Navy preferred list of electron tubes

Receiving	1											1 Nov	ember 1945
filament voltage	diodes	diode triodes	triodes	twin triodes	pen remote	todes sharp	converters	Klystrons	power output	tuning indicators	rectiflers	mit cathode ray	cellaneous crystals
1.4	1A3	155‡	ILE3	3A5	1T4	1L4 11N5 1S5‡	1LC6 1R5		3A4 3Q4 3S4			2AP1A 3DP1A 3JP1	1N21B 1N28 1N23B 1N31 1N25 1N32
5.0											5U4G 5Y3GT/G	3JP7 5CP1A	1N26
6.3	2822 6AL5 6H6*	6AQ6 65Q7* 6SR7*	2C22 2C40 6C4 6F4† 6J4 6J5* 9002	6J6 6SL7W 6SN7W 7F8	6AB7 6SG7* 6SK7* 9003	6AC7W 6AG7 6AK5 6AN5 6AS6 6SH7* 6SJ7* 7W7 9001	6SA7*	2K22 2K25 2K26 2K27 2K28 2K29 2K41 2K45 726A 726B 726C	6AK6 6AR6 6AS7G 6B4G 6L6WGA 6N7GT/G 6V6GT/G 6Y6G	6AF6G 6E5	6X5GT/G 1005	5CP7A 5FP7A 5FP14 5JP1 7BP7A 12DP7A	phototubes           IP21         925           IP30         926           IP35         929           920         931A           921         935           922         931
12.6	12H6*	125Q7* 125R7*	12J5GT	12SL7GT 12SN7GT	125G7* 125K7*	12SH7 12SJ7* 14W7	12SA7*	·	12A6*	1629		-	voltage regulators 0A2
25 or over	-	, . <u> </u>	-						2516GT/G 3516GT/G		25Z6GT/G		0B2 0C2 OA3/VR75
	s for 28 volts oply operation	26C6				6AJ5 26A6	26D6		26A5 26A7GT 28D7				OC3/VR105 OD3/VR150 991

#### Transmitting

٠

.....

triode	-	tetrodes	twin tetrodes	pentodes	pulse	1		.       .	rectifie		clipper	-	witching	
1000 2C26A 2C39 2C43 3C28 CV92(Br)† 100TH 2250TH 304TH 450TH 527	811 826 862A 880 889R-A 1626 8025A	807 813 814 827R† 1625	815 829B 832A	2E22 2E25 4E27 803 837	modulation 3D21A 3C245 3E29 4C35 5C22 6C21 715C†	magnet 2130-34 2141 2142 2148 2149 2150 2151 2153 2155 2155 2155 2155 2155 2156 2156 2156	4J31-35 4J36-42 4J43-44 4J50 4J51 4J52 5J26 5J26 5J29 5J30 5J31 5J32	Vacuum 1Z2 2X2A 3B24W 5R4GY 371B 836 1616 8016 8020	gas 3B28 4B26 4B35 5B21 6C 83 857B 866A 869B 872A 1C06	grid control 2D21 C5B 6D4 393A 394A 884 2050	19826 4831 719A	ATR 1835 1837 1844 1851 1852 1853 1856 1857 <b>pre-TR</b> 1838 1854	TR 1823 1824 1827 1832 1850 1855 1858 modulator 1822 1841 1842	- -

* Where direct interchangeability with prototype listed above is assured and its JAN-1A Specification has been issued a counterpart of the prototype indicated by suffix letter(s) GT, GT/G, Y, W, A, B, etc. may be used.  Consultation with applicable service laboratory's electron tube group is recommended before application in equipment.
 Diode Pentode. 142

٠

# Vacuum tube amplifiers

# Classification

It is common practice to differentiate between types of vacuum tube circuits, particularly amplifiers, on the basis of the operating regime of the tube.

**Class A:** Grid bias and alternating grid voltages such that plate current flows continuously throughout electrical cycle ( $\theta_p = 360$  degrees).

**Class AB:** Grid bias and alternating grid voltages such that plate current flows appreciably more than half but less than entire electrical cycle  $(360^\circ > \theta_n > 180^\circ)$ .

**Class B:** Grid bias close to cut-off such that plate current flows only during approximately half of electrical cycle ( $\theta_p \cong 180^\circ$ ).

**Class C:** Grid bias appreciably greater than cut-off so that plate current flows for appreciably less than half of electrical cycle ( $\theta_p < 180^\circ$ ).

A further classification between circuits in which positive grid current is conducted during some portion of the cycle, and those in which it is not, is denoted by subscripts 2 and 1, respectively. Thus a class AB₂ amplifier operates with a positive swing of the alternating grid voltage such that positive electronic current is conducted, and accordingly in-phase power is required to drive the tube.

# General design

For quickly estimating the performance of a tube from catalog data, or for predicting the characteristics needed for a given application, the ratios given in Table I may be used.

# Table I—Typical amplifier operating data

#### Maximum signal conditions----per tube

function	class A	class B a-f (p-p)	class B r-f	class C r-f
Plate efficiency $\eta$ % Peak instantaneous to d-c plate	2030	35-65	60-70	65-85
current ratio $M_{ib}/I_b$ RMS alternating to d-c plate	1.5-2	3.1	3.1	3.1-4.5
current ratio $I_p/I_b$ RMS alternating to d-c plate	0.50.7	1.1	1.1	1.1-1.2
voltage ratio $E_p/E_b$ D-C to peak instantaneous grid	0.3-0.5	0.5-0.6	0:50.6	0.5-0.6
current $I_c/M_{i_c}$		0.25-0.1	0.25-0.1	0.15-0.1

# General design continued

Table I gives correlating data for typical operation of tubes in the various amplifier classifications. From this table, knowing the maximum ratings of a tube, the maximum power output, currents, voltages, and corresponding load impedance may be estimated. Thus, taking for example, a type F-124-A water-cooled transmitting tube as a class C radio-frequency power amplifier and oscillator—the constant-current characteristics of which are shown in Fig. 1—published maximum ratings are as follows:

D-C plate voltage  $E_b = 20,000$  volts D-C grid voltage  $E_c = 3,000$  volts D-C plate current  $I_b = 7$  amperes R-F grid current  $I_g = 50$  amperes Plate input  $P_i = 135,000$  watts Plate dissipation  $P_p = 40,000$  watts

Maximum conditions may be estimated as follows:

For  $\eta = 75\%$  P_i = 135,000 watts E_b = 20,000 volts

Power output  $P_0 = \eta P_i = 100,000$  watts

Average d-c plate current  $I_b = P_i/E_b = 6.7$  amperes

From tabulated typical ratio  ${}^{M}i_{b}/I_{b} = 4$ , instantaneous peak plate current  ${}^{M}i_{b} = 4I_{b} = 27$  amperes

The rms alternating plate current component, taking ratio  $I_p/I_b = 1.2$ ,  $I_p = 1.2$   $I_b = 8$  amperes

The rms value of the alternating plate voltage component from the ratio  $E_p/E_b = 0.6$  is  $E_p = 0.6 E_b = 12,000$  volts.

The approximate operating load resistance  $r_{i}$  is now found from

$$r_l = \frac{E_p}{I_p} = 1500 \text{ ohms.}$$

An estimate of the grid drive power required may be obtained by reference to the constant current characteristics of the tube and determination of the peak instantaneous positive grid current  ${}^{M}i_{c}$  and the corresponding instantaneous total grid voltage  ${}^{M}e_{c}$ . Taking the value of grid bias  $E_{c}$  for the given operating condition, the peak a-c grid drive voltage is

Negtrat a

$${}^{\mathbf{M}}\mathsf{E}_{a} = ({}^{\mathbf{M}}\mathsf{e}_{a} - \mathsf{E}_{a})$$

from which the peak instantaneous grid drive power

 ${}^{\mathbf{M}}P_{c} = {}^{\mathbf{M}}E_{g} {}^{\mathbf{M}}i_{c}$
#### General design continued

An approximation to the average grid drive power  $P_{ar}$  necessarily rough due to neglect of negative grid current, is obtained from the typical ratio

$$\frac{I_c}{M_{i_c}} = 0.2$$

of d-c to peak value of grid current, giving

 $P_g = I_c E_g = 0.2 \text{ }^{M} i_c E_g \text{ watts.}$ 

Plate dissipation  $P_p$  may be checked with published values since

$$P_p = P_i - P_0.$$





# General design continued

It should be borne in mind that combinations of published maximum ratings as well as each individual maximum rating must be observed. Thus, for example in this case, the maximum d-c plate operating voltage of 20,000 volts does not permit operation at the maximum d-c plate current of 7 amperes since this exceeds the maximum plate input rating of 135,000 watts.

Plate load resistance  $r_i$  may be connected directly in the tube plate circuit, as in the resistance-coupled amplifier, through impedance-matching elements as in audio-frequency transformer coupling, or effectively represented by a loaded parallel resonant circuit as in most radio-frequency amplifiers. In any case, calculated values apply only to effectively resistive loads, such as are normally closely approximated in radio-frequency amplifiers. With appreciably reactive loads, operating currents and voltages will in general be quite different and their precise calculation is quite difficult.

The physical load resistance present in any given set-up may be measured by audio-frequency or radio-frequency bridge methods. In many cases, the proper value of  $r_l$  is ascertained experimentally as in radio-frequency amplifiers which are tuned to the proper minimum d-c plate current. Conversely, if the circuit is to be matched to the tube,  $r_l$  is determined directly as in a resistance-coupled amplifier or as

 $r_l = N^2 r_s$ 

in the case of a transformer-coupled stage, where N is the primary-to-secondary voltage transformation ratio. In a parallel-resonant circuit in which the output resistance  $r_*$  is connected directly in one of the resistance legs,

$$r_l = \frac{X^2}{r_s} = \frac{L}{Cr_s} = QX,$$

where X is the leg reactance at resonance (ohms).

L and C are leg inductance (henries) and capacitance (farads), respectively,

$$Q = \frac{X}{r_s}.$$

# **Graphical design methods**

When accurate operating data are required, more precise methods must be used. Because of the non-linear nature of tube characteristics, graphical methods usually are most convenient and rapid. Examples of such methods are given below.

A comparison of the operating regimes of class A, AB, B, and C amplifiers is given in the constant-current current characteristics graph of Fig. 1. The

lines corresponding to the different classes of operation are each the locus of instantaneous grid  $e_c$  and plate  $e_b$  voltages, corresponding to their respective load impedances.

For radio-frequency amplifiers and oscillators having tuned circuits giving an effective resistive load, plate and grid tube and load alternating voltages are sinusoidal and in phase (disregarding transit time), and the loci become straight lines.

For amplifiers having non-resonant resistive loads, the loci are in general non-linear except in the distortionless case of linear tube characteristics (constant  $r_p$ ) for which they are again straight lines.

Thus, for determination of radio-frequency performance, the constantcurrent chart is convenient. For solution of audio-frequency problems, however, it is more convenient to use the  $(i_b - e_c)$  transfer characteristics of Fig. 2 on which a dynamic load line may be constructed.

Methods for calculation of the most important cases are given below.

#### Class C r-f amplifier or oscillator

Draw straight line from A to B (Fig. 1) corresponding to chosen d-c operating plate and grid voltages, and to desired peak alternating plate and grid voltage excursions. The projection of AB on the horizontal axis thus corresponds to  ${}^{M}E_{p}$ . Using Chaffee's 11-point method of harmonic analysis, lay out on AB points:

$$e'_{p} = {}^{M}E_{p}$$
  $e''_{p} = 0.866 {}^{M}E_{p}$   $e'''_{p} = 0.5 {}^{M}E_{p}$ 

to each of which correspond instantaneous plate currents  $i'_b$ ,  $i''_b$  and  $i'''_b$  and instantaneous grid currents  $i'_c$ ,  $i''_c$  and  $i'''_c$ . The operating currents are obtained from the following expressions:

$$I_{b} = \frac{1}{12} [i'_{b} + 2i''_{b} + 2i''_{b}] \qquad I_{c} = \frac{1}{12} [i'_{c} + 2i''_{c} + 2i''_{c}]$$

$$^{M}I_{p} = \frac{1}{6} [i'_{b} + 1.73i''_{b} + i'''_{b}] \qquad ^{M}I_{g} = \frac{1}{6} [i'_{c} + 1.73i''_{c} + i'''_{c}].$$

Substitution of the above in the following give the desired operating data.

Power output 
$$P_0 = \frac{{}^{M}E_p {}^{M}I_p}{2}$$
  
Power input  $P_i = E_b I_b$   
Average grid excitation power  $= \frac{{}^{M}E_g {}^{M}I_g}{2}$ 



Fig. 2—Transfer characteristics  $i_b$  versus  $e_b$  with class  $A_2$ —CKF and class B—OPL load lines. 148

Peak grid excitation power =  ${}^{M}E_{g}i'_{c}$ 

Plate load resistance  $r_l = \frac{ME_p}{MI_p}$ 

Grid bias resistance 
$$R_c = \frac{E_c}{R_c}$$

Plate efficiency  $\eta = \frac{P_0}{P_i}$ 

Plate dissipation  $P_p = P_i - P_0$ 

The above procedure may also be applied to plate-modulated class C amplifiers. Taking the above data as applying to carrier conditions, the analysis is repeated for erest  $E_b = 2E_b$  and erest  $P_0 = 4P_0$  keeping  $r_l$  constant. After a cut-and-try method has given a peak solution, it will often be found that combination fixed and self grid biasing as well as grid modulation is indicated to obtain linear operation.

To illustrate the preceding exposition, a typical amplifier calculation is given below:

Operating requirements (carrier condition)

 $E_b = 12,000$  volts  $P_0 = 25,000$  watts  $\eta = 75\%$ 

Preliminary calculation (refer to Table II)

E _e (volts)           ME _g (volts)           I _b (amp)         2.9           MI _p (amp)         4.9	preliminary	detailed					
	carrier	crest					
	12,000	12,000	24,000				
ME _p (volts)	10,000	10,000	20,000				
		-1,000	700				
$ME_{g}$ (volts)		1,740	1,740				
Ib (amp)	2.9	2.8	6.4				
MIp (amp)	4.9	5.1	10.2				
Ic (amp)		0.125	0.083				
$M_{I_g}$ (amp)		0.255	0.183				
P; (watts)	35,000	33,600	154,000				
Po (watts)	25,000	25,50	102,000				
$P_{g}$ (watts)		220	160				
η (percent)	75	76	66				
ri (ohms)	2,060	1,960	1,960				
R _c (ohms)		7,100	7,100				
Ecc (volts)		-110	-110				

#### Table II—Class C r-f amplifier data 100% plate modulation

$$\frac{E_p}{E_b} = 0.6$$
  

$$E_p = 0.6 \times 12,000 = 7200 \text{ volts}$$
  

$$M_{E_p} = 1.41 \times 7200 = 10,000 \text{ volts}$$
  

$$I_p = \frac{P_o}{E_p}$$
  

$$I_p = \frac{25,000}{7200} = 3.48 \text{ amperes}$$
  

$$\frac{M_I}{I_p} = 4.9 \text{ amperes}$$
  

$$\frac{I_p}{I_b} = 1.2$$
  

$$I_b = \frac{3.48}{1.2} = 2.9 \text{ amperes}$$
  

$$P_i = 12,000 \times 2.9 = 35,000 \text{ watts}$$
  

$$\frac{M_{ib}}{I_b} = 4.5$$
  

$$M_{ib} = 4.5 \times 2.9 = 13.0 \text{ amperes}$$
  

$$r_l = \frac{E_p}{I_p} = \frac{7200}{3.48} = 2060 \text{ ohms}$$

# Complete calculation

Layout carrier operating line, AB on constant current graph, Fig. I, using values of  $E_b$ ,  ${}^{M}E_{pr}$ , and  ${}^{M}i_b$  from preliminary calculated data. Operating carrier bias voltage,  $E_c$ , is chosen somewhat greater than twice cutoff value, 1000 volts, to locate point A.

#### The following data are taken along AB:

$i_b' = 13 \text{ amp}$	$i_c' = 1.7 \text{ amp}$	$E_c = -1000$ volts
$i_b^{\prime\prime} = 10 \text{ amp}$	$i_c^{\prime\prime} = -0.1 \text{ amp}$	$e_c' = 740$ volts
$i_b^{\prime\prime\prime} = 0.3 \text{ amp}$	$i_c^{\prime\prime\prime} = 0 \text{ amp}$	${}^{M}E_{p} = 10,000 \text{ volts}$

From the formulas, complete carrier data as follows are calculated:

$${}^{M}I_{p} = \frac{1}{6} [13 + 1.73 \times 10 + 0.3] = 5.1 \text{ amp}$$

$$P_{0} = \frac{10,000 \times 5.1}{2} = 25,500 \text{ watts}$$

$$I_{b} = \frac{1}{12} [13 + 2 \times 10 + 2 \times 0.3] = 2.8 \text{ amp}$$

$$P_{i} = 12,000 \times 2.8 = 33,600 \text{ watts}$$

$$\eta = \frac{25,500}{33,600} \times 100 = 76 \text{ percent}$$

$$r_{i} = \frac{10,000}{5.1} = 1960 \text{ ohms}$$

$$I_{c} = \frac{1}{12} [1.7 + 2 (-0.1)] = 0.125 \text{ amp}$$

$$MI_{g} = \frac{1}{6} [1.7 + 1.7 (-0.1)] + 0.255 \text{ amp}$$

$$P_{g} = \frac{1740 \times 0.255}{2} = 220 \text{ watts}$$

Operating data at 100 percent positive modulation crests are now calculated knowing that here

$$E_b = 24,000 \text{ volts}$$
  $r_s = 1960 \text{ ohms}$ 

and for undistorted operation

 $P_0 = 4 \times 25,500 = 102,000$  watts  ${}^{M}E_p = 20,000$  volts

The crest operating line A'B' is now located by trial so as to satisfy the above conditions, using the same formulas and method as for the carrier condition.

It is seen that in order to obtain full-crest power output, in addition to doubling the alternating plate voltage, the peak plate current must be increased. This is accomplished by reducing the crest bias voltage with resultant increase of current conduction period, but lower plate efficiency.

The effect of grid secondary emission to lower the crest grid current is taken advantage of to obtain the reduced grid-resistance voltage drop required. By use of combination fixed and grid resistance bias proper variation of the total bias is obtained. The value of grid resistance required is given by

$$R_c = \frac{-\left[E_c - crestE_c\right]}{I_c - crestI_c}$$

and the value of fixed bias by

$$E_{cc} = E_c - (I_c R_c)$$

Calculations at carrier and positive crest together with the condition of zero output at negative crest give sufficiently complete data for most purposes. If accurate calculation of audio-frequency harmonic distortion is necessary the above method may be applied to the additional points required.

#### **Class B r-f amplifiers**

A rapid approximate method is to determine by inspection from the tube  $(i_b - e_b)$  characteristics the instantaneous current,  $i'_b$  and voltage  $e'_b$  corresponding to peak alternating voltage swing from operating voltage  $E_b$ .

A-C plate current  ${}^{M}I_{p} = \frac{i'_{b}}{2}$ D-C plate current  $I_{b} = \frac{i'_{b}}{\pi}$ A-C plate voltage  ${}^{M}E_{p} = E_{b} - e'_{b}$ Power output  $P_{0} = \frac{(E_{b} - e'_{b})i'_{b}}{4}$ 

Power input  $P_i = \frac{E_{bi'b}}{\pi}$ 

Plate efficiency 
$$\eta = \frac{\pi}{4} \left( 1 - \frac{e'_b}{E_b} \right)$$

Thus  $\eta \cong 0.6$  for the usual crest value of  ${}^{\mathrm{M}}\mathrm{E}_p \cong 0.8$   $\mathrm{E}_b$ .

The same method of analysis used for the class C amplifier may also be used in this case. The carrier and crest condition calculations, however, are now made from the same  $E_b$ , the carrier condition corresponding to an alternating-voltage amplitude of  $\frac{{}^{M}E_{p}}{2}$  such as to give the desired carrier power output.

For greater accuracy than the simple check of carrier and crest conditions, the radio-frequency plate currents  ${}^{M}I'_{p}$ ,  ${}^{M}I''_{p}$ 

$$\begin{split} {S}' &= {}^{\mathbf{M}}{I'}_p + (- {}^{\mathbf{M}}{I'}_p) \\ {D}' &= {}^{\mathbf{M}}{I'}_p - (- {}^{\mathbf{M}}{I'}_p), \text{ etc.}, \end{split}$$

the fundamental and harmonic components of the output audio-frequency current are obtained as

$${}^{M}I_{p1} = \frac{S'}{4} + \frac{S''}{2\sqrt{2}}$$
 (fundamental)  ${}^{M}I_{p2} = \frac{5D'}{24} + \frac{D''}{4} - \frac{D'''}{3}$ 

Graphical design methods cor

continued

$${}^{\mathbf{M}}I_{p8} = \frac{S'}{6} - \frac{S'''}{3} \qquad {}^{\mathbf{M}}I_{p5} = \frac{S'}{12} - \frac{S''}{2\sqrt{2}} + \frac{S'''}{3} \\ {}^{\mathbf{M}}I_{p4} = \frac{D'}{8} - \frac{D''}{4} \qquad {}^{\mathbf{M}}I_{p6} = \frac{D'}{24} - \frac{D''}{4} + \frac{D'''}{3}$$

This detailed method of calculation of audio-frequency harmonic distortion may, of course, also be applied to calculation of the class C modulated amplifier, as well as to the class A modulated amplifier.

# Class A and AB a-f amplifiers

Approximate formulas assuming linear tube characteristics:

Maximum undistorted power output  ${}^{M}P_{0} = \frac{{}^{M}E_{p} {}^{M}I_{p}}{2}$ when plate load resistance  $r_{l} = r_{p} \left[ \frac{E_{c}}{\frac{M}{\mu} - E_{c}} - 1 \right]$ 

and

Negative grid bias 
$$E_c = \frac{{}^{M}E_p}{\mu} \left( \frac{r_l + r_p}{r_l + 2r_p} \right)$$

giving

Maximum plate efficiency 
$$\eta = \frac{{}^{\mathrm{M}}E_{p}{}^{M}I_{p}}{8E_{b}I_{b}}$$

Maximum maximum undistorted power output {}^{\mathbf{M}\mathbf{M}}P_0 = \frac{{}^{\mathbf{M}}E^2{}_p}{16~r_p}

when

$$r_l = 2 r_p \qquad E_c = \frac{3}{4} \frac{M_E_p}{\mu}$$

An exact analysis may be obtained by use of a dynamic load line laid out on the transfer characteristics of the tube. Such a line is CKF of Fig. 2 which is constructed about operating point K for a given load resistance  $r_i$  from the following relation:

$$i_b^{\mathbf{S}} = \frac{\mathbf{e}_b^{\mathbf{R}} - \mathbf{e}_b^{\mathbf{S}}}{r_b} + i_b^{\mathbf{R}}$$

where

R, S, etc., are successive conveniently spaced construction points.

Using the seven-point method of harmonic analysis, plot instantaneous plate currents  $i'_{b}$ ,  $i''_{b}$ ,  $i_{b}$ ,  $-i''_{b}$ ,  $-i''_{b}$ , and  $-i'_{b}$  corresponding to  $+{}^{M}E_{g}$ ,  $+ 0.707{}^{M}E_{g}$ ,  $+ 0.5{}^{M}E_{g}$ ,  $0, -0.5{}^{M}E_{g}$ ,  $-0.707{}^{M}E_{g}$ , and  $-{}^{M}E_{g}$ , where 0 corresponds to the operating point K. In addition to the formulas given under class B radio-frequency amplifiers:

$$I_b$$
 average =  $I_b + \frac{\mathsf{D}'}{8} + \frac{\mathsf{D}''}{4}$ 

from which complete data may be calculated.

#### **Class AB and B a-f ampliflers**

Approximate formulas assuming linear tube characteristics give (referring to Fig. 1, line CD) for a class B audio-frequency amplifier:

$$MI_{p} = i'_{b}$$

$$P_{0} = \frac{ME_{p} MI_{p}}{2}$$

$$P_{i} = \frac{2}{\pi} E_{b} MI_{p}$$

$$\eta = \frac{\pi}{4} \frac{ME_{p}}{E_{b}}$$

$$R_{pp} = 4 \frac{ME_{p}}{i'_{b}} = 4f$$

Again an exact solution may be derived by use of the dynamic load line JKL on the  $(i_b - e_c)$  characteristic of Fig. 2. This line is calculated about the operating point K for the given  $r_i$  (in the same way as for the class A case). However, since two tubes operate in phase opposition in this case, an identical dynamic load line MNO represents the other half cycle, laid out about the operating bias abscissa point but in the opposite direction (see Fig. 2).

Algebraic addition of instantaneous current values of the two tubes at each value of  $e_c$  gives the composite dynamic characteristic for the two tubes OPL. Inasmuch as this curve is symmetrical about point P it may be analyzed for harmonics along a single half curve PL by the Mouromtseff 5-point method. A straight line is drawn from P to L and ordinate plate current differences a, b, c, d, f between this line and curve, corresponding to  $e''_{q}$ ,  $e^{IV}_{q}$ ,  $e^{V}_{q}$ , and  $e^{VI}_{q}$ , are measured. Ordinate distances measured upward from curve PL are taken positive.

Fundamental and harmonic current amplitudes and power are found from the following formulas:

$${}^{M}I_{p1} = i'_{b} - {}^{M}I_{p3} + {}^{M}I_{p5} - {}^{M}I_{p7} + {}^{M}I_{p9} - {}^{M}I_{p11}$$

$${}^{M}I_{p3} = 0.4475 (b + f) + \frac{d}{3} - 0.578 d - \frac{1}{2} {}^{M}I_{p5}$$

$${}^{M}I_{p5} = 0.4 (a - f)$$

$${}^{M}I_{p7} = 0.4475 (b + f) - {}^{M}I_{p3} + 0.5 {}^{M}I_{p5}$$

$${}^{M}I_{p9} = {}^{M}I_{p3} - \frac{2}{3} d$$

$${}^{M}I_{p11} = 0.707c - {}^{M}I_{p3} + {}^{M}I_{p5}.$$

Even harmonics are not present due to dynamic characteristic symmetry. The direct current and power input values are found by the 7-point analysis from curve PL and doubled for two tubes.

#### **Classification of amplifier circuits**

The classification of amplifiers in classes A, B, and C is based on the operating conditions of the tube.

Another classification can be used, based on the type of circuits associated with the tube.

A tube can be considered as a four-terminal network with two input terminals and two output terminals. One of the input terminals and one of the output terminals are usually common; this common junction or point is usually called "ground".

When the common point is connected to the filament or cathode of the tube, we can speak of a grounded-cathode circuit. It is the most conventional type of vacuum tube circuit. When the common point is the grid, we can speak of a grounded-grid circuit, and when the common point is the plate or anode, we can speak of the grounded-anode circuit.

This last type of circuit is most commonly known by the name of cathode follower.

A fourth and most general class of circuit is obtained when the common point or ground is not directly connected to any of the three electrodes of the tube. This is the condition encountered at u-h-f where the series impedances of the internal tube leads make it impossible to ground any of them. It is also encountered in such special types of circuits as the *phase-splitter*, in which the impedance from plate to ground and the impedance from cathode to ground are made equal in order to obtain an output between plate and cathode balanced with respect to ground.



# Table III-Classification of triode amplifier circuits

-----

#### Classification of amplifier circuits continued

Design information for the first three classifications is given in Table III, where

 $Z_2$  = load impedance to which output terminals of amplifier are connected  $E_1$  = rms driving voltage across input terminals of amplifier

 $E_2 = \text{rms}$  output voltage across load impedance  $Z_2$ 

 $I_1 = rms$  current at input terminals of amplifier

 $\gamma$  = voltage gain of amplifier =  $\frac{E_2}{E_1}$ 

 $Y_1$  = input admittance to input terminals of amplifier =  $\frac{I_1}{r}$ 

$$\omega = 2\pi \times \text{frequency of excitation voltage } E_1$$
$$i = \sqrt{-1}$$

and the remaining notation is in accordance with the nomenclature of pages 127 and 128.

# Cathode follower data

#### **General characteristics**

- 1. High impedance input, low impedance output.
- 2. Input and output have one side grounded.
- 3. Good wide-band frequency and phase response.
- 4. Output is in phase with input.
- 5. Voltage gain or transfer is always less than one.
- 6. A power gain can be obtained.
- 7. Input capacitance is reduced.

#### **General** case

Transfer = 
$$\frac{g_m R_L}{g_m R_L + 1}$$
 or  $g_m Z_r$ 

 $Z_r$  = resultant cathode to ground impedance =  $R_{out}$  in parallel with  $R_e$  $R_{out}$  = output resistance **s**+

 $= \frac{R_p}{\mu + 1} \text{ or approximately } \frac{1}{g_m}$ 

 $R_L$  = total load resistance

Input capacitance =  $C_{gp} + \frac{C_{gk}}{1 + g_m R_L}$ 

 $g_m$  = transconductance in mhos (1000 micromhos = 0.001 mhos)



# Cathode follower data continued

# **Specific cases**

**1.** To match the characteristic impedance of the transmission line,  $R_{out}$  must equal  $Z_0$ . The transfer is approximately 0.5.

input

**2.** If  $R_{out}$  is less than  $Z_0$ , add resistor  $R_c'$  in series so that  $R_c' = Z_0 - R_{out}$ . The transfer is approximately **0.5**.



**3.** If  $R_{out}$  is greater than  $Z_0$  add resistor  $R_c$  in parallel so that

$$R_c = \frac{Z_0 R_{out}}{R_{out} - Z_0}$$

Transfer = 
$$\frac{g_m Z_0}{2}$$

Note: Normal operating bias must be provided.

For coupling a high impedance into a low impedance transmission line, for maximum transfer choose a tube with a high  ${\bf g}_{m^{\rm a}}$ 

# Resistance-coupled audio amplifier design

Stage gain at

Medium frequencies =  $A_m = \frac{\mu R}{R + R_p}$ 

High frequencies

$$= A_h = \frac{A_m}{\sqrt{1 + \omega^2 C_1^2 r^2}}$$

Low frequencies* =  $A_1 = \frac{A_m}{\sqrt{1 + \frac{1}{\omega^2 C^2 c^2}}}$ 

*The low-frequency stage gain also is affected by the values of the cathode by-pass capacitor and the screen by-pass capacitor.



#### Resistance coupled audio amplifier design

where

$$R = \frac{r_1 R_2}{r_1 + R_2}$$
$$Rr_p$$

$$\rho = R_2 + \frac{r_l r_p}{r_l + r_p}$$

 $\overline{R + r_n}$ 

continued

B-grid. C-ground or cathode.

 $\begin{array}{l} \mu = \text{amplification factor of tube} \\ \omega = 2\pi \times \text{frequency} \\ r_l = \text{plate load resistance in ohms} \\ R_2 = \text{grid leak resistance in ohms} \\ r_p = \text{a-c plate resistance in ohms} \\ C_1 = \text{total shunt capacitance in farads} \\ C_2 = \text{coupling capacitance in farads} \end{array}$ 

#### Given $C_1$ , $C_2$ , $R_2$ , and X = fractional response required

#### At highest frequency

$$r = \frac{\sqrt{1 - X^2}}{\omega C_1 X} \qquad R = \frac{r r_p}{r_p - r} \qquad r_l = \frac{R R_2}{R_2 - R}$$

At lowest frequency*

$$C_2 = \frac{\chi}{\omega \rho \sqrt{1-\chi^2}}$$

*The low-frequency stage gain also is affected by the values of the cathode by-pass capacitor and the screen by-pass capacitor.

## Negative feedback

The following quantities are functions of frequency with respect to magnitude and phase:

E, N, and D = signal, noise, and distortion output voltage with feedback e, n, and d = signal, noise, and distortion output voltage without feedback

- A = voltage amplification of amplifier at a given frequency
- $\beta$  = fraction of output voltage fed back; for usual negative feedback,  $\beta$  is negative
- $\phi$  = phase shift of amplifier and feedback circuit at a given frequency

# Reduction in gain caused by feedback



Fig. 3—In negative-feedback amplifier considerations  $\beta$ , expressed as a percentage, has a negative value. A line across the  $\beta$  and A scales intersects the center scale to indicate change in gain. It also indicates the amount, in decibels, the input must be increased to maintain original output.



C.E. Tennis

VACUUM TUBE AMPLIFIERS 101

(4)

#### Negative feedback continued

The total output voltage with feedback is

$$E + N + D = e + \frac{n}{1 - A\beta} + \frac{d}{1 - A\beta}$$
 (1)

It is assumed that the input signal to the amplifier is increased when negative feedback is applied, keeping E = e.

 $(1 - A \beta)$  is a measure of the amount of feedback. By definition, the amount of feedback expressed in decibels is

$$20 \log_{10} \left[ I - A \beta \right] \tag{2}$$

Voltage gain with feedback =  $\frac{A}{1 - A\beta^2}$  (3)

and change of gain  $= \frac{1}{1 - A\beta}$ 

If the amount of feedback is large, i.e.,  $-A\beta > 1$ , the voltage gain becomes  $-\frac{1}{\beta}$  and so is independent of A. (5)

In the general case when  $\phi$  is not restricted to 0 or  $\pi$ 

the voltage gain = 
$$\frac{A}{\sqrt{1 + |A\beta|^2 - 2 |A\beta| \cos \phi}}$$
 (6)

and change of gain = 
$$\frac{1}{\sqrt{1 + |A\beta|^2 - 2 |A\beta|} \cos \phi}$$
(7)

Hence if  $|A\beta| > 1$ , the expression is substantially independent of  $\phi$ . On the polar diagram relating  $(A\beta)$  and  $\phi$  (Nyquist diagram), the system is unstable if the point (1, 0) is enclosed by the curve.

#### Feedback amplifier with single beam power tube

The use of the foregoing negative feedback formulas is illustrated by the amplifier circuit shown in Fig. 4.

The amplifier consists of an output stage using a 6V6-G beam power tetrode with feedback driven by a resistance-coupled stage using a 6J7-G in a pentode connection. Except for resistors  $R_1$  and  $R_2$  which supply the feedback voltage, the circuit constants and tube characteristics are taken from published data.

#### Negative feedback continued

The fraction of the output voltage to be fed back is determined by specifying that the total harmonic distortion is not to exceed 4 percent. The plate supply voltage is taken as 250 volts. At this voltage, the 6V6-G has 8 percent



Fig. 4—Feedback amplifier with single beam power tube.

total harmonic distortion. From equation (1), it is seen that the distortion output voltage with feedback is

$$D = \frac{d}{1 - A\beta}$$

This may be written as

$$1 - A\beta = \frac{d}{D}$$

where

$$\frac{d}{D} = \frac{8}{4} = 2$$
  $1 - A\beta = 2$   $\beta = -\frac{1}{A}$ 

and where A = the voltage amplification of the amplifier without feedback.

The peak a-f voltage output of the 6V6-G under the assumed conditions is

$$E_o = \sqrt{4.5 \times 5000 \times 2} = 212 \text{ yolts}$$

This voltage is obtained with a peak a-f grid voltage of 12.5 volts so that the voltage gain of this stage without feedback is

$$A = \frac{212}{12.5} = 17$$

## Negative feedback continued

Hence

ie 
$$\beta = -\frac{1}{A} = -\frac{1}{17} = -0.0589$$
 or 5.9% approximately

The voltage gain of the output stage with feedback is computed from equation (3) as follows

$$A' = \frac{A}{1 - A\beta} = \frac{17}{2} = 8.5$$

and the change of gain due to feedback by equation (4) thus

$$\frac{1}{1 - A\beta} = 0.5$$

The required amount of feedback voltage is obtained by choosing suitable values for  $R_1$  and  $R_2$ . The feedback voltage on the grid of the 6V6-G is reduced by the effect of  $R_q$ ,  $R_L$  and the plate resistance of the 6J7-G. The effective grid resistance is

$$R_g' = \frac{R_g r_p}{R_g + r_p}$$

where  $R_g = 0.5$  megohm.

This is the maximum allowable resistance in the grid circuit of the 6V6-G with cathode bias.

 $r_p = 4$  megohms, the plate resistance of the 6J7-G tube

$$R_{g}' = \frac{4 \times 0.5}{4 + 0.5} = 0.445 \text{ megohm}$$

The fraction of the feedback voltage across  $R_2$  which appears at the grid of the 6V6-G is

$$\frac{R_{g'}}{R_{g'} + R_{\rm L}} = \frac{0.445}{0.445 + 0.25} = 0.64$$

where  $R_{\rm L} = 0.25$  megohm.

Thus the voltage across  $R_2$  to give the required feedback must be

 $\frac{5.9}{0.64} = 9.2\%$  of the output voltage.

This voltage will be obtained if  $R_1 = 50,000$  ohms and  $R_2 = 5000$  ohms.

This resistance combination gives a feedback voltage ratio of

 $\frac{5000 \times 100}{50,000 + 5000} = 9.1\%$  of the output voltage.

# Negative feedback continued

In a transformer-coupled output stage, the effect of phase shift on the gain with feedback does not become appreciable until a noticeable decrease in gain without feedback also occurs. In the high-frequency range, a phase shift of 25 degrees lagging is accompanied by a 10 percent decrease in gain. For this frequency, the gain with feedback is computed from equation (6).

$$A' = \frac{A}{\sqrt{1 + |A\beta|^2 - 2|A\beta|\cos \phi}}$$

where A = 15.3,  $\phi = 180^{\circ}$ ,  $\cos \phi = 0.906$ ,  $\beta = 0.059$ .

$$A' = \frac{15.3}{\sqrt{1+|0.9|^2+2|0.9|0.906}} = \frac{15.3}{\sqrt{3.44}} = \frac{15.3}{1.85} = 8.27$$

The change of gain with feedback is computed from equation (7).

$$\frac{1}{\sqrt{1+|\dot{A}\beta|^2-2|A\beta|\cos\phi}} = \frac{1}{1.85} = 0.541$$

If this gain with feedback is compared with the value of 8.5 for the case of no phase shift, it is seen that the effect of frequency on the gain is only 2.7 percent with feedback compared to 10 percent without feedback.

The change of gain with feedback is 0.541 times the gain without feedback whereas in the frequency range, where there is no phase shift, the corresponding value is 0.5. This quantity is 0.511 when there is phase shift but no decrease of gain without feedback.

# Distortion

A rapid indication of the harmonic content of an alternating source is given by the distortion factor which is expressed as a percentage.

Distortion factor = 
$$\sqrt{\frac{\text{sum of squares of amplitudes of harmonics}}{\text{square of amplitude of fundamental}} \times 100\%$$

If this factor is reasonably small, say less than 10 percent, the error involved in measuring it

 $\sqrt{\frac{\text{sum of squares of amplitudes of harmonics}}{\text{sum of squares of amplitudes of fundamental and harmonics}} imes 100\%$ 

is also small. This latter is measured by the distortion factor meter.

# Room acoustics*

## General considerations for good room acoustics

The following information is intended primarily to aid field engineers in appraising acoustical properties of existing structures and not as a complete treatise on the subject.

# Good acoustics-governing factors

a. Reverberation time or amount of reverberation: Varies with frequency and is measured by the time required for a sound, when suddenly interrupted, to die away or decay to a level 60 decibels (db) below the original sound.

The reverberation time and the shape of the reverberation-time/frequency curve can be controlled by selecting the proper amounts and varieties of sound-absorbent materials and by the methods of application. Room occupants must be considered inasmuch as each person present contributes a fairly definite amount of sound absorption.

**b.** Standing sound waves: Resonant conditions in sound studios cause standing waves by reflections from opposing parallel surfaces, such as ceilingfloor and parallel walls, resulting in serious peaks in the reverberation-time/ frequency curve. Standing sound waves in a room can be considered comparable to standing electrical waves in an improperly terminated transmission line where the transmitted power is not fully absorbed by the load.

# Room sizes and proportions for good acoustics

The frequency of standing waves is dependent on room sizes: frequency decreases with increase of distances between walls and between floor and ceiling. In rooms with two equal dimensions, the two sets of standing waves occur at the same frequency with resultant increase of reverberation time at resonant frequency. In a room with walls and ceilings of cubical contour this effect is tripled and elimination of standing waves is practically impossible.

The most advantageous ratio for height: width: length is in the proportion of  $1:2^{\frac{1}{3}}:2^{\frac{3}{5}}$  or separated by  $\frac{1}{3}$  or  $\frac{2}{3}$  of an octave.

In properly proportioned rooms, resonant conditions can be effectively reduced and standing waves practically eliminated by introducing numerous surfaces disposed obliquely. Thus, large-order reflections can be avoided by breaking them up into numerous smaller reflections. The object is to pre-

* Compiled by Edward J. Content, consulting engineer.

# Room sizes and proportions for good acoustics continued

vent sound reflection back to the point of origin until after several rereflections.

Most desirable ratios of dimensions for broadcast studios are given in Fig. 1.



Fig. 1—Preferred room dimensions based on  $2^{\frac{1}{4}}$  ratio. Permissible deviation  $\pm 5$  percent.

# **Optimum reverberation time**

Optimum, or most desirable reverberation time, varies with (1) room size, and (2) use, such as music, speech, etc. (see Figs. 2 and 3).



Fig. 2—Optimum reverberation time in seconds for various room volumes at 512 cycles per second.



# Fig. 3—Desirable relative reverberation time versus frequency for various structures and auditoriums.

Note: These curves show the desirable ratio of the reverberation time for various frequencies to the reverberation time for 512 cycles. The desirable reverberation time for any frequency between 60 and 8000 cycles may be found by multiplying the reverberation time at 512 cycles (from Fig. 2) by the number in the vertical scale which corresponds to the frequency chosen.

#### Optimum reverberation time continued

A small radio studio for speech broadcasts represents a special case. The acoustic studio design should be such that the studio neither adds nor detracts from the speaker's voice, which on reproduction in the home should sound as though he were actually present.



Fig. 4.

For optimum characteristics of a speech studio, the reverberation time should be about one-half a second throughout the middle and lower audio-frequency range. At high frequencies, the reverberation time may be 20 percent to 25 percent greater than at 512 cycles. This rise at the higher frequencies enhances intelligibility and allows for the presence in the studio of one or two extra persons without materially affecting the reverberation-time/ frequency curve.

#### Optimum reverberation time continued

Speech sounds above about 1000 cycles promote intelligibility. Apparent intensity of speech sounds is provided by frequencies below this value. Preponderance of low bass reverberation and standing waves tends to make the voice sound "boomy" and impairs speech intelligibility.



Fig. 5—Value of attenuation constant m at different frequencies and relative humidities.*

# Computation of reverberation time

Reverberation time at different audio frequencies may be computed from room dimensions and average absorption. Each portion of the surface of a room has a certain absorption coefficient a dependent on the material of the surface, its method of application, etc. This absorption coefficient is equal to the ratio of the energy absorbed by the surface to the total energy impinging thereon at various audio frequencies. Total absorption for a given surface area in square feet S is expressed in terms of absorption units, the number of units being equal to  $a_{av}S$ .

 $a_{av} = \frac{\text{total number of absorption units}}{\text{total surface in square feet}}$ 

One absorption unit provides the same amount of sound absorption as one square foot of open window. Absorption units are sometimes referred to as "open window" or "OW" units.

$$T = \frac{0.05V}{-S \log_e (1 - \sigma_{av})}$$

where T = reverberation time in seconds, V = room volume in cubic feet, S = total surface of room in square feet,  $a_{av} =$  average absorption coefficient of room at frequency under consideration.

* Reprinted by permission from Architectural Acoustics by V. O. Knudsen, published by John Wiley and Sons, Inc.

## Computation of reverberation time continued

For absorption coefficients a of some typical building materials, see Table 1. As an aid in using the formula for reverberation time, Fig. 4 (page 168) may be used for obtaining  $[-\log_e (1 - a_{av})]$  from known values of  $a_{av}$ .

Table II shows absorption coefficients for some of the more commonly used materials for acoustical correction.

description	[		absorpt ycles p	authority			
	128	256	512	1024	2048	4096	]
Brick wall unpainted Brick wall painted Plaster + finish coat Wood lath—wood studs Plaster + finish coat on metal lath Poured concrete upainted Poured concrete painted and varnished Carpet, pile on concrete Carpet, pile on ½4 felt	0.024 0.012 0.020 0.038 0.010 0.009 0.09 0.11	0.025 0.013 0.022 0.049 0.012 0.011 0.08 0.14	0.031 0.017 0.032 0.060 0.016 0.014 0.21 0.37	0.042 0.02 0.039 0.085 0.019 0.016 0.26 0.43	0.049 0.023 0.039 0.043 0.023 0.017 0.27 0.27	0.07 0.025 0.028 0.056 0.035 0.018 0.37 0.25	W. C. Sabine W. C. Sabine P. E. Sabine V. O. Knudsen V. O. Knudsen V. O. Knudsen Building Research Station Building Research Station
Droperies, velour, 18 oz per są yd in contact with wall Ozite 3% Rug, axminster Audience, seated per są ft of area Each person, seated Each person, seated Glass surfaces	0.05 0.051 0.11 0.72 1.4	0.12 0.12 0.14 0.89 2.25 	0.35 0.17 0.20 0.95 3.8	0.45 0.33 0.33 0.99 5.4	0.38 0.45 0.52 1.00 6.6	0.36 0.47 0.82 1.00  7.0 0.02	P. E. Sabine P. E. Sabine Wente and Bedell W. C. Sabine Bureau of Standards, averages of 4 tests Estimated

#### Table I—Acoustical coefficients of materials and persons*

*Reprinted by permission from Architectural Acoustics by V. O. Knudsen, published by John Wiley and Sons, Inc.

# Table II—Acoustical coefficients of materials

## used for acoustical correction

material	}	cy	cles p	ar seco	nd	noise- red	manufactured by	
	128 256 512 1024 2048 4096							
Corkoustic-B4	0.08	0.13	0.51	0.75	0.47	0.46	0.45	Armstrong Cork Co.
Corkoustic-B6	0.15	0.28	0.82	0.60	0.58	0.38	0.55	Armstrong Cork Co.
Cushiontone A-3	0.17	0.58	0.70	0.90	0.76	0.71	0.75	Armstrong Cork Co.
Koustex	0.10	0.24	0.64	0.92	0.77	0.75	0.65	David E. Kennedy, Inc.
Sanacoustic (metal) tiles	0.25	0.56	0.99	0.99	0.91	0.82	0.85	Johns-Manville Sales Corp.
Permacoustic tiles 34"	0,19	0.34	0.74	0.76	0.75	0.74	0.65	Johns-Manville Sales Corp.
Low-frequency element	0.66	0.60	0.50	0.50	0.35	0.20	0.50	Johns-Manville Sales Corp.
Triple-tuned element	0.66	0.61	0.80	0.74	0.79	0.75	0.75	Johns Manville Sales Corp.
High-frequency element	0.20	0.46	0.55	0.66	0.79	0.75	0.60	Johns-Manville Sales Corp.
Absorbatone A	0.15	0.28	0.82	0.99	0.87	0.98	0.75	Luse Stevenson Co.
Acoustex 60R	0.14	0.28	0.81	0.94	0.83	0.80	0.70	National Gypsum Co.
Econacoustic 1"	0.25	0.40	0.78	0.76	0.79	0.68	0.70	National Gypsum Co.
Fiberglas acoustical tiletype TW-					i ]			
PF 9D	0.22	0.46	0.97	0.90	0.68	0.52	0.75	Owens-Corning Fiberglas
			1					Corp.
Acoustone D 11/6	0.13	0.26	0.79	0.88	0.76	0.74	0.65	U. S. Gypsum Company
Acoustone F 15/16	0.16	0.33	0.85	0.89	0.80	0.75	0.70	U. S. Gypsum Company
Acousti-celotex type C-6 11/4"	0.30	0.56	0.94	0.96	0.69	0.56	0.80	The Celotex Corp.
Absorbex type A 1"	0.41	0.71	0.96	0.88	0.85	0.96	0.85	The Celotex Corp.
Acousteel B metal facing 15%	0.29	0.57	0.98	0.99	0.85	0.57	0.85	The Celotex Corp.
						Co	urtesy Ad	coustics Materials Association

* The noise-reduction coefficient is the average of the coefficients at frequencies from 256 to 2048 cycles inclusive, given to the nearest 5 percent. This average coefficient is recommended for use in comparing materials for noise-quieting purposes as in offices, hospitals, banks, corridors, etc.

# Computation of reverberation time continued

Considerable variation of sound-absorption in air at frequencies above 1000 cycles occurs at high relative humidities (see Fig. 5). Calculation of reverberation time, therefore, should be checked at average relative humidities applicable to the particular location involved. For such check calculations the following formula may be used:

 $T = \frac{0.05V}{-S \log_{e} (1 - \alpha_{av}) + 4m V}$ 

where m is the coefficient in feet⁻¹ as indicated in Fig. 5, page 169.

### Electrical power levels for public address requirements

a. Indoor: See Fig. 7, page 172.b. Outdoor: See Fig. 8, page 173.

Note: Curves are for an exponential trumpet-type horn. Speech levels above reference—average 70 db, peak 80 db. For a loudspeaker of 25 percent efficiency, 4 times the power output would be required or an equivalent of 6 decibels. For one of 10 percent efficiency, 10 times the power output would be required or 10 decibels.



Fig. 6-Wire sizes for loudspeaker circuits assuming maximum loss of 0.5 decibel.

# Electrical power levels for public address requirements

continued



Fig. 7—Room volume and relative amplifier power capacity. To the indicated power level depending on loudspeaker efficiency, there must be added a correction factor which may vary from 4 decibels for the most efficient horn-type reproducers to 20 decibels for less efficient cone loudspeakers.

#### Electrical power levels for public address requirements continued



Fig. 8—Distance from loudspeaker and relative amplifier power capacity required for speech, average for 30° angle of coverage. For angles over 30°, more loudspeakers and proportional output power are required. Depending on loudspeaker efficiency, a correction factor must be added to the indicated power level, varying approximately from 4 to 7 decibels for the more-efficient type of horn loudspeakers.

# Acoustical music ranges and levels



Fig. 9—Frequency ranges of musical instruments. Intensity levels of music. Zero level equals  $10^{-16}$  watt per square centimeter.



Acoustical speech levels and ranges of other sounds

Fig. 10—Frequency ranges of male and female speech and other sounds. Intensity levels of conversational speech. Zero level equals  $10^{-16}$  watt per square contimeter.

ويهور والمراجع والمراجع والمراجع والمحافظ والمحافظ والمراجع



# Acoustical sound level and pressure

Countesy westant Electric Company

Fig. 11—One dyne per square centimeter is equivalent to an acoustical level of plus 74 decibels.

n an the setting of the set of a setting to get a set of second a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

#### Table III---Noise levels



Courtesy Western Electric Company

#### General

a. Loudspeaker wire sizes: See Fig. 6, page 171.

b. Acoustical musical ranges and levels: See. Fig. 9, page 174.

c. Acoustical speech levels and ranges of other sounds: See Fig. 10, page 175.

d. Acoustical sound levels: See Fig. 11, page 176.

e. Noise levels: See Table III.

#### General continued

**f.** Equal loudness contours: Fig. 12 gives average hearing characteristics of the human ear at audible frequencies and at loudness levels of zero to 120 db versus intensity levels expressed in decibels above  $10^{-16}$  watt per square centimeter. Ear sensitivity varies considerably over the audible range of sound frequencies at various levels. A loudness level of 120 db is heard fairly uniformly throughout the entire audio range but, as indicated in Fig. 12,





a frequency of 1000 cycles at a 20 db level will be heard at very nearly the same intensity as a frequency of 60 cycles at a 60 db level. These curves explain why a loudspeaker operating at lower than normal level sounds as though the higher frequencies were accentuated and the lower tones seriously attenuated or entirely lacking; also, why music, speech, and other sounds, when reproduced, should have very nearly the same intensity as the original rendition. To avoid perceptible deficiency of lower tones, a symphony orchestra, for example, should be reproduced at an acoustical level during the loud passages of 90 to 100 db (see Fig. 9).

# 🖩 Wire transmission

I.

leakance

# Telephone transmission line data

## Line constants of copper open-wire pairs

#### 40 pairs DP (double petticoat) insulators per mile 12-inch spacing temperature 68° F

frequency cycles					inductance pries per lo	leakance micromhos per loop mile: 165, 128, or 104 mil		
per second	165 mil	128 mil	104 mil	165 mil	128 mil	104 mil	dry	wet
0 500 2000 3000 5000 10000 20000 30000 40000 50000	4.02 4.04 4.11 4.35 4.71 5.56 7.51 10.16 12.19 13.90 15.41	6.68 6.70 6.74 6.89 7.13 7.83 9.98 13.54 16.15 18.34 20.29	10.12 10.13 10.15 10.26 10.43 10.94 12.86 17.08 20.42 23.14 25.51	3.37 3.37 3.36 3.35 3.34 3.31 3.28 3.26 3.26 3.25	3.53 3.53 3.53 3.52 3.52 3.52 3.49 3.46 3.44 3.43 3.43	3.66 3.66 3.66 3.66 3.66 3.66 3.66 3.64 3.61 3.59 3.58 3.57	0.01 0.15 0.29 0.57 0.85 1.4 2.8 5.6 8.4 11.2 14.0	2.5 3.0 3.5 4.5 7.5 12.1 20.5 28.0 35.0 41.1

#### Capacitance on 40-wire lines

microfarad per loop mile			
	165 mil	128 mil	104 mil
In space	0.00898	0.00855	0.00822
On 40-wire line, dry	0.00915	0.00871	0.00837
On 40-wire line, wet (approx)	0.00928	0.00886	0.00850

#### Line constants of copper open-wire pairs

#### 53 pairs CS (special glass with steel pin) insulators per mile 8-inch spacing temperature 68° F

frequency kilocycles	ohn	resistance ns per loop i	mile		nductance nries per lo	micromhes per loop mile: 165, 128, or 104 mil		
per second	165 mil	128 mil	104 mil	165 mil	128 mil	104 mil	dry	wet
0.0 1.0 2.0 3.0 5.0 10.0 20.0	4.02 4.11 4.35 4.71 5.56 7.51 10.16	6.68 6.74 6.89 7.13 7.83 9.98 13.54	10.12 10.15 10.26 10.43 10.94 12.86 17.08	3.11 3.10 3.09 3.08 3.04 3.02	3.27 3.26 3.26 3.26 3.25 3.23 3.23 3.20	3.40 3.40 3.40 3.40 3.40 3.38 3.35	0.052 0.220 0.408 0.748	1.75 3.40 5.14 8.06
50.0 100.0 200.0 500.0 1000.0 infin	15.41 21.30 29.77 46.45 65.30	20.29 27.90 38.77 60.30 84.50	25.51 34.90 48.25 74.65 104.5	2.99 2.98 2.97 2.96 2.96 2.95	3.16 3.15 3.14 3.13 3.12 3.11	3.31 3.29 3.28 3.27 3.26 3.24	1.69 3.12	15.9 27.6

ī

Capacitance on 40-wire lines

meretaraa per teop mite	165 mil	128 mil	104 mil
In space (no insulators)	0.00978	0.00928	0.00888
On 40-wire line, dry	0.01003	0.00951	0.00912

continued

# **Telephone transmission line data**

## Characteristics of standard types of aerial copper wire telephone circuits at 1000 cycles per second

	[	spac-		primary a			propagation constant		line impedance				١				
	gauge	ing		per loc		•	· ·	lar	recta	ngular	pa	lar	recta	ngular	1	veloc- ity	atten- uation
type of circuit	of wires (mils)	of wires (inches)	R ohms	L henries	C µf	G µmho	mag- ni- tude	angle deg +	α	β	mag- ni- tude	angle deg	R ohms	X ohms —	wave- length miles	miles per second	db per mile
Non-Pole Pair Phys	165	8	4.11	.00311	.00996	.14	.0353	83.99	.00370	.0351	565	5.88	562	58	179.0	179,000	.0321
Non-Pole Pair Side	165	12	4.11	.00337	.00915	.29	.0352	84.36	.00346	.0350	612	5.35	610	57	179.5	179,500	.0300
Pole Pair Side	165	18	4.11	.00364	.00863	.29	.035 <b>5</b>	84.75	.00325	.0353	653	5.00	651	57	178.0	178,000	.0282
Non-Pole Pair Phan	165	12	2.06	.00208	.01514	.58	.0355	85.34	.00288	.0354	373	4.30	372	28	177.5	177,500	.0250
Non-Pole Pair Phys	128	8	6.74	.00327	.00944	.14	.0358	80.85	.00569	.0353	603	8.97	596	94	178.0	178,000	.04 <b>94</b>
Non-Pole Pair Side	128	12	6.74	.00353	.00871	.29	.0356	81.39	.00533	.0352	650	8.32	643	94	178.5	178,500	.0462
Pole Pair Side	128	18	6.74	.00380	.00825	.29	.0358	81.95	.00502	.0355	693	7.72	686	93	177.0	177,000	.0436
Non-Pole Pair Phan	128	12	3.37	.00216	.01454	.58	.0357	82.84	.00445	.0355	401	6.73	398	47	177.0	177,000	.0386
Non-Pole Pair Phys	104	8	10.15	.00340	.00905	.14	.0367	77.22	.00811	.0358	644	12.63	629	141	175.5	175,500	.0704
Non-Pole Pair Side	104	12	10.15	.00366	.00837	.29	.0363	77.93	.00760	.0355	692	11.75	677	141	177.0	177,000	0660
Pole Pair Side	104	18	10.15	.00393	.00797	.29	.0365	78.6 <b>6</b>	.00718	.0358	730	10.97	717	139	175.5	175,500	.0624
Non-Pole Pair Phan	104	12	5.08	.00223	.01409	58	.0363	79.84	.00640	.0357	421	9.70	415	71	176.0	176,000	-0556

Notes: 1. All values are for dry weather conditions. 2. All capacitance values assume a line carrying 40 wires. 3. Resistance values are for temperature of 20° C (68° F).

4. DP (Double Petticoat) Insulators assumed for all 12-inch and 18-inch spaced wires-CS (Special Glass with Steel Pin) Insulators assumed for all 8-inch spaced wires.
### Telephone transmission line data continued

### Attenuation of 12-inch spaced open-wire pairs

### Toll and DP (double petticoat) insulators

	1		attenuation	in db per mile		
size wire	165	mif	12	8 mil	104	mil
weather	dry	wet	dry	wet	dry	wet
frequency           cycles per sec           20           100           500           1000           2030           3000           5000           7000           10000           20000           30000           30000           50000           30000           30000           30000           30000           40000           500000	.0127 .0231 .0288 .0307 .0324 .0330 .0439 .051 .076 .088 .110 .130 .148	.0279 .0320 .0367 .0387 .0485 .078 .070 .085 .108 .127 .161 .192 .220	.0163 .0318 .0445 .0464 .0466 .0511 .0573 .064 .076 .094 .108 .135 .158 .179	<ul> <li>.0361</li> <li>.0427</li> <li>.0530</li> <li>.0557</li> <li>.0598</li> <li>.0642</li> <li>.0748</li> <li>.085</li> <li>.102</li> <li>.127</li> <li>.150</li> <li>.188</li> <li>.223</li> <li>.253</li> </ul>	.0198 .0402 .0620 .0661 .0686 .0707 .0757 .082 .093 .111 .129 .159 .185 .209	.0444 .0535 .0715 .0760 .0804 .0845 .0938 .103 .120 .147 .173 .216 .254 .287
CS (special glass w	/ith steel pin) i	nsulators				
20 100 500 1000 2000 3000 7000 10000 15000 20000 30000 40000 30000 20000 30000 20000	.0124 .0230 .0286 .0296 .0318 .0346 .0412 .048 .047 .057 .058 .078 .078 .078 .111 .125	.0252 .0333 .0348 .0348 .0349 .0437 .0531 .051 .072 .087 .079 .121 .138 .153	.0162 .0317 .0441 .0458 .0475 .0595 .0547 .052 .0547 .035 .079 .123 .133 .154	.0326 .0406 .0510 .0532 .0561 .0593 .0668 .075 .087 .105 .121 .146 .166 .184	.0197 .0401 .0618 .0655 .0676 .0694 .0731 .078 .088 .104 .119 .145 .185	.0402 .0509 .0693 .0735 .0767 .0797 .0856 .093 .104 .123 .141 .171 .195 .215

### Attenuation of 8-inch spaced open-wire pairs

#### **CS** insulators

· · · · ·	attenuation in db per mile									
size wire	165	mil	128	mil	104 mil					
weather	đry	vet	dry	wef	dry	wet				
frequency						:				
cycles per sec		} .=.								
10000	.053	.074	.079	.070	.095	.109				
20000	.034	.101	.104	.124	.127	.145				
30000	.101	.124	.125	.150	.151	.177				
50000	.129	.161	.159	.194	.190	.228				
70000	.150	.194	.185	.232	.222	.270				
100000	.178	.236	.220	.280	.262	.325				
120000	.195	.261	.240	.310	.286	.359				
140000	.211	.285	.259	.337	.308	.390				
150000	.218	.296	.268	.350	.317	.403				

#### Telephone transmission line data continued

### Line and propagation constants of 16- and 19-AWG toll cable

loop mile basis non-loaded temperature 55° F

frequency kc per sec	resistance ohms per mile	inductance milli- henries per mile	conductance µmho per mile	capacitance µf per mile	ettenuation db per mile	phase shift radians per mile	characteristic impedance ohms
16-gauge							
1 2 3 5 10 20 30 50 100 100	40.1 40.3 40.4 40.7 42.5 53.5 53.5 66.5 91.6 111.0	1.097 1.095 1.094 1.092 1.085 1.066 1.046 1.013 0.963 0.934	1 2 4 8 19 49 83 164 410 690	0.0588 0.0588 0.0587 0.0588 0.0587 0.0585 0.0585 0.0584 0.0582 0.0580 0.0580	0.69 0.94 1.05 1.15 1.30 1.54 1.77 2.25 3.30 4.17	0.09 0.14 0.19 0.28 0.54 1.01 1.49 2.43 4.71 6.94	251— <i>j</i> 215 190— <i>j</i> 141 170— <i>j</i> 108 154— <i>j</i> 70 142— <i>j</i> 42 137— <i>j</i> 23 135— <i>j</i> 17 133— <i>j</i> 13 129— <i>j</i> 9 127— <i>j</i> 7
19-gauge							
1 2 3 5 10 20 30 50 100 150	83.6 83.7 83.8 84.0 85.0 88.5 93.5 105.4 136.0 164.4	1.108 1.108 1.107 1.106 1.103 1.094 1.083 1.062 1.016 0.985	1 3 4 9 22 56 98 193 484 830	0.0609 0.0609 0.0609 0.0609 0.0608 0.0608 0.0604 0.0604 0.0601 0.0601	1.05 1.44 1.73 2.02 2.43 2.77 3.02 3.53 4.79 6.01	0.132 0.190 0.249 0.347 0.584 1.07 1.56 2.55 4.94 7.27	345— <i>j</i> 319 25 <del>4</del> — <i>j</i> 215 215— <i>j</i> 170 181— <i>j</i> 121 153— <i>j</i> 72 141— <i>j</i> 41 137— <i>j</i> 29 134— <i>j</i> 20 131— <i>j</i> 13 129— <i>j</i> 10

### Approximate characteristics of standard types of paper-insulated

wire	type	spacing of load		constants section	constan	its assume per loc	pro po	opagation lar		
gauge AWG	of loading*	coils miles	R ohms	L henries	R ohms	L henries	C µf	G µmho	magni- tude	angle deg +
side circ	vit									
19 19 19 19 19 19 16 16 16 16 16 16 16	N.L.S. H-31-S H-44-S H-172-S B-88-S N.L.S. H-31-S H-44-S H-44-S H-48-S H-172-S B-88-S N.L.S.	1.135 1.135 1.135 1.135 0.568 	2.7 4.1 7.3 13.0 7.3 2.7 4.1 7.3 13.0 7.3		85.8 88.2 97.3 98.7 42.1 44.5 45.7 48.5 53.6 54.9 21.9	.001 .028 .039 .078 .151 .156 .001 .028 .039 .039 .039 .151 .156 .001	.062 .062 .062 .062 .062 .062 .062 .062	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	.183 .277 .319 .441 .610 .620 .129 .266 .315 .438 .608 .618 .094	47.0 76.6 79.9 84.6 87.0 87.0 49.1 82.8 84.6 87.6 88.3 88.3 88.3 52.9
phantom	circuit									
19 19 19 19 19 16 16 16 16 16 16 16	N.L.P. H-18-P H-25-P H-50-P H-63-P B-50-P N.L.P. H-18-P H-25-P H-50-P H-63-P B-50-P N.L.P.	1.135 1.135 1.135 1.135 0.568 1.135 1.135 1.135 1.135 1.135 1.135	1.4 2.1 3.7 6.1 3.7 1.4 2.1 3.7 6.1 3.7	.018 .025 .050 .063 .050 .050 .050 .050 .050 .050	42.9 44.1 46.2 48.3 49.4 21.0 22.2 22.8 24.3 26.4 27.5 10.9	.0007 .017 .023 .045 .056 .089 .0007 .017 .023 .045 .056 .089 .0007	.100 .100 .100 .100 .100 .100 .100 .100	2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	.165 .270 .308 .424 .472 .594 .116 .262 .303 .422 .471 .593 .086	47.8 78.7 81.3 85.3 86.0 87.4 50.0 85.4 87.4 87.4 87.4 87.7 88.5 55.1
physical										
	B-22 ] ers Hand	0.568   Bindicate	1.25   loading.coi	.022 j	43.1 of 6000 m	1.040 d 3000 fee	.062 t. respecti	1.5   velv.	.315	85.0

loading coil spacings

#### Telephone transmission line data continued

### Line constants of shielded 16-gauge spiral-four toll-entrance cable

frequency kc per sec	resistance ohms per mile	inductance mh per mile	conductance µmho per mile	capacitance µf per mile	attenuation db per mile
side circuit		r			
0.4	43.5	1.913	0.02	0.0247	0.92
0.6	43.5	1.907	0.04	0.0247	0.93
0.8	43.6	1.901	0.06	0.0247	0.93
1.0	43.9	1.891	0.08	0.0247	0.94
2	44.2	1.857	0.20	0.0247	0.95
3	45.2	1.821	0.32	0.0247	0.96
2 3 5	49.0	1.753	0.53	0.0247	0.97
10	55.1	1.626	1.11	0.0247	1.00
20	61.6	1.539	2.49	0.0247	1.06
30	66.1	1.507	3.77	0.0247	1.15
40	71.0	1.490	5.50	0.0247	1.26
60	81.5	1.467	8.80	0.0247	1.44
80	90.1	1.450	12.2	0.0247	1.60
100	97.8	1.438	15.81	0.0247	1.77
120	104.9	. 1.429	19.6	0.0247	1.90
140	111.0	1.421	23.3	0.0247	2.03
200	127.3	1.411	35.1	0.0246	2.35
250	137.0	1.408	46.0	0.0246	I —
300	149.5	1.406	56.5	0.0246	
350	159.9	1.405	67.8	0.0246	I →

Characteristic Impedance of this cable at 140 kilocycles approximately 240 ohms. For a description and illustration of this type cable see Kendall and Affel, "A Twelve-Channel Carrier Telephone System for Open-Wire Lines," B.S.T.J., January 1939, pp. 129–131.

### toll telephone cable circuits at 1000 cycles per second

constant			1	line impedance									1		1	1	I		
				P	ola	e i	1	rect	ang	ular		wave-		velocity		cut-off	•	attenuation decibels	
recto	ing	ular		magni-	1	angle		R	1	х		length		miles per	11	frequency		per	
<u> </u>	1_	β		tude		deg –	<u> </u>	ohms	1	ohms		miles		second		fc	ł	mile	
.1249	1	.134	I	470.	1	42.8	1	345.	1	319.4	1	46.9	١	46900	1	·	1	1.08	
.0643	11	.269		710.	1	13.2		691.		162.2		23.3		23300		6700		- 56	
.0561	1	.314		818.		9,9		806.		140.8		20.0	1	20000		5700	1	.49	
.0418		.439		1131.		5.2		1126.		102.8		14.3		14300		4000	Į.	.36	
.0323		.609		1565.		2.8	1	1563.		76.9	1	10.3		10300		2900		.28	
.0322	1	.619	1	1590.		2.8		1588.		76.7		10.2		10200		5700		.28	
.0842	1	.097		331.	1	40.7		251.		215.4		64.5		64500		_	1	.73	
.0334	1	.264		683.		7.0		677.		83.0	- F	23.8	1	23800		6700	1	.29	
.0296		.313		808.		5.2		805.	1	72.8		20.1		20000	t.	5700	1	.26	
.0224		.437		1124.		2.7	1	1123.		53.1		14.4		14400		4000		.19	
.0183		.608		1562.		1.5	ŀ	1562.		41.1		10.3		10300	1	2900	1	.16	
.0185	1	.618		1587.	1	1.5	• }	1587.		41.4		10.2		10200		5700		.16	
.0568	1	.075	1	242.	t	36.9	t	194.	1	145.2	ł	83.6	1	83600	1		1	.19	
.1106	1	.122	1	262.	1	42.0	ī	195.	1	175.2	ŗ	51.5	ŧ	51500	١	_	,	.96	
.0529	1	.264		429.	ł	11.1		421.		82.6	1	23.8		23800		7000		.46	
.0466		.305		491.		8.5		485.		72.4		20.6	1	20600		5900	1	.40	
.0351	1	.423		675.		4.5		673.		53.3		14.9		14900		4200	L	.30	
.0331	1	.471	- 1	752.		3.8		750.		49.8		13.3		13300	1	3700	1	.29	
.0273		.593		945.	1	2.4		944.		39.8		10.6		10600	1	5900	Ł	.24	
.0746		.089	- 1	185.		39.0	- F	144.		116.3		70.6	1	70600	Ľ		1	.65	
.0273		.260		417.		5.8	l	415.		41.8		24.1		24100	1	7000	1	.24	
.0243	1	.302	-1	483.		4.4		481.		36.8		20.8		20800	1	5900	L	21	
.0189		.422	1	672.	Ţ	2.4	1	672.		27.5		14.9		14900	1	4200		.16	
.0185		.471		749.		2.0		749.		26.6		13.4	- E	13400		3700	1	.16	
.0157	-{	.593	- [	944.		1.3	1	944.		21.4		10.6		10600		5900	1	.14	
.0442	I.	.071	1	137.	1	33.9	ł	114.	-t	76.3	Ţ	89.1		89100	ł			.43	
.0273	t	.314	1	809.	L	4.8	T	806.		67.1		20.0		00000		11000			
			'	0076	'	7.0	I.	000.	1	0/.1	1	20.0	1	20000	'	11300	I.	.24	

continued Telephone transmission line data

.

## Approximate characteristics of standard types of paper-insulated exchange telephone cable circuits .

,

1

1 4

,

1000 cycles per second .

				mile tants	pro	pagatic	n consi	ant	mid-section characteristic impedance					velocity		atten
wire		type		G	po	lar	rectar	ıgular	po	lar	rectar	ng <b>ular</b>	wave	miles	cut-	db
gauge AWG	code no	of Ioading	CμF	in µmho	meg	angle (deg)	α	β	mag	angle (deg)	$\mathbf{Z}_{01}$	<b>Z</b> 02	length miles	per second	off freq	per mile
26	BST ST	NL NL	.083 .069	1.6 1.6	.439	45.30	.307	.310	910 1007	44.5	 719	706	20.4	20,400		2.9 2.67
24	DSM ASM	NL NL M88 H88 B88	.085 .075 .075 .075 .075	1.9 1.9 1.9 1.9 1.9	.355 .448 .512 .684	45.53 70.25 75.28 81.70	.247 .151 .130 .099	.251 .421 .495 .677	725 778 987 1160 1532	44.2 23.7 14.6 8.1	558 904 1122 1515	543 396 292 215	25.0 14.9 12.7 9.3	25,000 14,900 12,700 9,270	3100 3700 5300	2.3 2.15 1.31 1.13 0.86
22	CSA	NL M88 H88 H135 B88 B135	.083 .033 .083 .083 .083 .083	2.1 2.1 2.1 2.1 2.1 2.1 2.1	.297 .447 .526 .644 .718 .890	45.92 76.27 80.11 83.50 84.50 86.50	.207 .106 .0904 .0729 .0689 .0549	.213 .434 .519 .640 .718 .890	576 905 1051 1306 1420 1765	43.8 13.7 9.7 6.3 5.3 3.3	416 880 1040 1300 1410 1770	399 214 177 144 130 102	29.4 14.5 12.1 9.8 8.75 7.05	29,400 14,500 12,100 9,800 8,750 7,050	290 <b>0</b> 3500 2800 5000 4000	1,80 0.92 0.79 0.63 0.60 0.48
19	CNB DNB	NL NL M88 H88 H135 H175 B88	.085 .066 .066 .066 .066 .066	1.6 1.6 1.6 1.6 1.6 1.6 1.6	.188 .383 .459 .569 .651 .641	47.00 82.42 84.60 86.53 87.23 86.94	.128 .0505 .0432 .0345 .0315 .0342	.138 .380 .459 .570 .651 .641	400 453 950 1137 1413 1643 1565	42.8 8.9 5.2 4.0 3.3 2.8	333 939 1130 1410 1640 1560		45.7 16.6 1 <b>3</b> .7 11.0 9.7 9.8	45,700 16,600 13,700 11,000 9,700 9,800		1.23 1.12 0.44 0.38 0.30 0.27 0.30
16	NH	NL M88 H88	.064 .064 .064	1.5 1.5 1.5	.133 .377 .458	49.10 85.88 87.14	.0868 .0271 .0238	.1004 .377 .458	320 937 1130	40.6 4.6 2.8	243 934 1130	208 76 55	62.6 16.7 13.7	62,600 16,700 13,700	320 <b>0</b> 3900	0.76 0.24 0.21

In the third column of the above table the letters M, H, and B indicate loading coll spacings of 9000 feet, 6000 feet, and 3000 feet, respectively, and the figures show the inductance of the loading coils used.

8

#### **Open** wire

#### Frequency allocation chart for type J and K carrier systems

solid arrows denote carriers

= channel no 7

dotted arrows denote pilot frequencies †denotes east—west denotes west—east

the line frequencies shown are obtained

by two or more stages of modulation

Type J

NA 12 11 109 1 72 5 6 7 8 9 IC II ¥12 NB 9 10 carriers 4 ke apart 1211 10 98 SA 2 sidebands include speech from 200 5 9 10 to 3300 cycles 1211110 SB 12 8 1 2 3 456789101112 κ 150 200 100 50

Cable

frequency in kilocycles per second

Pilot freguencies for the K system are 12, 28, and 56 kilocycles per second

Note: Frequency allocations shown in this chart and in the charts on pages 186, 187, and 188 are as used by the Bell System and the I. T. & T. System.

WIRE TRANSMISSION 105

**Carrier telephone** 



8



WIRE TRANSMISSION 187



Ŋ

### Frequency allocation and modulation steps in the L carrier system

#### Noise and noise measurement wire telephony

#### Definitions

The following definitions are based upon those given in the Proceedings of the tenth Plenary Meeting (1934) of the Comité Consultatif International Teléphonique (C.C.I.F.).

**Note:** The unit in which noise is expressed in many of the European countries differs from the two American standards, the noise unit and the db above reference noise. The European unit is referred to as the psophometric electromotive force.

**Noise:** Is a sound which tends to interfere with a correct perception of vocal sounds, desired to be heard in the course of a telephone conversation.

It is customary to distinguish between:

1. Room noise: Present in that part of the room where the telephone apparatus is used.

**2. Frying noise (transmitter noise):** Produced by the microphone, manifest even when conversation is not taking place.

**3. Line noise:** All noise electrically transmitted by the circuit, other than room noise and frying noise.

#### **Psophometric electromotive force**

In the case of a complete telephone connection the interference with a telephone conversation produced by extraneous currents may be compared with the interference which would be caused by a parasitic sinusoidal current of 800 cycles per second. The strength of the latter current, when the interference is the same in both cases, can be determined.

If the receiver used has a resistance of 600 ohms and a negligible reactance (if necessary it should be connected through a suitable transformer), the psophometric electromotive force at the end of a circuit is defined as twice the voltage at 800 cycles per second, measured at the terminals of the receiver under the conditions described.

The psophometric electromotive force is therefore the electromotive force of a source having an internal resistance of 600 ohms and zero internal reactance which, when connected directly to a standard receiver of 600 ohms resistance and zero reactance, produces the same sinusoidal current at 800 cycles per second as in the case with the arrangements indicated above.

#### Noise and noise measurement continued

An instrument known as the psophometer has been designed. When connected directly across the terminals of the 600-ohm receiver, it gives a reading of half of the psophometric electromotive force for the particular case considered.

In a general way, the term psophometric voltage between any two points refers to the reading on the instrument when connected to these two points.

If, instead of a complete connection, only a section thereof is under consideration, the psophometric electromotive force with respect to the end of that section is defined as twice the psophometric voltage measured at the terminals of a pure resistance of 600 ohms, connected at the end of the section, if necessary through a suitable transformer.

The C. C. I. F. has published a Specification for a psophometer which is included in Volume II of the Proceedings of the Tenth Plenary Meeting in 1934. An important part of this psophometer is a filter network associated with the measuring circuit whose function is to weight each frequency in accordance with its interference value relative to a frequency of 800 cycles.

### Noise levels

The amount of noise found on different circuits, and even on the same circuit at different times, varies through quite wide limits. Further, there is no definite agreement as to what constitutes a quiet circuit, a noisy circuit, etc. The following values should therefore be regarded merely as a rough indication of the general levels which may be encountered under the different conditions:

Open-wire circuit	db above ref noise
Quiet	20
Average	35
Noisy	50
Cable circuit	
Quiet	15
Average	25
Noisy	40

#### **Relationship of European and American noise units**

The psophometric emf can be related to the American units: the noise unit and the decibel above reference noise.

The following chart shows this relationship together with correction factors for psophometric measurements on circuits of impedance other than 600 ohms.

#### Noise and noise measurement

continued

#### American C.C.I.F. standards standard db above psophometric noise units reference noise 7000 60 90 80 6000 70 5000 80 4000 80 3000 40 30 50 2000 20 1000 800 10 700 40 600 500 400 300 30 200 -100 90 80 1.0 70 20 0.8 60 0.7 50 0.6 40 0.5 30 0.4 0.3 10 20 0.2 10 0.1 0.09

### **Relationship of European and American units**

1. The relationship of noise units to db's above reference noise is obtained from technical report No. 1B-5 of the joint subcommittee on development and research of the Bell Telephone System and the Edison Electric Institute.

2. The relationship of db's above reference noise to psophometric emf is obtained from the Proceedings of C.C.I.F. 1934.

3. The C.C.I.F. expresses noise limits in terms of the psophometric emf for a circuit of 600 ohms resistance and zero reactance, terminated in a resistance of 600 ohms. Measurements made in terms of the potential difference across the terminations, or on circuits of impedance other than 600 ohms, should be corrected as follows:



4. Reference noise—with respect to which the American noise measuring set is calibrated —is a 1000 cycles per second tone 90 db below 1 milliwatt.

### **Telegraph facilities**

<i>i</i>	speed of usual types			
	frequency cycles	bauds		
Grounded wire	75	150		
Simplex (telephone)	50	100		
Composite	15	30		
Metallic telegraph	85	170		
Carrier channel				
Narrow band	<b>4</b> 0	80		
Wide band	75	150		

#### Telegraph printer systems.

Speed depends on two factors: 1, Code used, and 2. frequency handling capacity of transmission facilities. One (1), word = 5 letters and 1 space.

### Frequency of printing telegraph systems in cycles per second

. Let

S = number of units in code (plus allowance for synchronizing)

N = number of channels

W = revolutions per second

= words per minute X characters per transmitted word
60

(1 word is assumed to consist of 5 letters and 1 space, or 6 characters.)

 $f = \text{frequency in cycles per second } f = \frac{1}{2} \text{SNW}$ 

#### Examples

1. Three-channel multiplex operating at 60 words per minute, 5-unit code.

$$f = \frac{1}{2} \times 5 \times 3 \times \frac{60 \times 6}{60} = 45$$
 cycles or 90 bauds

**2.** Single-printer circuit operating at 60 words per minute, 5-unit code +  $2\frac{1}{2}$  units for synchronizing.

 $f = \frac{1}{2} \times 7\frac{1}{2} \times 1 \times \frac{60 \times 6}{60} = 22\frac{1}{2}$  cycles or 45 bauds

**3.** Two-channel Baudot operating at 50 words per minute, 5-unit code + 2 units for synchronizing.

 $f = \frac{1}{2}(5+2) \times 2 \times \frac{50 \times 6}{60} = 35$  cycles or 70 bauds

### Comparison of telegraph codes

American Morse	PARIS jenensmiljenenterserieseti
Continental Morse	PARIS
Bain	P A R I S
Creed	PARIS jame, partijane u jame ar dje en dje en dje en dje en dje en dje en dje en dje en dje en dje en dje en dje en
Barclay	P A R I S space.
Buckingham	Р А R I S space
Hughes	P A R I S space
Rowland	
Murray Automatic	PARIS space
Baudot	Add 2 units to each channel for 2-channel P A R I S space and I unit to each character for 4-channel operation. These conditions allow for syn- chronization and retardation.
Morkrum	PARIS space manufic manufic
Cable Morse	P A R I S space
Cook	
Multiple	PARTS space
IBM (Globe Wireless)	РА RIS врасе   ракансафиятсянфовиланфовская
RCA	P A R I S space

### Radio frequency transmission lines

#### Formulas for uniform transmission lines

losses neglected

$$Z_{o} = \sqrt{\frac{l}{C}}$$

$$L = 1016 \sqrt{\epsilon} Z_{o}$$

$$C = 1016 \frac{\sqrt{\epsilon}}{Z_{o}}$$

$$\frac{V}{c} = \frac{1}{\sqrt{\epsilon}}$$

$$Z_{s} = Z_{o} \frac{Z_{r} + j Z_{o} \tan l^{\circ}}{Z_{o} + j Z_{r} \tan l^{\circ}}$$

$$Z_{s} = \frac{Z_{o}^{2}}{Z_{r}} \quad \text{for } l^{\circ} = 90^{\circ} \text{ (quarter wave)}$$

$$Z_{ss} = + j Z_{o} \tan l^{\circ}$$

$$Z_{so} = -\frac{j Z_{o}}{\tan l^{\circ}}$$

$$l^{\circ} = 360 \frac{l}{\lambda}$$

$$\lambda = \lambda_{o} \left(\frac{V}{c}\right)$$

where

- L = inductance of transmission line in micromicrohenries per foot
- C = capacitance of transmission line in micromicrofarads per foot
- V = velocity of propagation in transmission line)
- c = velocity of propagation in free space same units
- $Z_s$  = sending end impedance of transmission line in ohms
- $Z_o =$  surge impedance of transmission line in ohms
- $Z_r$  = terminating impedance of transmission line in ohms
- $I^{\circ} =$ length of line in electrical degrees
- l = length of line
- $\lambda$  = wavelength in transmission line  $\}$  same units
- $\lambda_o =$  wavelength in free space
- $\epsilon$  = dielectric constant of transmission line medium = 1 for air
- $Z_{ss}$  = sending end impedance (ohms) of transmission line shorted at far end
- $Z_{so}$  = sending end impedance (ohms) of transmission line open at far end



### Surge impedance of uniform lines—0 to 210 ohms





195

### Transmission line data



type of line characteristic impedance  $Z_o = 69 \log_{10} \left[ \frac{4h}{d} \sqrt{1 + \left(\frac{2h}{D}\right)^2} \right]$ d  $Z_{o} = 276 \log_{10} \left[ \frac{4h}{d\sqrt{1 + \left(\frac{2h}{D}\right)^{2}}} \right]$  $Z_o = 138 \log_{10} \frac{4h}{d}$  $Z_{o} = 138 \log_{10} \frac{D}{d} \left[ 1.078 - 0.078 \left( \frac{d}{D} \right)^{2} \right]$  $Z_o = 138 \log_{10} \frac{2D_2}{d\sqrt{1+\left(\frac{D_2}{D_1}\right)^2}}$ (+ l > > w $Z_o \simeq 377 \frac{W}{l}$ 

### Transmission line data—miscellaneous types

### Transmission line attenuation due to load mismatch





Impedance matching with shorted stub



0

199

#### 50 <u>λ</u> 8 ∆ (wave lengths) 40 30 Δ <u>λ</u> 16 20 ∆ in degrees 10 0 20 tatio p V_{mex} 3 15 1 2 4 5 6 7 8 9 10 ۷.... transmitter shorter than resonant section longer than resonant section

### Impedance matching with coupled section





### Army-Navy standard list of radio-frequency cables

	ss of bies	Army- Navy type number	inner conductor	dielec mate- rial (1)	nominal diam of dielectric (in)	shielding braid	protective covering	nominal overall diam (in)	weight Ib/ft	nominal imped- ance ohms	nominai cepaci- tance µµf/ft	maximum eperating voltage rms	remarks
50-55 ohms	Single braid	RG-58/U	20 AWG copper	A	0.116	Tinned Copper	Vinyl	0.195	0.025	53.5	28.5	1,900	General purpose small size flexible cable
		RG-8/U	7/21 AWG copper	A	0.285	Copper	Vinyl	0.405	0,106	52.0	29.5	4,000	General purpose medium size flexible cable
		RG-10/U	7/21 AWG copper	A	0.285	Copper	Vinyl (non- contaminating) armor	(max) 0.475	0.146	52.0	29.5	4,000	Same as RG-8/U ar- mored for naval equip- ment
		RG-17/U	0.188 copper	A	0.680	Copper	Vinyl (non-contami- nating)	0.870	0.460	52.0	29.5	11,000	Large high power low at- tenuation transmission cable
		RG-18/U	0.188 copper	A	0.680	Copper	Vinyl (non- contaminating) armor	(max) 0.945	0.585	52.0	29.5	11,000	Same as RG-17/U ar- mored for naval equip- ment
		RG-19/U	0.250 copper	A	0.910	Copper	Vinyl (non-contami- nating)	0.120	0.740	52.0	29.5	14,000	Very large high power low attenuation trans- mission cab e
,		RG20/U	0.250 copper	A	0.910	Copper	Vinyl (non- contaminating) armor	(max) 1.195	0.925	52.0	29.5	14,000	Same ar RG-19/U ar- mored for naval equip- ment
	Double braid	RG-55/U	20AWG copper	A	0.116	Tinned copper	Polyethylene	(max) 0.206	0.034	53.5	28.5	1,900	Small size flexible cable
		RG-5/U	16 AWG copper	A	0.185	Copper	Vinyl	0.332	0.087	53.5	28.5	2,000	Small microwave cable
		RG-9/U	7/21 AWG silvered copper	. <b>A</b>	0.280	Inner—silver coated copper. Outer-copper	Vinyl (non-contami- nating)	0.420	0.150	51.0	30.0	4,000	Medium size, low level circuit cable

Notes: 1. Dielectric materials A Stabilized polyethylene C Synthetic rubber compound D layer of synthetic rubber dielectric between thin layers of conducting rubber

.

### continued Army-Navy standard list of radio-frequency cables

	is of ples	Army- Navy type number	inner conductor	dielec mate- rial (1)	nominal diam of dielectric (in)	shielding braid	protective covering	nominal overall diam (in)	weight lb/ft	nominal imped- ance ohms	nominal capaci- tance µµf/ft	maximum operating voltage rms	remarks
		RG-14/U	10 AWG copper	٨	0.370	Copper	Vinyl (non-contami- nating)	0.545	0.216	52.0	29.5	5,500	General purpose semi- flexible power transmis- sion cable
		RG-74/U	10 AWG copper	A	0.370	Copper	Vinyl (non- contaminating) armor	0.615	0.310	52.0	29.5	5,500	Same as RG-14/U ar- mored for naval equip- ment
70-80 ohms	Single braid	RG-59/U	22 AWG copperweld	A	0.146	Copper	Vinyl	0.242	0.032	73.0	21.0	2,300	General purpose small size video cable
		RG-11/U	7/26 AWG tinned copper	A	0.285	Copper	Vinyi	0.405	0.096	75.0	20.5	4,000	Medium size, flexible video and communication cable
		RG-12/U	7/26 AWG tinned copper	A	0.285	Copper	Vinyi (non- contaminating) armor	0.475	0.141	75.0	20.5	4,000	Same as RG-11/U ar- mored for naval equip- ment
	Double braid	RG-6/U	21 AWG copperweld	A	0.185	Inner—silver coated copper. Outer—copper	Vinyl (non-contami- nating)	0.332	0.082	76.0	20.0	2,700	Small size video and I-F cable
•		RG-13/U	7/26 AWG tinned copper	A	0.280	Copper	Vinyl	0.420	0.126	74.0	20.5	4,000	I-F cable
Cables of spe- cial charac-	Twin con- ductor	RG-22/U	2 Cond. 7/18 AWG copper	A	0.285	Single—tinned copper	Vinyl	0.405	0.107	95.0	16.0	1,000	Small size twin conductor cable
teristics		RG-57/U	2 Cond. 7/21 AWG copper	<b>A</b>	0.472	Single—tinned copper	Vinyl	0.625	0.225	95.0	16.0	3,000	large size twin conductor cable
	High attenu- ation	RG-21/U	16 AWG resistance wire	. A	0.185	Innersilver coated copper. Outercopper	Vinył (non-contami- nating)	0.332	0.087	53.0	29.0	2,700	Special attenuating cable with small temperature coefficient of attenuation
	High imped- ance	RG-65/U	No. 32 For- mex F helix diam 0.128 in.	A	0.285	Single-cop- per	Vinyl	0.405	0.096	950	44.0	1,000	High impedance video cable. High delay

continued

Army-Navy standard list of radio frequency cables

	ss of bles	Army- Navy type number	inner conductor	dielec mate- rial (1)	nominal diam of dielectric (in)	shielding braid	protective covering	nominal overali diam (in)	weight lb/ft	nominal imped- ance ohms	nominal capaci- tance µµf/ft	maximum operating voltage rms	remarks
Low capaci- fance	Single braid	RG62/U	22 AWG copperweld	۸	0.146	Copper	Vinyl	0.242	0.0382	93.0	13.5 max 14.5	750	Small size low capaci- tance air-spaced cable
		RG-63/U	22 AWG copperweld	A	0.285	Copper	Vinyl	0.405	0.0832	125	10.0 max 11.0	1,000	Medium size low capaci- tance air-spaced cable
	Double bratd	RG-71/U	22 AWG copperweld	A	0.146	Inner—plain copper. Outer I—tinnedcopper	Polyethy ene	0.250	0.0457	93.0	13.5 max 14.5	750	Small size low capaci- tance air-spaced cable for I-F purposes
Pulse appli- cations	Single braid	RG-26/U	19/0.0117 tinned copper	D	(2) 0.308	Tinned copper	Synthetic rub- ber and armor	(max) 0.525	0.189	48.0	50.0	8,000 (peak)	Medium size pulse cable armored for naval equip- ment
		RG-27/U	19/0.0185 tinned copper	D	(2) 0.455	Single-tinned copper	Vinyl and armor	(max) 0.675	0.304	48.0	50.0	15,000 (peak)	Large size pulse cable armored for naval equip- ment
	Double braid	RG64/U	19/0.0117 tinned copper	D,	(2) 0.308	Tinned copper	Neoprene	0.495	0.205	48.0	50.0	8,000 (peak)	Medium size pulse cable
		RG-25/U	19/0.0117 tinned copper	D	(2) 0.308	Tinned copper	Neoprene	0.565	0.205	48.0	50.0	8,000 (peak)	Special twisting pulse cable for naval equip- ment
		RG-28/U	19/0.0185 tinned copper	D	(2) 0.455	Inner—tinned copper. Outer —galvanized steel	Synthetic rub- ber	0.805	0.370	48.0	50.0	15,000 (peak)	Large size pulse cable
Twisting applica- tion	Single braid	RG-41/U	16/30 AWG tinned copper	с	0.250	Tinned copper	Neoprene	0.425	0.1 <i>5</i> 0	67.5	27.0	3,000	Special twist cable

Notes:

Nores: 1. Dielectric materials A Stabilized polyethylene C Synthetic rubber compound D Layer of synthetic rubber dielectric between thin layers of conducting rubber

2. This value is the diameter over the outer layer of conducting rubber.

### Attenuation of standard r-f cables vs frequency



The above chart refers to cables listed in the Army-Navy standard list of radio-frequency cables on pages 201, 202, and 203. For an explanation of the letters accompanying the curves, see the table below. Each letter refers to one or more A-N standard cables. The number following the letter in the table is the numerical part of the RG- /U number as listed under "Army-Navy type number" in the third column of the preceding list.

RG—number					
A 55/U	<b>D</b> 5/U	<b>F</b> 10/U	1 63/U	<b>M</b> 17/U	<b>O</b> 26/U
<b>A</b> 58/U	<b>D</b> 6/U	<b>G</b> 11/U	<b>J</b> 65/U	M 18/U	<b>O</b> 64/U
<b>B</b> 59/U	E 21/U	<b>G</b> 12/U	<b>K</b> 14/U	N 19/U	P 27/U
C 62/U	F 8/U	<b>G</b> 13/U	<b>K</b> 74/U	N 20/U	<b>P</b> 28/U
<b>C</b> 71/U	<b>F</b> 9/U	<b>H</b> 22/U	<b>L</b> 57/U	<b>O</b> 25/U	<b>Q</b> 4/U





This chart gives the actual length of line in centimeters and inches when given the length in electrical degrees and the frequency provided the velocity of propagation on the transmission line is equal to that in free space. The length is given on the L scale intersection by a line between  $\lambda$ and  $I^{0}$  where  $I^{0} = \frac{360 \text{ L in centimeters}}{\lambda \text{ in centimeters}}$ 

Example: f = 600 megacycles  $I^0 = 30$  Length L = 1.64 inches or 4.2 centimeters

#### Attenuation and resistance of transmission

### lines at ultra-high frequencies

$$A = 4.35 \frac{R_t}{Z_o} + 2.78 \sqrt{\epsilon} p F$$

where

A = attenuation in decibels per 100 feet  $R_t$  = total line resistance in ohms per 100 feet p = power factor of dielectric medium F = frequency in megacycles  $R_t = 0.1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \frac{1}{2} \sqrt{5}$ 

$$R_{i} = 0.1 \left(\frac{1}{d} + \frac{1}{D}\right) \sqrt{F} \qquad \text{for coaxial copper line}$$
$$= \frac{0.2}{d} \sqrt{F} \qquad \text{for open two-wire copper line}$$

where

- d = diameter of conductors (center conductor for the coaxial line) in inches
- D = diameter of inner surface of outer coaxial conductor in inches

### Wave guides and resonators

### Propagation of electromagnetic waves in hollow wave guides

For propagation of energy at ultra-high frequencies through a hollow metal tube under fixed conditions, a number of different types of waves are available, namely:

**1. TE waves:** Transverse electric waves, sometimes called H waves, characterized by the fact that the electric vector (*E* vector) is always perpendicular to the direction of propagation. This means that

 $E_x = 0$ 

where x is the direction of propagation.

**2. TM waves:** Transverse magnetic waves, also called E waves, characterized by the fact that the magnetic vector (*H* vector) is always perpendicular to the direction of propagation.

This means that

 $H_x = 0$ 

where x is the direction of propagation.

**Note:** TEM waves: Transverse electromagnetic waves. These waves are characterized by the fact that both the electric vector (*E* vector) and the magnetic vector (*H* vector) are perpendicular to the direction of propagation. This means that

$$E_x = H_x = 0$$

where x is the direction of propagation. This is the mode commonly excited in coaxial and open-wire lines. It cannot be propagated in a wave guide.

The solutions for the field configurations in wave guides are characterized by the presence of the integers m and n which can take on separate values from 0 or 1 to infinity. Only a limited number of these different m,n modes can be propagated, depending on the dimensions of the guide and the frequency of excitation. For each mode there is a definite lower limit or cutoff frequency below which the wave is incapable of being propagated. Thus, a wave guide is seen to exhibit definite properties of a high-pass filter.

The propagation constant  $\gamma_{n,m}$  determines the amplitude and phase of each component of the wave as it is propagated along the length of the guide. With x the direction of propagation and  $\omega$  equal to  $2\pi$  times the frequency, the factor for each component is

ejul-Yn,mt

## Propagation of electromagnetic waves in hollow wave guides continued

Thus, if  $\gamma_{n,m}$  is real, the phase of each component is constant, but the amplitude decreases exponentially with x. When  $\gamma_{n,m}$  is real, it is said that no propagation takes place. The frequency is considered below cutoff. Actually, propagation with high attenuation does take place for a small distance, and

a short length of guide below cutoff is often used as a calibrated attenuator.

When  $\gamma_{n,m}$  is imaginary, the amplitude of each component remains constant, but the phase varies with x. Hence, propagation takes place.  $\gamma_{n,m}$  is a pure imaginary only in a lossless guide. In the practical case,  $\gamma_{n,m}$  usually comprises both a real part, which is the attenuation constant, and an imaginary part, which is the





phase propagation constant.

#### Rectangular wave guides

Fig. 1 shows a rectangular wave guide and a rectangular system of coordinates, disposed so that the origin falls on one of the corners of the wave guide; x is the direction of propagation along the guide, and the cross-sectional dimensions are  $y_0$  and  $z_0$ .

For the case of perfect conductivity of the guide walls with a non-conducting interior dielectric (usually air), the equations for the  $TM_{n,m}$  or  $E_{n,m}$  waves in the dielectric are:

$$E_{x} = A \sin\left(\frac{n\pi}{\gamma_{o}}y\right) \sin\left(\frac{m\pi}{z_{o}}z\right) e^{i\omega - \gamma_{n,m}x}$$

$$E_{y} = -A \frac{\gamma_{n,m}}{\gamma^{2}_{n,m} + \omega^{2}\mu_{k}\epsilon_{k}} \left(\frac{n\pi}{\gamma_{o}}\right) \cos\left(\frac{n\pi}{\gamma_{o}}y\right) \sin\left(\frac{m\pi}{z_{o}}z\right) e^{i\omega - \gamma_{n,m}x}$$

$$E_{z} = -A \frac{\gamma_{n,m}}{\gamma^{2}_{n,m} + \omega^{2}\mu_{k}\epsilon_{k}} \left(\frac{m\pi}{z_{o}}\right) \sin\left(\frac{n\pi}{\gamma_{o}}y\right) \cos\left(\frac{m\pi}{z_{o}}z\right) e^{i\omega - \gamma_{n,m}x}$$

$$H_{x} = 0$$

$$H_{y} = A \frac{j\omega\epsilon_{k}}{\gamma^{2}_{n,m} + \omega^{2}\mu_{k}\epsilon_{k}} \left(\frac{m\pi}{z_{o}}\right) \sin\left(\frac{n\pi}{\gamma_{o}}y\right) \cos\left(\frac{m\pi}{z_{o}}z\right) e^{j\omega t - \gamma_{n,m}x}$$

$$H_{z} = -A \frac{j\omega\epsilon_{k}}{\gamma^{2}_{n,m} + \omega^{2}\mu_{k}\epsilon_{k}} \left(\frac{n\pi}{\gamma_{o}}\right) \cos\left(\frac{n\pi}{\gamma_{o}}y\right) \sin\left(\frac{m\pi}{z_{o}}z\right) e^{j\omega t - \gamma_{n,m}x}$$

where  $\epsilon_k$  is the dielectric constant and  $\mu_k$  the permeability of the dielectric material in MKS (rationalized) units.

#### Rectangular wave guides continued

Constant A is determined solely by the exciting voltage. It has both amplitude and phase. Integers m and n may individually take on values from 1 to infinity. No TM waves of the 0,0 type or 0,1 type are possible in a rectangular guide so that neither m nor n may be 0.

Equations for the  $TE_{n,m}$  waves or  $H_{n,m}$  waves in a dielectric are:

$$H_{x} = B \cos\left(\frac{n\pi}{y_{o}}y\right) \cos\left(\frac{m\pi}{z_{o}}z\right) e^{j\omega t - \gamma_{n,m}x}$$

$$H_{y} = B \frac{\gamma_{n,m}}{\gamma^{2}_{n,m} + \omega^{2}\mu_{k}\epsilon_{k}} \left(\frac{n\pi}{y_{o}}\right) \sin\left(\frac{n\pi}{y_{o}}y\right) \cos\left(\frac{m\pi}{z_{o}}z\right) e^{j\omega t - \gamma_{n,m}x}$$

$$H_{z} = B \frac{\gamma_{n,m}}{\gamma^{2}_{n,m} + \omega^{2}\mu_{k}\epsilon_{k}} \left(\frac{m\pi}{z_{o}}\right) \cos\left(\frac{n\pi}{y_{o}}y\right) \sin\left(\frac{m\pi}{z_{o}}z\right) e^{j\omega t - \gamma_{n,m}x}$$

$$E_{x} = 0$$

$$E_{y} = B \frac{j\omega\mu_{k}}{\gamma^{2}_{n,m} + \omega^{2}\mu_{k}\epsilon_{k}} \left(\frac{m\pi}{z_{o}}\right) \cos\left(\frac{n\pi}{y_{o}}y\right) \sin\left(\frac{m\pi}{z_{o}}z\right) e^{j\omega t - \gamma_{n,m}x}$$

$$E_{z} = -B \frac{j\omega\mu_{k}}{\gamma^{2}_{n,m} + \omega^{2}\mu_{k}\epsilon_{k}} \left(\frac{n\pi}{y_{o}}\right) \sin\left(\frac{n\pi}{y_{o}}y\right) \cos\left(\frac{m\pi}{z_{o}}z\right) e^{j\omega t - \gamma_{n,m}x}$$

where  $\epsilon_k$  is the dielectric constant and  $\mu_k$  the permeability of the dielectric material in MKS (rationalized) units.

Constant B again depends only on the original exciting voltage and has both magnitude and phase; m and n individually may assume any integer value from 0 to infinity. The 0,0 type of wave where both m and n are 0 is not possible, but all other combinations are.

As stated previously, propagation only takes place when  $\gamma_{n,m}$  the propagation constant is imaginary;

$$\gamma_{n,m} = \sqrt{\left(\frac{n\pi}{y_o}\right)^2 + \left(\frac{m\pi}{z_o}\right)^2 - \omega^2 \mu_k \epsilon_k}$$

This means, for any n,m mode, propagation takes place when

$$\omega^2 \mu_k \epsilon_k > \left(\frac{n\pi}{\gamma_o}\right)^2 + \left(\frac{m\pi}{z_o}\right)^2$$

or, in terms of frequency f and velocity of light c, when

$$f > \frac{c}{2\pi\sqrt{\mu_{1}\epsilon_{1}}}\sqrt{\left(\frac{n\pi}{\gamma_{o}}\right)^{2}+\left(\frac{m\pi}{z_{o}}\right)^{2}}$$

where  $\mu_1$  and  $\epsilon_1$  are the relative permeability and relative dielectric constant, respectively, of the dielectric material with respect to free space.

# 210



Fig. 2—Field configuration for TE_{0,1} wave.



Fig. 3—Field configuration for a TE_{1,2} wave.



Fig. 4-Characteristic E lines for TE waves.

#### Rectangular wave guides continued

The wavelength in the wave guide is always greater than the wavelength in an unbounded medium. If  $\lambda$  is the wavelength in free space, the wavelength in the guide with air as a dielectric for the *n*,*m* mode is

$$\lambda_{g(\mathbf{x},m)} = \frac{\lambda}{\sqrt{1 - \left(\frac{n\lambda}{2y_o}\right)^2 - \left(\frac{m\lambda}{2z_o}\right)^2}}$$

The phase velocity within the guide is also always greater than in an unbounded medium. The phase velocity v and group velocity u are related by the following equation:

$$u = \frac{c^2}{v}$$

where the phase velocity is given by  $v = c \frac{\lambda_g}{\lambda}$  and the group velocity is the velocity of propagation of the energy.

To couple energy into wave guides, it is necessary to understand the configuration of the characteristic electric and magnetic lines. Fig. 2 illustrates the field configuration for a  $TE_{0,1}$  wave. Fig. 3 shows the instantaneous field configuration for a higher mode, a  $TE_{1,2}$  wave.

In Fig. 4 are shown only the characteristic E lines for the TE_{0,1}, TE_{0,2}, TE_{1,1} and TE_{1,2} waves. The arrows on the lines indicate their instantaneous relative directions. In order to excite a TE wave, it is necessary to insert a probe to coincide with the direction of the E lines. Thus, for a TE_{0,1} wave, a single probe projecting from the side of the guide parallel to the E lines would be sufficient to couple into it. Several means of coupling from a coaxial line to a rectangular wave guide to excite the TE_{0,1} mode are shown in Fig. 5. With structures such as these, it is possible to make the standing wave ratio due to the junction less than 1.15 over a 10 to 15 percent frequency band.

Fig. 6 shows the instantaneous configuration of a  $TM_{1,1}$  wave; Fig. 7, an instantaneous field configuration for a  $TM_{1,2}$  wave. Coupling to this type of wave is accomplished by inserting a probe, which is again parallel to the *E* lines. Since the *E* lines in this case extend along the length of the tube, it is necessary to position a probe along its length at the center of the *E* configuration. Fig. 8 illustrates a method of coupling to an  $E_{1,1}$  wave and an  $E_{1,2}$ wave.









Fig. 5—Methods of coupling to  $TE_{0,1}$  mode (a  $\thickapprox\lambda g/4$ ).



Fig. 6—Instantaneous field configuration for a  $TM_{1,1}$  wave.

.





electric intensity

magnetic intensity

Fig. 7—Instantaneous field configuration for a  $TM_{1, 2}$  wave.

#### Rectangular wave guides co

continued



Fig. 8—Methods of coupling to rectangular wave guides for TM(E) modes.

#### **Circular wave guides**

The usual co-ordinate system is  $\rho$ ,  $\theta$ , z, where  $\rho$  is in radial direction;  $\theta$  is the angle; z is in the longitudinal direction.

TM waves (E waves)  $H_z \equiv 0$ 

 $E_z = A J_n (k_{n,m} \rho) \cos n \theta \epsilon^{j\omega t - \gamma_{n,m^2}}$ 

By the boundary conditions,  $E_z = 0$  when  $\rho = a$ , the radius. Thus, the only permissible values of k are those for which  $J_n$   $(k_{n,m} a) = 0$  because  $E_z$  must be zero at the boundary.

The numbers m, n take on all integral values from zero to infinity. The waves are seen to be characterized by two numbers, m and n, where n gives the order of the bessel functions, and m gives the order of the root of  $J_n$   $(k_{n,m} a)$ . The bessel function has an infinite number of roots, so that there are an infinite number of k's which make  $J_n$   $(k_{n,m} a) = 0$ .

The other components of the electric vector  $E_{\theta}$  and  $E_{\rho}$  are related to  $E_z$  as are  $H_{\theta}$  and  $H_{\rho}$ .

TE waves (H waves)  $E_z \equiv 0$ 

 $H_z = BJ_n (k_{n,m}\rho) \cos n\theta e^{j\omega t - \gamma_{n,m} \theta}$ 

 $H\rho$ ,  $H_{\theta}$ ,  $E_{\rho}$ ,  $E_{\theta}$ , are all related to  $H_{z}$ .

#### Circular wave guides continued

Again n takes on integral values from zero to infinity. The boundary condition  $E_x = 0$  when  $\rho = a$  still applies. To satisfy this condition k must be such as to make  $J'_n$  ( $k_{n,m}$  a) equal to zero where the superscript indicates the derivative of  $J_n$  ( $k_{n,m}$  a). It is seen that m takes on values from 1 to infinity since there are an infinite number of roots of  $J'_n$  ( $k_{n,m}$  a).

For circular wave guides, the cut-off frequency for the *m*,*n* mode is  $f_{\sigma_{n,m}} = \frac{c \, k_{n,m}}{2 \, \pi} \quad \text{where } c = \text{velocity of light and } k_{n,m} \text{ is evaluated from}$ the roots of the bessel functions

and

 $k_{n,m} = \frac{U_{n,m}}{a}$  or  $\frac{U'_{n,m}}{a}$  where a = radius of guide or pipe and  $U_{n,m}$  is the most of the particular bessel function of interest (or its derivative). The wavelength in the guide is

 $\lambda_{g} = \frac{2 \pi}{\sqrt{\left(\frac{2 \pi}{\lambda_{\bullet}}\right)^{2} - k^{2}_{n,m}}}$ 

where  $\lambda_o$  is the wavelength in an unbounded medium.

The following tables are useful in determining the values of k. For H waves the roots  $U'_{n,m}$  of  $J'_n$  (U) = 0 are given in the following table, and the corresponding  $k_{n,m}$  values are  $\frac{U'_{n,m}}{\sigma}$ 

Values of  $U'_{n,m}$ 

m	0	1	2
1	3.832	1.841	3.054
2	7.016	5.332	6.705
3	10.173	8.536	9.965

For E waves the roots  $U_{n,m}$  of  $J_n(U) = 0$  are given in the following table, and the corresponding  $k_{n,m}$  values are  $\frac{U_{n,m}}{2}$ .

Values of  $U_{n,m}$ 

m ⁿ	0	1	2
1	2.405	3.832	5.135
2	5.520	7.016	8.417
3	8.654	10.173	11.620

where n is the order of the bessel function and m is the order of the root.

C.E. Tennis.

,

wave guides and resonators 215



	coaxial cable (a, b)	rectangular pipe a, b TE _{0, m} or H _{0, m}	TM _{0,1} or E ₀	circular pipe of radius a $TE_{1,1}$ or $H_1$	TE _{0,1} or H ₀	
Cut-off wavelength λε	0	2b m	2.613a	3.412a	1.640a	
Attenuation constant $= \alpha$	$\alpha_o \sqrt{\frac{c}{\lambda}} \frac{\left(\frac{1}{a} + \frac{1}{b}\right)}{\log \frac{b}{a}}$	$\frac{4\alpha_o}{b} A\left(\frac{b}{2a} + \frac{\lambda^2}{\lambda_c^2}\right)$	$\frac{2 \alpha_o}{a} A$	$\frac{2  \alpha_o}{a}  A \left( 0.415 + \frac{\lambda^2}{\lambda_o^2} \right)$	$\frac{2 \alpha_o}{\alpha} A \left(\frac{\lambda}{\lambda_o}\right)^2$	
where $\lambda_c = \text{ cut-off wavelength}$ $A = \frac{\sqrt{c/\lambda}}{\sqrt{1 - \left(\frac{\lambda}{\lambda_c}\right)^2}},  \alpha_0 = \frac{1}{4} \sqrt{\frac{\mu_2 \cdot \epsilon_1}{\sigma_2 \cdot \mu_1}}  (emu)$						

### Table I—Cut-off wavelengths and attenuation factors

.
#### Circular wave guides continued

The pattern of magnetic force of TM waves in a circular wave guide is shown in Fig. 9. Only the maximum lines are indicated. In order to excite this type of pattern, it is necessary to insert a probe along the length of the wave guide concentric with the H lines. For instance, in the  $TM_{0,1}$  type of wave, a probe extending down the length of the wave guide at the very center of the guide would provide the proper excitation. This method of excitation is shown in Fig. 10. Similar methods of excitation may be used for the other types of TM waves shown in Fig. 9.

Fig. 11 shows the patterns of electric force for TE waves. Again only the maximum lines are indicated. This type of wave may be excited by an antenna which is parallel to the electric lines of force. For instance, the  $TE_{0,1}$  wave would be excited by a small circular loop placed where the maximum *E* line is indicated in the diagram. The  $TE_{1,1}$  wave may be excited by means of an antenna extending across the wave guide. This is illustrated in Fig. 12.

#### Attenuation constants

All the attenuation constants contain a common coefficient

$$\alpha_0=\frac{1}{4}\sqrt{\frac{\mu_2\,\epsilon_1}{\sigma_2\,\mu_1}}$$

 $\varepsilon_1,\,\mu_1$  dielectric constant and magnetic permeability for the insulator ~ -

 $\sigma_2$ ,  $\mu_2$  electric conductivity and magnetic permeability for the metal

For air and copper  $\alpha_0 = 0.35 \times 10^{-9}$  nepers per centimeter or  $0.3 \times 10^{-3}$  db per kilometer

Table I summarizes some of the most important formulas. The dimensions a, b are measured in centimeters.

#### **Electromagnetic horns**

Radiation from the wave guide may be obtained by placing an electromagnetic horn of a particular size at the end of the wave guide. The characteristics for different types of circular horns are shown in Figs. 13 and 14.

Fig. 13 gives data for designing a horn to have a specified gain with the shortest length possible. The length  $L_1$  is given by  $L_1 = L\left(1 - \frac{a}{2A} - \frac{b}{2B}\right)$  where a = wide dimension of wave guide in the H plane, and b = narrow dimension of wave guide in E plane.

## **Electromagnetic horns**

continued







If  $L \ge \frac{\alpha^2}{\lambda}$  ( $\alpha$  = longer dimension of aperture) the gain is given by  $G = \frac{10\alpha b}{\lambda^2}$ , the half power width in the E plane is given by 51°  $\frac{\lambda}{b}$ , and the half power width in the H plane is given by 70°  $\frac{\lambda}{a}$ , where E is the electric vector

and H is the magnetic vector,

Fig. 14 shows how the angle between 10-decibel points varies with aperture.

#### Parabolas

If the intensity across the aperture of the parabola is of constant phase and tapers smoothly from the center to the edges so that the intensity at the edges is 10 decibels down from that at the center, the gain is given by  $G = \frac{8A}{\lambda^2}$  (A = area of aperture). The half power width is given by 70°  $\frac{\lambda}{D}$ (D = diameter of parabola).

### **Resonant cavities**

A cavity enclosed by metal walls will have an infinite number of natural frequencies at which resonance will occur. The lowest frequency or mode of oscillation is determined by the geometry of the cavity. One of the

#### **Resonant cavities** continued

more common types of cavity resonators is a length of transmission line (coaxial, or waveguide) short circuited at both ends.

Resonance occurs when

$$2h = l \frac{\lambda g}{2}$$
 where *l* is an integer

2h = length of the resonator  $\lambda_g$  = guide wavelength in resonator

$$\lambda_g = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_c}\right)^2}}$$

 $\lambda = \text{free space wavelength}$   $\lambda_c = \text{guide cut-off wavelength}$ 

For  $TE_{n,m}$  or  $TM_{n,m}$  waves in a rectangular cavity with cross section a, b.

$$\lambda_c = rac{2}{\sqrt{\left(rac{m}{a}
ight)^2 + \left(rac{n}{b}
ight)^2}}$$
 where *m* and *n* are integers

For  $TE_{n,m}$  waves in a cylindrical cavity

$$\lambda_c = \frac{2\pi a}{U'_{n,m}}$$

where a is the guide radius and  $U'_{n,m}$  is the mth root of the equation  $J'_n(U) = 0$ 

For  $TM_{n,m}$  waves in a cylindrical cavity

$$\lambda_{c} = \frac{2\pi \alpha}{U_{n,m}}$$

where a is the guide radius and  $\bigcup_{n,m}$  is the mth root of the equation  $J_n(U) = 0$ .

For TM waves I = 0, 1, 2...

For TE waves I = 1, 2... but not 0

#### Rectangular cavity of dimensions a b 2h

$$\lambda = \frac{2}{\sqrt{\left(\frac{l}{2h}\right)^2 + \left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}} \text{ where only one of } l, m, n \text{ may be zero.}$$

## Resonant cavities continued

Cylindrical cavities of radius a and length 2h

$$\lambda = \frac{1}{\sqrt{\left(\frac{l}{4h}\right)^2 + \left(\frac{1}{\lambda_c}\right)^2}}$$

where  $\lambda_c$  is the guide cut-off wavelength.

## Spherical resonators of radius a

$$\lambda = \frac{2\pi a}{U_{n,m}} \text{ for a TE wave}$$

$$\lambda = \frac{2\pi a}{U'_{n,m}} \text{ for a TM wave.}$$
Values of  $U_{n,m}$ :
$$U_{1,1} = 4.5, U_{2,1} = 5.8, U_{1,2} = 7.64$$
Values of  $U'_{n,m}$ :

 $U'_{1,1} = 2.75 =$  lowest order root

## Additional cavity formulas

type of cavity	mode	$\lambda_0$ resonant wavelength	Q
Right circular cylinder	TM _{0,1,1} (E _c )	$\frac{4}{\sqrt{\left(\frac{1}{h}\right)^2 + \frac{2.35}{a^2}}}$	$\frac{\lambda_0}{\delta} \frac{\sigma}{\lambda_0} \frac{1}{1 + \frac{\sigma}{2h}}$
	TE _{0,1,1} (H ₀ )	$\frac{4}{\sqrt{\left(\frac{1}{h}\right)^2+\frac{5.93}{a^2}}}$	$\frac{\lambda_0}{\delta} \frac{\sigma}{\lambda_0} \left[ \frac{1 + 0.168 \left( \frac{\sigma}{h} \right)^2}{1 + 0.168 \left( \frac{\sigma}{h} \right)^3} \right]$
	TE _{1,1,1} (H ₁ )	$\frac{4}{\sqrt{\left(\frac{1}{h}\right)^2 + \frac{1.37}{a^2}}}$	$\frac{\lambda_{0}}{\delta} \frac{h}{\lambda_{0}} \left[ \frac{2.39h^{2} + 1.73a^{2}}{3.39 \frac{h^{3}}{a} + 0.73ah + 1.73a^{2}} \right]$

## Some characteristics of various types of resonators

#### $\delta$ is the skin depth

<u></u>	type resonator	wavelength, $\lambda$	Q
Square prism TE _{0,1,1}		2√2α	$\frac{0.353\lambda}{\delta} \frac{1}{1 + \frac{0.177\lambda}{h}}$
Circular cylinder TM _{0,1,0}		2.61a	$\frac{0.383\lambda}{\delta} \frac{1}{1 + \frac{0.192\lambda}{h}}$
Sphere	( <u> </u>	2.28a	$0.318 \frac{\lambda}{\delta}$
Sphere with cones		4α	Optimum Q for $\theta = 34^{\circ}$ 0.1095 $\frac{\lambda}{\delta}$
Coaxial TEM		4h	Optimum Q for $\frac{b}{a} = 3.6$ (Z ₀ = 77 ohms) $\frac{\lambda}{4\delta + 7.2 \frac{h\delta}{b}}$

 $\delta = \sqrt{\frac{\rho}{2\pi\omega\mu}}$  where  $\rho$  = resistivity of wall in abohm-cm,  $\mu$  = permeability of volume (unity for free space),  $\delta$  = skin depth in centimeters.

		cutoff wavelength λc (centimeters)	usable wavelength range for	connectors		attenuation in brass
dimension inches	A-N number		TE0, 1 mode (centimeters)	choke	flange	wave guide db/ft
$1\frac{1}{2} \times 3 \times 0.081$ wall	RG-48/U	14.4	7.6-11.8	UG-54/U	UG-53/U	0.012 @ 10 cm
$1 \times 2 \times 0.064$ wall	RG-49/U	9.5	5.0-7.6	UG-148/U	UG-149/U	0.021 @ 6 cm
³ / ₄ × 1 ¹ / ₂ × 0.064 wall	RG-50/U	6.97	3.7–5.7	UG-150/U	contact type	0.036 @ 5 cm
% × 1¼ × 0.064 wall	RG-51/U	5.7	3.0-4.7	UG-52/U	UG-51/U	0.050 @ 3.6 cm
$\frac{1}{1/2} \times 1 \times 0.050$	RG-52/U	4,57	2.4-3.7	UG-40/U	UG-39/U	0.076 @ 3.2 cm

## Recommended rectangular wave guides

## Radio propagation and noise

#### Propagation of medium and long waves*

For a theoretical short vertical antenna over perfect ground:  $E = 186 \sqrt{P_r}$  millivolts per meter at 1 mile

or.

 $E = 300 \sqrt{P_r}$  millivolts per meter at 1 kilometer where  $P_r =$  radiated power in kilowatts.

Actual inverse-distance fields at one mile for a given transmitter output power depend on the height and efficiency of the antenna and the efficiency of coupling devices.

Typical values found in practice for well-designed stations are:

Small L or T antennas as on ships;  $25 \sqrt{P_t}$  millivolts per meter at 1 mile Vertical radiators 0.15 to 0.25  $\lambda$  high;  $150 \sqrt{P_t}$  millivolts per meter at 1 mile Vertical radiators 0.25 to 0.40  $\lambda$  high;  $175 \sqrt{P_t}$  millivolts per meter at 1 mile Vertical radiators 0.40 to 0.60  $\lambda$  high or top-loaded vertical radiators;  $220 \sqrt{P_t}$  millivolts per meter at 1 mile,

where  $P_t$  = transmitter output power in kilowatts.

These values can be increased by directive arrangements.

The surface-wave field (commonly called ground wave) at greater distances can be found from Figs. 1, 2, and 3. These are based on a field strength of 186 millivolts per meter at one mile. The ordinates should be multiplied by the ratio of the actual field at 1 mile to 186 millivolts per meter.

terrain	σ conductivity emu	é dielectric constanț esu
Sea water	$4 \times 10^{-11}$	80
Fresh water	$5 \times 10^{-14}$	80
Dry, sandy flat coastal land	$2 \times 10^{-14}$	10
Marshy, forested flat land	8 × 10 ⁻¹⁴	12
Rich agricultural land, low hills	$1 \times 10^{-13}$	15
Pastoral land, medium hills and forestation	$5 \times 10^{-14}$	13
Rocky land, steep hills	$2 \times 10^{-14}$	10
Mountainous (hills up to 3000 feet)	$1 \times 10^{-14}$	5
Cities, residential areas	$2 \times 10^{-14}$	5
Cities, industrial areas	$1 \times 10^{-15}$	3

#### Table I—Ground conductivities and dielectric constants

Note: This table for use for medium- and long-wave propagation with Norton's, van der Pol's, Eckersley's, or other developments of Sommerfeld propagation formulas.

* For more exact methods of computation see Terman, F. E., Radio Engineers' Handbook. Sec. 10; or Norton, K. A., The Calculation of Ground-wave Field Intensities Over a Finitely Conducting Spherical Earth. Proc. I.R.E., vol. 29, p. 623 (December, 1941).



Fig. 1—Strength of surface waves as a function of distance with a vertical antenna for good earth ( $\sigma = 10^{-13}$  emu and  $\epsilon = 15$  esu).



ig. 2—Strength of surface waves as a function of distance with a vertical antenna for poor earth ( $\sigma = 2 \times 10^{-14}$  emu and  $\epsilon = 5$  esu).

#### Propagation of medium and long waves continued

Figs. 1, 2, and 3 do not include the effect of sky waves reflected from the ionosphere. Sky waves cause fading at medium distances and produce higher field intensities than the surface wave at longer distances, particularly at night and on the lower frequencies during the day. Sky-wave field intensity, in addition to the usual diurnal, seasonal, and irregular variations due to changing properties of the ionosphere, depends on frequency and the vertical radiation pattern of the antenna. Fig. 4 shows the average of nighttime measurements on a number of broadcast stations for about 1-kilowatt output.



Fig. 3—Strength of surface waves as a function of distance with a vertical antenna for sea water ( $\sigma = 4 \times 10^{-11}$  emu and  $\epsilon = 80$  esu).

#### **Propagation of short waves**

At frequencies between about 3 and 25 megacycles and distances greater than about 100 miles, transmission depends entirely on sky waves reflected from the ionosphere. The ionosphere (a region high above the earth's surface where the rarefied air is sufficiently ionized to reflect or absorb radio waves) is usually considered as consisting of the following layers.

**D layer:** At heights from about 50 to 90 kilometers, it exists only during daylight hours and ionization density corresponds with the altitude of the sun.

This layer reflects low- and medium-frequency waves and weakens highfrequency waves through partial absorption.

**E layer:** At height of about 110 kilometers, this layer is of importance for shortwave daytime propagation at distances less than 1000 miles and for medium wave nighttime propagation at distances in excess of about 100 miles. Ionization density corresponds closely with the altitude of the sun. Irregular cloud-like areas of unusually high ionization, called sporadic *E* may occur up to more than 50 percent of the time on certain days or nights. Sporadic *E* occasionally prevents frequencies that normally penetrate the *E* layer reaching higher layers and also causes occasional long-distance transmission at very high frequencies.



Fig. 4—Average sky-wave field intensity (corresponding to the second hour after sunset at the recording station).

 $F_1$  layer: At heights of about 175 to 250 kilometers, it exists only during daylight. This layer occasionally is the reflecting region for shortwave transmission, but usually oblique incidence waves that penetrate the E layer also penetrate the  $F_1$  layer to be reflected by the  $F_2$  layer. The  $F_1$  layer introduces additional absorption of such waves.

**F**₂ **layer:** At heights of about 250 to 400 kilometers, F₂ is the principal reflecting region for long-distance shortwave communication. Height and ionization density vary diurnally, seasonally, and over the sunspot cycle. Ionization does not correspond closely to the altitude of the sun. At night, the F₁ layer merges with the F₂ layer at a height of about 300 kilometers. The absence of the F₁ layer, and reduction in absorption of the E layer, causes nighttime field intensities and noise to be generally higher than during daylight hours.

As indicated to the right on Fig. 6, these layers are contained in a thick region throughout which ionization generally increases with height. The layers are said to exist where the ionization gradient is capable of refracting waves back to earth. Obliquely incident waves follow a curved path through the ionosphere due to gradual refraction or bending of the wave front.

Depending on the ionization density at each layer, there is a critical or highest frequency  $f_c$  at which the layer reflects a vertically incident wave. Frequencies higher than  $f_c$  pass through the layer at vertical incidence. At oblique incidence the layer reflects frequencies higher than  $f_c$  as given by the approximate relation:

 $muf = f_c \sec \phi$ 

where *muf* = maximum usable frequency for the particular layer and distance,

 $\phi$  = angle of incidence at reflecting layer.

 $f_c$  and height, and hence  $\phi$  for a given distance, for each layer vary with local time of day, season, latitude, and throughout the eleven-year sunspot cycle. The various layers change in different ways with these parameters. In addition, ionization is subject to frequent abnormal variations.

The loss at reflection for each layer is a minimum at the maximum usable frequency and increases rapidly for frequencies lower than maximum usable frequency.

Short waves travel from the transmitter to the receiver by reflections from the ionosphere and earth in one or more hops as indicated in Figs. 5 and 6. Additional reflections may occur along the path between the bottom edge of a higher layer and the top edge of a lower layer, the wave finally returning to earth near the receiver.

Fig. 5 illustrates single-hop transmission, Washington to Chicago, via the E layer ( $\phi_1$ ). At higher frequencies over the same distance, single-hop transmission would be obtained via the F₂ layer ( $\phi_2$ ). Fig. 5 also shows two-hop transmission, Washington to San Francisco, via the F₂ layer ( $\phi_3$ ). Fig. 6 indicates transmission on a common frequency, (1.) single-hop via E layer, Denver to Chicago, and, (2.) single-hop via F₂, Denver to Washington, with, (3.) the wave failing to reflect at higher angles, thus producing a *skip* region of no signal between Denver and Chicago.

Actual transmission over long distances is more complex than indicated by Figs. 5 and 6, because the layer heights and critical frequencies differ with time (and hence longitude) and with latitude. Further, scattered reflections occur at the various surfaces.



Fig. 6.

Maximum usable frequencies (muf) for single-hop transmission at various distances throughout the day are given in Fig. 7. These approximate values apply to latitude 39° N for the approximate minimum years (1944 and 1955) and approximate maximum years (1949 and 1960) of the sunspot cycle. Since the maximum usable frequency and layer heights change from month to month, the latest predictions should be obtained whenever available. This information is published by the National Bureau of Standards in the U. S. A. and by similar organizations in other countries.

Operating frequencies should be selected from 50 to 85 percent of the maximum usable frequency, preferably nearer the higher limit in order to reduce absorption loss. The 85 percent limit provides some margin for day-to-day deviation of the ionospheric characteristics from the predicted monthly average value. Maximum usable frequency changes continuously throughout the day, whereas it is ordinarily impractical to change operating frequencies correspondingly. Each operating frequency, therefore, should be selected to fall within the above limits for a substantial portion of the daily operating period.

For single-hop transmission, frequencies should be selected on the basis of local time and other conditions existing at the mid-point of the path. In view of the layer heights and the fact that practical antennas do not operate effectively below angles of about three degrees, single-hop trans-

mission cannot be achieved for distances in excess of about 2200 miles (3500 kilometers) via F layers or in excess of about 1050 miles (1700 kilometers) via the E layer. Multiple-hop transmission must occur for longer distances and, even at distances of less than 2200 miles, the major part of the received signal frequently arrives over a two- or more-hop path. In analyzing two-hop paths, each hop is treated separately and the lowest frequency required on either hop becomes the maximum usable frequency for the circuit. It is usually impossible to predict accurately the course of radio waves on circuits involving more than two hops because of the large number of possible paths and the scattering that occurs at each reflection. For such longdistance circuits, it is customary to consider the conditions existing at points 1250 miles along the path from each end as the points at which the maximum usable frequencies should be calculated.



local time at place of reflection



#### Propagation forecasts for short waves

In addition to forecasts for ionospheric disturbances, the Central Radio Propagation Laboratories of the National Bureau of Standards issues monthly Basic Radio Propagation Predictions 3 months in advance used to determine the optimum working frequencies for shortwave communication. Indication of the general nature of the CRPL data and a much abbreviated example of their use follows:

#### Example

To determine working frequencies for use between San Francisco and Wellington, N. Z.

#### Method

**1.** Place a transparent sheet over Fig. 8 and mark thereon the equator, a line across the equator showing the meridian of time desired (viz., GCT or PST), and locations of San Francisco and Wellington.

**2.** Transfer sheet to Fig. 9, keeping equator lines of chart and transparency aligned. Slide from left to right until terminal points marked fall along a Great Circle line. Sketch in this Great Circle between terminals and mark "control points" 2000 kilometers along this line from each end.

**3.** Transfer sheet to Fig. 10, showing muf for transmission via the  $F_2$  layer. Align equator as before. Slide sheet from left to right placing meridian line on time desired and record frequency contours at control points. This illustration assumes that radio waves are propagated over this path via the  $F_2$  layer. Eliminating all other considerations, 2 sets of frequencies, corresponding to the control points, are found as listed in Table II, the lower of which is the muf. The muf, decreased by 15 percent, gives the optimum working frequency.

Transmission may also take place via other layers. For the purpose of illustration only and without reference to the problem above, Figs. 11 and 12 have been reproduced to show characteristics of the E and sporadic E layers. The complete detailed step-by-step procedure, including special considerations in the use of this method, are contained in the complete CRPL forecasts.

GCT	at San Francisco control point (2000 km from San Francisco)	at Wellington, N. Z. control point (2000 km from Wellington)	optimum working frequency (lower of muf X 0.85)	
0000	32.0	31.5	26.8	
0400	34.2	25.0	21.0	
0800	23.2	13.7	11.7	
1200	18.0	14.8	12.6	
1600	23.4	12.2	10.4	
2000	24.6	2.88	20.9	

#### Table II—Maximum usuable frequency

continued

Propagation forecasts for short waves



Fig. 8—World map showing zones covered by predicted charts and auroral zones.



Fig. 9—Great circle chart centered on equator. Solid lines represent great circles. Dot-dash lines indicate distances in thousands of kilometers.



Fig. 10—F₂ 4000-kilometer maximum usable frequency in megacycles. I zone (see Fig. 8) predicted for July, 1946. 23





Fig. 11—E layer 2000kilometer maximum usable frequency in megacycles predicted for July, 1946.

,



Fig. 12—Median fE_s in megacycles (sporadic E layer) predicted for July, 1946 236

### Propagation of very short waves

For propagation over distance within the radio path horizon, the field intensity is given approximately by

$$E = \frac{14.0\sqrt{W}}{d} \sin\left(\frac{2\pi h_t h_r}{\lambda d}\right) \text{ volts per meter}$$
(1)

where

W = watts radiated,  $h_t$  = height of transmitting antenna in meters,  $h_r$  = height of receiving antenna in meters,  $\lambda$  = wavelength in meters, d = distance in meters.

The following approximate formula is useful for transmission below 100 megacycles within the radio path horizon.

$$E = \frac{0.33 \sqrt{P H_t H_r f_{mc}}}{D^2} \text{ microvolts per meter}$$
(2)

where

P = kilowatts radiated,  $H_t =$  height of transmitting antenna in feet,  $H_r =$  height of receiving antenna in feet,  $f_{mc} =$  frequency in megacycles, D = distance in statute miles.

Equations (1) and (2) apply to both vertical and horizontal polarization. It is assumed that the antennas are small dipoles. The equations hold only when the transmission distance is large compared to antenna heights, i.e.,

for equation (1)  $d > 10 h_r$ for equation (2)  $D > 4 H_t H_r f_{mc} \times 10^{-6}$ 

Multiplying the true radius of the earth by correction factor 1.33 to provide for average atmospheric refraction gives the radio path horizon as

 $D_l = \sqrt{2H_t} + \sqrt{2H_r}$  statute miles

If the refractive effect of the atmosphere is ignored, *line-of-sight horizon* is reduced to the geometric range

$$D_g = 1.23 \left( \sqrt{H_t} + \sqrt{H_r} \right)$$

These distances may be obtained from the nomograph, Fig. 13.

When the transmission distance is not large compared with antenna height, the field strength oscillates with distance and height as indicated by the sine term of equation (1).

The number of oscillations for a given distance increases with frequency as illustrated in Fig. 14. This is due to interference between the space wave and the ground-reflected wave as these two components fall in or out of phase at various distances and heights.

### U–H–F path length and optical line-of-sight

#### distance range of radio waves



The theoretical maximum path of a radio wave, the sum of the "optical" horizon distances of each antenna, is found on "line-of-sight" scale by a line connecting points representing the twa antenna heights. Atmospheric diffraction increases this path an amount generally considered as  $2/\sqrt{3}$  times optical line of sight, given on the radio path scale.

Example shown: Height of receiving antenna 60 feet, height of transmitting antenna 500 feet, and maximum radio path length 41.5 miles.

Fig. 13.

RADIO PROPAGATION AND NOISE 239



Fig. 14—Effect of frequency on ground-wave field intensity.

To compute the field accurately under these conditions, it is necessary to calculate the two components separately and to add them in correct phase relationship as determined by the geometry of the path and the change in magnitude and phase at ground reflection. For horizontally-polarized waves, the reflection coefficient can be taken as approximately one, and the phase

shift at reflection as 180 degrees, for nearly all types of ground and angles of incidence. For vertically-polarized waves, the reflection coefficient and phase shift vary with the ground constants and angle of incidence.*

For methods of computing field intensities when equations (1) and (2) do not hold beyond the radio path horizon, or when the antenna height is not negligible compared to distance, see reference below.[†]

At points beyond the radio path horizon, field intensity decreases more rapidly than the square of the distance; and, if the antennas are raised, the field intensity increases more rapidly than the product of antenna heights.

Measured field intensities usually show large deviations from point to point due to reflections from irregularities in the ground, buildings, trees, etc. In addition, fields at the longer distances are subject to fading and day-to-day variations due to changes in the refractive index of the atmosphere and tropospheric reflections.

* See Burrows, C. R., Radio Propagation over Plane Earth-Field Strength Curves. Bell System Tech. Jour., vol. 16 (January 1937).
* See Norton, K. A., The Effect of Frequency on the Signal Range of an Ultra-High Frequency Radio Station. FCC Mimeo Report 48466 (March 20, 1941).

#### **Great circle calculations**

Referring to Figs. 15, 16, and 17, A and B are two places on the earth's surface the latitudes and longitudes of which are known. The angles X and Y at A and B of the great circle passing through the two places and the distance Z between A and B along the great circle can be calculated as follows:

B is the place of greater latitude, i.e., nearer the pole

 $L_A$  is the latitude of A

 $L_B$  is the latitude of B

C is the difference of longitude between A and B

Then, 
$$\tan \frac{Y - X}{2} = \cot \frac{C}{2} \frac{\sin \frac{L_B - L_A}{2}}{\cos \frac{L_B + L_A}{2}}$$
  
and,  $\tan \frac{Y + X}{2} = \cot \frac{C}{2} \frac{\cos \frac{L_B - L_A}{2}}{\sin \frac{L_B + L_A}{2}}$ 

give the values of  $\frac{Y-X}{2}$  and  $\frac{Y+X}{2}$ 

Great circle calculations continued

from which

$$\frac{Y+X}{2} + \frac{Y-X}{2} = Y$$

and

$$\frac{Y+X}{2}-\frac{Y-X}{2}=X$$

In the above formulas, north latitudes are taken as positive and south latitudes as negative. For example, if B is latitude  $60^{\circ}$  N and A is latitude  $20^{\circ}$  S

$$\frac{L_B + L_A}{2} = \frac{60 + (-20)}{2} = \frac{60 - 20}{2} = \frac{40}{2} = 20^{\circ}$$

and

$$\frac{L_B - L_A}{2} = \frac{60 - (-20)}{2} = \frac{60 + 20}{2} = \frac{80}{2} = 40^{\circ}$$

If both places are in the southern hemisphere and  $L_B + L_A$  is negative, it is simpler to call the place of greater south latitude B and to use the above method for calculating bearings from true south and to convert the results afterwards to bearings east of north.

The distance Z (in degrees) along the great circle between A and B is given by the following:

$$\tan \frac{Z}{2} = \tan \frac{L_B - L_A}{2} \frac{\sin \frac{Y + X}{2}}{\sin \frac{Y - X}{2}}$$

The angular distance Z (in degrees) between A and B may be converted to linear distance as follows:

Z (in degrees)  $\times$  111.195 = kilometers Z (in degrees)  $\times$  69.093 = statute miles Z (in degrees)  $\times$  60.000 = nautical miles

In multiplying, the minutes and seconds of arc must be expressed in decimals of a degree. For example,  $Z = 37^{\circ} 45' 36''$  becomes  $37.755^{\circ}$ .

Example:—Find the great circle bearings at Brentwood, Long Island, Longitude 73° 15′ 10″ W, Latitude 40° 48′ 40″ N, and at Rio de Janeiro, Brazil, Longitude 43° 22′ 07″ W, Latitude 22° 57′ 09″ S, and the great circle distance in statute miles between the two points.

## Great circle calculations continued



Fig. 15

 $L_A = latitude of A$ 

 $L_{\scriptscriptstyle B} =$  latitude of B

C = difference of longitude





 $L_{A} =$  latitude of A

- $L_{\scriptscriptstyle B} =$  latitude of B
- C = difference of longitude



- Fig. 17
- $L_{A} = 1$ atitude of A
- $\mathbf{L}_{\mathrm{B}} =$ latitude of  $\mathbf{B}$
- C = difference of longitude

## Great circle calculations continued

	longítude	latitude		
rentwood 73° 15′ 10″ W o de Janeiro 43° 22′ 07″ W		40° 48′ 40″ N ()22° 57′ 09″ S		
с .	29° 53′ 03′′	17° 51′ 31″ 63° 45′ 49″	$\begin{array}{c} L_{B} + L_{A} \\ L_{B} - L_{A} \end{array}$	
$\frac{C}{2} = 14^{\circ} 56' 31''$	$\frac{L_{\rm B}+L_{\rm A}}{2}=8^{\circ}53$	5' 45'' $\frac{L_{\rm B}-L_{\rm A}}{2} =$	= 31° 52′ 54″	
log cot 14° 56' 3	1" = 10.57371	lög cot 14° 56' 31''	′ <b>=  1</b> 0.57371	
plus log cos 31° 52′ 54	$4'' = \frac{9.92898}{0.50269}$	plus log sin 31° 52′ <del>54</del> ′′	9.72277 0.29648	
minus log sin 8° 55′ 45″ = 9.19093 log tan $\frac{Y + X}{2}$ = 1.31176		minus log cos 8° 55' 45'' = 9.99471 log tan $\frac{Y - X}{2}$ = 0.30177		
$\frac{Y+2}{2}$	$\frac{X}{2} = 87^{\circ} 12' 26''$	$\frac{Y-X}{2}$	e 63° 28' 26''	
$\frac{Y+X}{2} + \frac{Y-X}{2} =$	$Y = 150^{\circ} 40' 52''$ East	of North—bearing at Br	entwood	
$\frac{Y+X}{2}-\frac{Y-X}{2}=$	$X = 23^{\circ} 44' 00'' $ Wes	it of North—bearing at R	io de Janeiro	
	<u></u>	•••••••••••••••••••••••••••••••••••••••		

 $\frac{L_{\rm B} - L_{\rm A}}{2} = 31^{\circ} 52' 54'' = 9.79379$   $\frac{Y + X}{2} = 87^{\circ} 12' 26'' = 9.99948$   $\frac{Y - X}{2} = 63^{\circ} 28' 26'' = 9.99748$   $\frac{Y - X}{2} = 63^{\circ} 28' 26'' = 9.99748$   $\frac{Y - X}{2} = 63^{\circ} 28' 26'' = 9.99748$   $\frac{Y - X}{2} = 63^{\circ} 28' 26'' = 9.99748$   $\frac{Y - X}{2} = 63^{\circ} 28' 26'' = 9.99748$   $\frac{Y - X}{2} = 63^{\circ} 28' 26'' = 9.99748$   $\frac{Y - X}{2} = 63^{\circ} 28' 26'' = 9.99748$   $\frac{Y - X}{2} = 63^{\circ} 28' 26'' = 9.99748$   $\frac{Y - X}{2} = 63^{\circ} 28' 26'' = 9.99748$   $\frac{Y - X}{2} = 63^{\circ} 28' 26'' = 9.99748$   $\frac{Y - X}{2} = 63^{\circ} 28' 26'' = 9.99748$   $\frac{Y - X}{2} = 63^{\circ} 28' 26'' = 9.84157$  $\frac{Z}{2} = 34^{\circ} 46' 24'' = 9.97932' = 9.84157$ 

 $69^{\circ} 32' 48'' = 69.547^{\circ}$ 

linear distance = 69.547 × 69.093 = 4805.21 statute miles

## Time interval between transmission and reception of reflected signal

Fig. 18 gives the time interval between transmission and reception of a reflected signal based on a velocity of propagation in free space of 985 feet per microsecond or 300 meters per microsecond. A statute mile of 5280 feet or 1760 yards or 1.609 kilometers is used.



Note: Ordinates show distance to point of reflection

Fig. 18.

## Radio noise and noise measurement*

Radio noise may be divided into four classifications, depending on origin:

- 1. Atmospheric noise (static)
- 2. Cosmic noise
- 3. Man-made noise
- 4. Receiver and antenna noise

* See also section on Wire Telephony-Noise and Noise Measurement.

Radio noise, as in Fig. 19, is usually expressed in terms of peak values. Atmospheric noise is shown in the figure as the average peaks would be read on the indicating instrument of an ordinary field intensity meter. This is lower than the true peaks of atmospheric noise. Man-made noise is shown as the peak values that would be read on the EEI–NEMA–RMA standard noise meter. Receiver and antenna noise is shown with the peak values 13 decibels higher than the values obtained with an energy averaging device such as a thermoammeter.

1. Atmospheric noise: is produced mostly by lightning discharges in thunderstorms. The noise level is thus dependent on frequency, time of day, weather, season of the year, and geographical location.

Subject to variations due to local stormy areas, noise generally decreases with increasing latitude on the surface of the globe. Noise is particularly severe during the rainy seasons in certain areas such as Caribbean, East Indies, equatorial Africa, northern India, etc. Fig. 19 shows median values of atmosphetic noise for the U. S. A. and these values may be assumed to apply approximately to other regions lying between 30 and 50 degrees latitude north or south.

Rough approximations for atmospheric noise in other regions may be obtained by multiplying the values of Fig. 19 by the factors in Table III.

t - Attack to	nigh	ttime	daytime		
latitude	100 kc	10 mc	100 kc	10 mc	
90°–50° 50°-30° 30°–10° 10°– 0°	0.1 1 2 5	0.3 1 2 4	0.05 1 3 6	0.1 1 2 3	

# Table III—Multiplying factors for atmospheric noise in regions not shown on Fig. 19

Atmospheric noise is the principal limitation of radio service on the lower frequencies. At frequencies above about 30 megacycles, the noise falls to levels generally lower than receiver noise.

The peak amplitude of atmospheric noise usually may be assumed to be proportional to the square root of receiver bandwidth.

2. Cosmic noise: originates outside the earth's atmosphere and appears as a random noise like thermal agitation. Cosmic noise has been observed and measured at frequencies from 10 to 20 megacycles and at frequencies of about 160 megacycles. It is reasonable to assume that it exists at all frequencies between 10 and 1000 megacycles and higher.

The intensity of cosmic noise is generally lower than interference produced by other sources. In the absence of atmospheric and man-made noise, it may be the principal limiting factor in reception between 10 and 30 megacycles.



Notes:

1. All noise curves assume a bandwith of 10 kilocycles.

 Receiver noise is based on the use of a half-wave dipole antenna and is worse than an ideal receiver by 10 decibels at 50 megacycles and 15 decibels at 1000 megacycles.
 Refer to Fig. 20 for converting man-made noise curves to bandwiths greater than 10 kilocycles.

4. For all other curves, noise varies as the square root of bandwith.

Fig. 19.

3. Man-made noise: includes interference produced by sources such as motorcar ignition, electric motors, electric switching gear, high-tension line leakage, diathermy, industrial heating generators. The field intensity from these sources is greatest in densely populated and industrial areas.

The nature of man-made noise is so variable that it is difficult to formulate a simple rule for converting 10 kilocycle bandwidth receiver measurements to other bandwidth values. For instance, the amplitude of the field strength radiated by a diathermy device will be the same in a 100- as in a 10-kilocycle bandwidth receiver. Conversely, peak noise field strength due to automobile ignition will be considerably greater with a 100- than with a 10-kilocycle bandwidth. According to the best available information, the peak field strengths of man-made noise (except diathermy and other narrow-band noise) increases as the receiver bandwidth is increased, substantially as shown in Fig. 20.



receiver bandwidth in kilocycles



The man-made noise curves in Fig. 19 show typical median values for the U.S.A. In accordance with statistical practice, median values are interpreted to mean that 50 percent of all sites will have lower noise levels than the values of Fig. 19; 70 percent of all sites will have noise levels less than 1.9 times these values; and 90 percent of all sites, less than seven times these values.

**4.** Receiver and antenna noise: is caused by thermal agitation in resistance components of the antenna and receiver circuits and by electronic current flow in the tubes.

The basic equation for thermal agitation noise is

 $E^2 = 4 \ kTR \ \Delta f$ where  $E = rms \ volts$  $k = Boltzmann's \ constant = 1.374 \times 10^{-23}$  $T = absolute \ temperature \ in \ degrees \ Kelvin$  $R = resistance \ in \ ohms$ 

 $\Delta f =$  bandwidth in cycles per second

For application of this formula to receiver input circuits see Herold, E. W., An Analysis of the Signal-to-Noise Ratio of Ultra-High-Frequency Receivers; and North, D. O., The Absolute Sensitivity of Radio Receivers. RCA Review, vol. 6 (January, 1942).

The ideal receiver is one in which the only noise is that generated by thermal agitation in the radiation resistance of the antenna and in the input coupling resistance. The calculated values shown in Fig. 19 are based on the assumption that an actual receiver has a noise level greater than the ideal receiver by a factor varying from 10 decibels at 50 megacycles to 15 decibels at 1000 megacycles.

The peak value of this type of noise is approximately 13 decibels greater than its rms value. The amplitude is proportional to the square root of receiver bandwidth. Fig. 19 shows the field intensities required to equal the peak receiver noise values calculated on the above basis. These equivalent field intensities assume the use of a half-wave dipole receiving antenna. Transmission-line loss is omitted in the calculations. For antennas delivering more power to the receiver than a half-wave dipole, equivalent noise field intensities are less than indicated in Fig. 19 in proportion to the net gain of the antenna plus transmission line.

5. Signal-to-noise ratio: for satisfactory reception varies over wide limits dependent on the type of communication, bandwidth, type of modulation, directivity of receiving antenna, character of noise, etc. A rough general relationship applicable to many services is that the average value of field intensity should be at least 10 decibels higher than the peak noise intensity, both measured on nondirective antennas with the noise peaks as observed on the usual type of measuring devices. Due to the relationship between peak and average values for noise, this means that the average field intensity should exceed the average noise intensity by at least 20 to 25 decibels.

Considerably higher ratios of signal-to-noise fields are required for many uses such as AM program transmission, television, loop direction finding, etc.

6. Measurement of radio noise: External noise fields, such as atmospheric, cosmic, and man-made, are measured in the same way as radio wave field strengths* with the exception that peak rather than average values of noise are usually of interest and that the overall bandpass action of the measuring apparatus must be accurately known in measuring noise. When measuring noise varying over wide limits with time, such as atmospheric noise, it is generally best to employ automatic recorders.

Internal receiver and antenna noise may be measured by a standard signal generator connected to the receiver through a resistance equal to the calculated antenna radiation resistance. The amplitude of a single-frequency signal at the center of the pass band, when receiver output is  $\sqrt{2}$  times the noise output with no signal, may be taken as equal to the noise amplitude.

* For methods of measuring field strengths and, hence, noise, see I.R.E. Standards on Radio Wave Propagation. Measuring Methods (1942). For information on suitable circuits to obtain peak values, particularly with respect to man-made noise, see Agger, C. V., Foster, D. E., and Young, C. S. Instruments and Methods of Measuring Radio Noise. Trans. ALEE, Elec. Eng., March, 1940), vol. 59.

#### 🖬 Antennas

#### Field intensity from an elementary dipole*

The elementary dipole forms the basis for many antenna computations. Since dipole theory assumes an antenna with current of constant magnitude and phase throughout its length, approximations to the elementary dipole are realized in practice only for antennas shorter than one-tenth wavelength. The theory can be applied directly to a loop whose circumference is less than one-tenth wavelength, thus forming a magnetic dipole. For larger antennas, the theory is applied by assuming the antenna to consist of a large number of infinitesimal dipoles with differences between individual dipoles of space position, polarization, current magnitude, and phase corresponding to the distribution of these parameters in the actual antenna. Field intensity equations for large antennas are then developed by integrating or otherwise summing the field vectors of the many elementary dipoles.

The outline below concerns electric dipoles. It also can be applied to magnetic dipoles by installing the loop perpendicular to the PO line at the center of the sphere in Fig. 1. In this case, vector h becomes  $\epsilon$ , the electric field;  $\epsilon_t$  becomes the magnetic tangential field; and  $\epsilon$ , the radial magnetic field.

Fig. 1

Electric and magnetic components in spherical coordinates for electric dipoles.



In the case of a magnetic dipole, Table I, showing variations of the field in the vicinity of the dipole, can also be used.  $A_r$  is then the coefficient for the radial magnetic field;  $A_t$  is the coefficient for the tangential magnetic field;  $A_h$  is the coefficient for the electric field;  $\phi_r$ ;  $\phi_t$ ; and  $\phi_h$  being the phase angles corresponding to the coefficients.

* Based on Mesny, R., Radio-Electricité Générale.

## Field intensity from an elementary dipole continued

For electric dipoles, Fig. 1 indicates the electric and magnetic field components in spherical coordinates with positive values shown by the arrows.

r = distance OM	$\omega = 2\pi f$
$\theta$ = angle POM measured from P toward M	$\alpha = \frac{2\pi}{\lambda}$
I = current in dipole $\lambda = \text{wavelength}$	c = velocity of light (see page 28) v = $\omega t - \alpha r$
f = frequency	$V = \omega_l - \omega_l$ l = length of dipole

The following equations expressed in electromagnetic units* (in vacuum) result:

$$\epsilon_{r} = -\frac{cIN}{\pi} \frac{\cos \theta}{r^{3}} (\cos v - \alpha r \sin v)$$

$$\epsilon_{t} = +\frac{cIN}{2\pi} \frac{\sin \theta}{r^{3}} (\cos v - \alpha r \sin v - \alpha^{2} r^{2} \cos v)$$

$$h = -II \frac{\sin \theta}{r^{2}} (\sin v - \alpha r \cos v)$$
(1)

* See pages 16 and 17.

<u></u> r/λ	1/ar	Ar	φ	At	φι	Ah	φh
0.01	15.9	4,028	3°.6	4,012	3°.6	263	93°.6
0.02	7.96	508	7°.2	500	7°.3	64.2	97°.2
0.04 -	3.98	65	14°.1	61	15°.0	16.4	104°.1
0.06	2.65	19.9	20°.7	17.5	23°.8	7.67	110°.7
0.08	1.99	8.86	26°,7	7.12	33°.9	4.45	116°.7
0.10	1.59	4.76	32°.1	3.52	45°.1	2.99	122°.1
0.15	1.06	1.66	42°.3	1.14	83°.1	1.56	132°.3
0.20	0.80	0.81	51°.5	0.70	114°.0	1.02	141°.5
0.25	0.64	0.47	57°.5	0.55	133°.1	0.75	]47°.5
0.30	0.56	0.32	62°.0	0.48	143°.0	0.60	152°.0
0.35	0.45	0.23	65°.3	0.42	150°.1	0.50	155°.3
0.40	0.40	0.17	68°.3	0.37	] <b>54°.7</b>	0.43	158°.3
0.45	0.35	0.134	70°.5	0.34	158°.0	0.38	160°.5
0.50	0.33	0.106	72°.3	0.30	160°.4	0.334	162°.3
0.60	0.265	0.073	75°.1	0.26	164°.1	0.275	165°.1
0.70	0.228	0.053	77°.1	0.22	166°.5	0.234	167°.1
0.80	0.199	0.041	78°.7	0.196	168°.3	0.203	1.68°.7
0.90	0.177	0.032	80°.0	0.175	169°.7	0.180	170°.0
1.00	0.159	0.026	80°.9	0.157	170°.7	0.161	170°.9
1.20	0.133	0.018	82°.4	0.132	172°.3	0.134	172°,4
1.40	0.114	0.013	83°.5	0.114	173°,5	0.114	173°.5
1.60	0,100	0.010	84°.3	0.100	174°.3	0.100	174°.3
1.80	0.088	0.006	84°.9	0.088	174°.9	0,088	174°.9
2.00	0.080	0.006	85°.4	0.080	175°.4	0.080	175°.4
2.50	0.064	0,004	85°.4	0.064	176°.4	0.064	176°.4
5.00	0.032	0.001	88°.2	0.032	178°.2	0.032	178°.2

#### Table I—Variations of the field in the vicinity of a dipole

#### Field intensity from an elementary dipole cantinued

These formulas are valid for the elementary dipole at distances which are large compared with the dimensions of the dipole. Length of the dipole must be small with respect to the wavelength, say  $\frac{1}{2}$  < 0.1. The formulas are for a dipole in free space. If the dipole is placed vertically on a plane of infinite

conductivity, its image should be taken into account, thus doubling the above values.

## Field of an elementary dipole at great distance

When distance r exceeds five wavelengths, as is generally the case in radio applications, the product  $\alpha r = 2\pi \frac{r}{\lambda}$  is large and lower powers in  $\alpha r$ can be neglected. The radial electric field  $\epsilon_r$  then becomes negligible with respect to the tangential field and

$$\epsilon_r = 0$$
  

$$\epsilon_t = -\frac{2\pi cII}{\lambda r} \sin \theta \cos (\omega t - \alpha r)$$
  

$$h = -\frac{\epsilon_t}{c}$$

## Field of an elementary dipole at short distance

In the vicinity of the dipole  $\left(\frac{r}{\lambda} < 0.01\right)$ ,  $\alpha r$  is very small and only the first terms between parantheses in equations (1) remain. The ratio of the radial and tangential field is then.

$$\frac{\epsilon_r}{\epsilon_t} = -2 \cot \theta$$

Hence, the radial field at short distance has a magnitude of the same order as the tangential field. These two fields are in opposition. Further, the ratio of the magnetic and electric tangential field is

 $\frac{h}{\epsilon_t} = -\frac{\alpha r}{c} \frac{\sin v}{\cos v}$ 

The magnitude of the magnetic field at short distances is, therefore, extremely small with respect to that of the tangential electric field, relative to their relationship at great distances. The two fields are in guadrature. Thus, at short distances, the effect of the dipole on an open circuit is much greater than on a closed circuit as compared with the effect at remote points.

(2)
(4)

# Field of an elementary dipole at intermediate distance

At intermediate distance, say between 0.01 and 5.0 wavelengths, one should take into account all the terms of the equations (1). This case occurs, for instance, when studying reactions between adjacent antennas. To calculate the fields, it is convenient to transform the equations as follows:

 $\epsilon_{r} = -2\alpha^{2}cII\cos\theta A_{r}\cos(v + \phi_{r}) \\\epsilon_{t} = \alpha^{2}cII\sin\theta A_{t}\cos(v + \phi_{t}) \\h = \alpha^{2}II\sin\theta A_{h}\cos(v + \phi_{h}) \end{cases}$ (3) where

$$A_r = \frac{\sqrt{1 + (\alpha r)^2}}{(\alpha r)^3} \quad \tan \phi_r = \alpha r$$

$$A_t = \frac{\sqrt{1 - (\alpha r)^2 + (\alpha r)^4}}{(\alpha r)^3} \cot \phi_r = \frac{1}{\alpha r} - \alpha r$$

$$A_h = \frac{\sqrt{1 + (\alpha r)^2}}{(\alpha r)^2} \quad \cot \phi_h = -\alpha r$$

Values of A's and  $\phi$ 's are given in Table I as a function of the ratio between the distance r and the wavelength  $\lambda$ . The second column contains values of 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and

 $\frac{1}{\alpha r}$  which would apply if the fields  $\epsilon_t$  and h behaved as at great distances.

#### Field intensity from a vertically polarized

#### antenna with base close to ground

The following formula is obtained from elementary dipole theory and is applicable to low frequency antennas. It assumes that the earth is a perfect reflector, the antenna dimensions are small compared with  $\lambda$ , and the actual

height does not exceed 
$$\frac{\lambda}{4}$$
.

The vertical component of electric field radiated in the ground plane, at distances so short that ground attenuation may be neglected (usually when  $D < 10 \lambda$ ), is given by

$$E = \frac{377 \ I \ H}{\lambda D}$$

where

E = field intensity in millivolts per meter

I = current at base of antenna in amperes

 $H_e =$  effective height of antenna

 $\lambda$  = wavelength in same units as H

D = distance in kilometers

# Field intensity from a vertically polarized

#### antenna with base close to ground continued

The effective height of a grounded vertical antenna is equivalent to the height of a vertical wire producing the same field along the horizontal as the actual antenna, provided the vertical wire carries a current that is constant along its entire length and of the same value as at the base of the actual antenna. Effective height depends upon the geometry of the antenna and varies slowly with  $\lambda$ . For types of antennas normally used at low and medium frequencies, it is roughly one-half to two-thirds the actual height of the antenna.

For certain antenna configurations effective height can be calculated by the following formulas

1. Straight vertical antenna 
$$\left(h \gtrless \frac{\lambda}{4}\right)$$
  
 $H_e = -\frac{\lambda}{2-h} \sin^2\left(\frac{\pi h}{\lambda}\right)$ 

$$\pi_e = \frac{2\pi h}{\pi \sin \frac{2\pi h}{\lambda}} \left( \lambda \right)$$

where h = actual height

**2.** Loop antenna (A < 0.001  $\lambda^2$ )

$$H_e = \frac{2\pi nA}{\lambda}$$

where A = mean area per turn of loop

n = number of turns

3. Adcock antenna

$$H_e = \frac{2\pi ab}{\lambda}$$

where

a = height of antenna

b = spacing between antennas

In the above formulas, if  $H_e$  is desired in meters or feet, all dimensions h, A, a, b, and  $\lambda$  must be in meters or feet respectively.

# Vertical radiators

The field intensity from a single vertical tower insulated from ground and either of self-supporting or guyed construction, such as is commonly used for medium-frequency broadcasting, may be calculated by the following

formula. This is more accurate than the formula given on page 253. Near ground level the formula is valid within the range  $2\lambda < D < 10\lambda$ .

$$E = \frac{60 I}{D \sin 2\pi \frac{h}{\lambda}} \left[ \frac{\cos (2\pi \frac{h}{\lambda} \cos \theta) - \cos 2\pi \frac{h}{\lambda}}{\sin \theta} \right]$$
(5)

where

E = field intensity in millivolts per meter

I = current at base of antenna in amperes

h = height of antenna

 $\lambda$  = wavelengths in same units as h

D = distance in kilometers

 $\theta$  = angle from the vertical

Radiation patterns in the vertical plane for antennas of various heights are shown in Fig. 2. Field intensity along the horizontal as a function of antenna height for one kilowatt radiated is shown in Fig. 3.



Fig. 2—Field strength as a function of angle of elevation for vertical radiators of different heights,

Both Figs. 2 and 3 assume sinusoidal distribution of current along the antenna and perfect ground conductivity. Current magnitudes for one-kilowatt power used in calculating Fig. 3 are also based on the assumption that the only resistance is the theoretical radiation resistance of a vertical wire with sinusoidal current.

Since inductance and capacitance are not uniformly distributed along the tower and since current is attenuated in traversing the tower, it is impossible to obtain sinusoidal current distribution in practice. Consequently actual radiation patterns and field intensities differ from Figs. 2 and 3.* The closest approximation to sinusoidal current is found on constant cross-section towers.



Fig. 3—Field strength along the horizontal as a function of antenna height for a vertical grounded radiator with one kilowatt radiated power.

In addition, antenna efficiencies vary from about 70 percent for 0.15 wavelength physical height to over 95 percent for 0.6 wavelength height. The input power must be multiplied by the efficiency to obtain the power radiated.

Average results of measurements of impedance at the base of several actual

^{*} For information on the effect of some practical current distributions on field intensities see Gihring, H. E. and Brown, G. H. General Considerations of Tower Antennas for Broadcast Use. Proc. I.R.E., vol. 23, p. 311 (April, 1935).

vertical radiators, as given by Chamberlain and Lodge, are shown in Fig. 4. For design purposes when actual resistance and current of the projected radiator are unknown, resistance values may be selected from Fig. 4 and



Fig. 4—Resistance and reactance components of impedance between tower base and ground of vertical radiators as given by Chamberlain and Lodge. Solid lines show average results for 5 guyed towers; dotted lines show average results for 3 selfsupporting towers.

the resulting effective current obtained from the following equation

$$I_e = \sqrt{\frac{W\eta}{R}}$$

where

 $I_e$  = current effective in producing radiation in amperes W = watts input

 $\eta$  = antenna efficiency, varying from 0.70 at  $\frac{h}{\lambda}$  = 0.15

to 0.95 at 
$$\frac{h}{\lambda} = 0.6$$

R = resistance at base of antenna in ohms

If  $I_e$  from (6) is substituted in (5), reasonable approximations to the field intensity at unit distances, such as one kilometer or one mile, will be obtained.

The practical equivalent of a higher tower may be secured by adding a capacitance "hat" with or without tuning inductance at the top of a lower tower.*

A good ground system is important with vertical-radiator antennas. It should consist of at least 120 radial wires, each one-half wavelength or longer, buried 6 to 12 inches below the surface of the soil. A ground screen of highconductivity metal mesh, bonded to the ground system, should be used on or above the surface of the ground adjacent to the tower.

* For additional information see Brown, G. H., Proc. I.R.E., vol. 24, p. 48 (January, 1936) and Brown, G. H. and Leitch J. G., vol. 25, p. 533 (May, 1937).

#### Field intensity and radiated power from

#### a half-wave dipole in free space

Fig. 5 on page 259 shows the field intensity and radiated power from a half-wave dipole in free space. The following formulas apply:

Input power W =  $I^2 R = I^2 (73.12)$  watts

Radiated power  $P = \frac{30I^2}{\pi d^2} = \frac{0.1306W}{d^2}$  watts per square meter Electric field intensity  $E = \frac{60I}{d} = \frac{7.02\sqrt{W}}{d}$  volts per meter I = maximum current on dipole in rms amperes

R = radiation resistance = 73.12 ohms

d = distance from antenna in meters

(6)







antennas 259

configuration (length of radiator)	expression for intensity F(θ)
Half wave resonant	$\frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta}$
Any odd number of half waves resonant	$\frac{\cos\left(\frac{l^{\circ}}{2}\sin\theta\right)}{\cos\theta}$
Any even number of half waves resonant	$\frac{\sin\left(\frac{1^{\circ}}{2}\sin\theta\right)}{\cos\theta}$
Any length resonant	$\frac{1}{\cos \theta} \left[ 1 + \cos^2 l^\circ + \sin^2 \theta \sin^2 l^\circ - 2 \cos \left( l^\circ \sin \theta \right) \cos l^\circ - 2 \sin \theta \sin \left( l^\circ \sin \theta \right) \sin l^\circ \right]^{\frac{1}{2}}$
Any length non-resonant	$\tan \frac{\theta}{2} \sin \frac{l^{\circ}}{2} (1 - \sin \theta)$

# Table II—Radiation from an end-fed conductor of any length in space

- l^o = Length of radiator in electrical degrees, energy to flow from left-hand end of radiator.
- $\theta$  = angle from the vertical
- $\lambda = wavelength$



•



Maxima and minima of radiation from a single-wire radiator



# **Rhombic antennas**

Linear radiators may be combined in various ways to form antennas such as the horizontal vee, inverted vee, etc. The type most commonly used at high frequencies is the horizontal terminated rhombic shown in Fig. 7.



In designing rhombic antennas^{*} for high-frequency radio circuits, the desired vertical angle  $\Delta$  of radiation above the horizon must be known or assumed. When the antenna is to operate over a wide range of radiation angles or is to operate on several frequencies, compromise values of *H*, *L*, and  $\phi$  must

* For more complete information see Harper, A. E. Rhombic Antenna Design. D. Van Nostrand Co. (1941).

#### Rhombic antennas continued

be selected. Gain of the antenna increases as the length of L of each side is increased; however, to avoid too-sharp directivity in the vertical plane, it is usual to limit L to less than six wavelengths.





Knowing the side length and radiation angle desired, the height H above ground and the tilt angle  $\phi$  can be obtained from Fig. 8 as in the following example:

**Problem:** Find H and  $\phi$  if  $\Delta = 20^{\circ}$  and  $L = 4\lambda$ .

Solution: On Fig. 8 draw a vertical line from  $\Delta = 20^{\circ}$  to meet  $\frac{L}{\lambda} = 4$ curve and  $\frac{H}{\lambda}$  curves. From intersection at  $\frac{L}{\lambda} = 4$ , read on the right-hand



#### Rhombic antennas continued

scale  $\phi = 71.5^{\circ}$ . From intersection on  $\frac{H}{\lambda}$  curves, there are two possible values on the left-hand scale

1. 
$$\frac{H}{\lambda} = 0.74$$
 or  $H = 0.74\lambda$ 

2.  $\frac{H}{\lambda} = 2.19$  or  $H = 2.19\lambda$ 

Similarly, with an antenna  $4\lambda$  on the side and a tilt angle  $\phi = 71.5^{\circ}$ , working backwards, it is found that the angle of maximum radiation  $\Delta$  is 20°, if the antenna is 0.74 $\lambda$  or 2.19 $\lambda$  above ground.

#### Antenna arrays

...

The basis for all directivity control in antenna arrays is wave interference. By providing a large number of sources of radiation, it is possible with a fixed amount of power greatly to reinforce radiation in a desired direction by suppressing the radiation in undesired directions. The individual sources may be any type of antenna.

Expressions for the radiation pattern of several common types of individual elements are shown in Table III but the array expressions are not limited to them. The expressions hold for linear radiators, rhombics, vees, horn radiators, or other complex antennas when combined into arrays, provided a suitable expression is used for A, the radiation pattern of the individual antenna. The array expressions are multiplying factors. Starting with an individual antenna having a radiation pattern given by A, the result of combining it with similar antennas is obtained by multiplying A by a suitable array factor, thus obtaining an A' for the group. The group may then be treated as a single source of radiation. The result of combining the group with similar groups or, for instance, of placing the group above ground, is obtained by multiplying A' by another of the array factors given.

The expressions given here assume negligible mutual coupling between individual antennas. When coupling is not negligible, the expressions apply only if the feeding is adjusted to overcome the coupling and thus produce resultant currents which are equal or binomial in amplitude and of the relative phases indicated.

One of the most important arrays is the linear multi-element array where a large number of equally spaced antenna elements are fed equal currents in phase to obtain maximum directivity in the forward direction. Table IV gives expressions for the radiation pattern of several particular cases and the general case of any number of broadside elements.

In this type of array, a great deal of directivity may be obtained. A large number of minor lobes, however, are apt to be present and they may be undesirable under some conditions, in which case a type of array, called the Binomial array, may be used. Here again all the radiators are fed in phase

type of	current	directivity	
radiator	distribution	horizontał F(0)	vertical F(β)
Half-wave dipole	tod	$F(\theta) = \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{K - \frac{\cos\theta}{2} \times \cos\theta}$	$F(\beta) = K(1)$
Shortened dipole		$F(\theta)\cong K\cos\theta$	$F(\beta) = K(1)$
Lengthened dipole	Ĵ₽.	$F(\theta) = K\left[\frac{\cos\left(\frac{\pi l}{\lambda}\sin\theta\right) - \cos\frac{\pi l}{\lambda}}{\cos\theta}\right]$	$F(\beta) = K(1)$
Horizontal loop		$F(\theta) \cong K(1)$	$F(\beta) = K \cos \beta$
Horizontal turnstile	i ₁ ,i ₁ and i ₂ phased 90°	$F(\theta)\cong K'(1)$	$F(\beta) \cong K'(1)$

Table IIIRadiation patterns of	of	several	common	types	of	antennas
--------------------------------	----	---------	--------	-------	----	----------

 $\theta$  = horizontal angle measured from perpendicular bisecting plane  $\beta$  = vertical angle measured from horizon K and K' are constants and K'  $\cong$  0.7K

but the current is not distributed equally among the array elements, the center radiators in the array being fed more current than the outer ones. Table V shows the configuration and general expression for such an array. In this case the configuration is made for a vertical stack of loop attennas

#### Table IV—Linear multi-element array broadside directivity



A = 1 for horizontal loop, vertical dipole

 $A = \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta}$  for horizontal dipole

 $s^{\circ}$  = spacing of successive elements in degrees

in order to obtain single-lobe directivity in the vertical plane. If such an array were desired in the horizontal plane, say *n* dipoles end to end, with the specified current distribution the expression would be

$$F(\theta) = 2^{n-1} \left[ \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta} \right] \cos^{n-1}\left(\frac{1}{2}\operatorname{S}^{\circ}\sin\theta\right)$$

The term binomial results from the fact that the current intensity in the successive array elements is in accordance with the binomial expansion  $(1 + 1)^{n-1}$ , where n is the number of elements.

#### Examples of use of Tables III, IV, V, and VI

**Problem 1:** Find horizontal radiation pattern of four colinear horizontal dipoles, spaced successively  $\frac{\lambda}{2}$  (180°).

**Solution:** From Table IV radiation from four radiators spaced 180° is given by  $F(c) = 4A \cos (180^{\circ} \sin \theta) \cos (90^{\circ} \sin \theta)$ .

From Table III the horizontal radiation of a half-wave dipole is given by

$$A = K \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta}i$$

therefore, the total radiation

$$F(\theta) = K \left[ \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta} \right] \cos\left(180^\circ\sin\theta\right) \cos\left(90^\circ\sin\theta\right)$$

**Problem 2:** Find vertical radiation pattern of four horizontal dipoles, stacked one above the other, spaced 180° successively.

**Solution:** From Table IV we obtain the general equation of four radiators, but since the spacing is vertical, the expression should be in terms of vertical angle  $\beta$ .

 $F(\beta) = 4A \cos (180^{\circ} \sin \beta) \cos (90^{\circ} \sin \beta).$ 

From Table III we find that the vertical radiation from a horizontal dipole (in the perpendicular bisecting plane) is non-directional. Therefore the vertical pattern is

 $F(\beta) = K(1) \cos (180^{\circ} \sin \beta) \cos (90^{\circ} \sin \beta)$ 

....

# Antenna arrays continued

# Table V—Development of binomíal array

configuration of array	expression for intensity $F(\beta)$
	cos β[1]
	$2\cos\beta\left[\cos\left(\frac{s^{\circ}}{2}\sin\beta\right)\right]$
$\frac{10}{\frac{1}{3}} = 0^{1}$	$2^2 \cos \beta \left[ \cos^2 \left( \frac{s^\circ}{2} \sin \beta \right) \right]$
$1 \Diamond \qquad \Diamond 1$ $\frac{1}{2} \Diamond 1$ $\frac{1}{2} \Diamond 1$ $\frac{1}{2} \Diamond 2$ $\frac{1}{2} \Diamond 3$ $\frac{1}{2} \Diamond 1$	$2^3 \cos \beta \left[ \cos^3 \left( \frac{s^\circ}{2} \sin \beta \right) \right]$
$1 \diamondsuit \qquad \diamondsuit 1$ $3 \And 1 \qquad \diamondsuit 4$ $\frac{3 \bigotimes 1}{1} \bigotimes 3 = \bigotimes 6_{\text{eff}}$ $1 \bigotimes 3 \qquad \diamondsuit 4$ $1 \bigotimes 3 \qquad \diamondsuit 4$ $1 \bigotimes 3 \qquad \diamondsuit 4$	$2^{4} \cos \beta \left[ \cos^{4} \left( \frac{s^{\circ}}{2} \sin \beta \right) \right]$ and in general: $2^{n-1} \cos \beta \left[ \cos^{n-1} \left( \frac{s^{\circ}}{2} \sin \beta \right) \right]$ where <i>n</i> is the number of loops in the array

# 268

#### Antenna arrays continued

Problem 3: Find horizontal radiation pattern of group of dipoles in problem 2.

Solution: From Table III.

$$F(\theta) = K \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta} \cong K \cos\theta$$

**Problem 4:** Find the vertical radiation pattern of stack of five loops spaced  $2/3 \lambda$  (240°) one above the other, all currents equal in phase and amplitude.

Solution: From Table IV, using vertical angle because of vertical stacking,

$$F(\beta) = A \frac{\sin [5(120^\circ) \sin \beta]}{\sin (120^\circ \sin \beta)}$$

From Table III, we find A for a horizontal loop in the vertical plane

$$A = F(\beta) = K \cos \beta$$

Total radiation pattern

 $F(\beta) = K \cos \beta \frac{\sin [5(120^\circ) \sin \beta]}{\sin (120^\circ \sin \beta)}$ 

**Problem 5:** Find radiation pattern (vertical directivity) of the five loops in problem 4, if they are used in binomial array. Find also current intensities in the various loops.

Solution: From Table V

 $F(\beta) = K \cos \beta [\cos^4(120^\circ \sin \beta)]$ (all terms not functions of vertical angle  $\beta$  combined in constant K)

Current distribution  $(1 + 1)^4 = 1 + 4 + 6 + 4 + 1$ , which represent the current intensities of successive loops in the array.

**Problem 6:** Find horizontal radiation pattern from two vertical dipoles spaced one-quarter wavelength apart when their currents differ in phase by 90°.

Solution: From Table VI

s° =  $\frac{\lambda}{4}$  = 90° = spacing  $\phi$  = 90° = phase difference  $F(\theta)$  = 2A cos (45 sin  $\theta$  + 45°)

# Table VI—Supplementary problems



 $h_1^{\circ}$  = height of radiator in electrical degrees

 $d^{\circ}$  = spacing of radiator from screen in electrical degrees

270

#### Antenna arrays continued

**Problem 7:** Find the vertical radiation pattern and the number of nulls in the vertical pattern  $(0 \le \beta \le 90)$  from a horizontal loop placed three wavelengths above ground.

#### Solution:

 $h_1^{\circ} = 3(360) = 1080^{\circ}$ From Table VI  $F(\beta) = 2A \sin (1080 \sin \beta)$ From Table III for loop antennas  $A = K\cos \beta$ Total vertical radiation pattern  $F(\beta) = K\cos \beta \sin (1080 \sin \beta)$ A null occurs wherever  $F(\beta) = 0$ . The first term,  $\cos \beta$ , becomes 0 when  $\beta - 90^{\circ}$ . The second term,  $\sin (1080 \sin \beta)$ , becomes 0 whenever the value inside the parenthesis becomes a multiple of  $180^{\circ}$ . Therefore, number of nulls equal

$$1 + \frac{h_1^{\circ}}{180} = 1 + \frac{1080}{180} = 7.$$

**Problem 8:** Find the vertical and horizontal patterns from a horizontal half-wave dipole spaced  $\frac{\lambda}{8}$  in front of a vertical screen.

#### Solution:

$$d^{\circ} = \frac{\lambda}{8} = 45^{\circ}$$

Horizontal patte

From Table VI  $F(\beta) = 2A \sin (45^{\circ} \cos \beta)$   $F(\theta) = 2A \sin (45^{\circ} \cos \theta)$ From Table III for horizontal half-wave dipole Vertical pattern A = K(1)

$$\operatorname{rn} A = K \frac{\cos\left(\frac{1}{2}\right)}{\cos}$$

$$\frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta}$$

Total radiation patterns are Vertical: F  $(\beta) = K \sin (45^\circ \cos \beta)$ 

Horizontal: 
$$F(\theta) = K \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta} \sin\left(45^\circ\cos\theta\right).$$





Fig. 9—Gain of linear array of loops vertically stacked.

# 272 CHAPTER FOURTEEN

# Non-sinusoidal and modulated wave forms

# **Relaxation oscillators**

# Gas tube oscillator



# Feedback relaxation oscillator



**Blocking oscillator** 



A = pulse output B = sawtooth output

Typical circuit

 $V_1 = 884$   $C_1 = 0.05 \ \mu f$   $C_2 = 0.05 \ \mu f$   $R_1 = 100,000 \ ohms$   $R_2 = 500 \ ohms$  $R_3 = 100,000 \ ohms$ 

Frequency controlling elements  $C_2$ ,  $R_3$ 

Typical circuit

 $V_1 = 6F6$   $T_1 = 3:1 \text{ audio transformer}$  0.3 henry primary  $R_1 = 100,000 \text{ ohms}$   $R_2 = 5000 \text{ ohms}$   $C_1 = 1 \mu f$   $C_2 = 0.1 \mu f$ Frequency controlling elements

 $C_2$ ,  $R_2$ 

Typical circuit

 $V_1 = 6J5$   $C_1 = 0.01 \ \mu f$   $C_2 = 0.25 \ \mu f$   $R_1 = 1 \ megohm$   $R_2 = 1 \ megohm$  $R_3 = 1000 \ ohms$ 

Frequency controlling elements  $R_1$ ,  $C_2$ ,  $R_2$ 

# **Relaxation oscillators**

continued

Squegging oscillator



# **Multivibrator**



# van der Pol oscillator



Typical circuit

 $V_{1} = 6J5$   $L_{1}$   $L_{2}$ tightly coupled  $R_{1} = 500,000 \text{ ohms}$   $C_{1} = 0.01 \mu f$ 

Frequency controlling elements  $R_{1r}$   $C_1$ 

Typical circuit  $V_1 = 6F8$   $R_1 = 100,000 \text{ ohms}$   $R_2 = 1000 \text{ ohms}$   $R_3 = 25,000 \text{ ohms}$   $R_4 = 250,000 \text{ ohms}$   $R_5 = 25,000 \text{ ohms}$   $C_1 = 0.01 \mu \text{f}$   $C_2 = 250 \mu \mu \text{f}$ Frequency controlling elements

R1, R2, R4, C2

# Typical circuit

- $V_1 = 6SJ7$
- $R_1 = 100,000 \text{ ohms}$
- $R_2 = 500$  ohms
- $R_3 = 100 \text{ ohms}$
- $R_4 = 3,000 \text{ ohms}$
- $R_5 = 10,000 \text{ ohms}$
- $R_6 = 25,000 \text{ ohms}$
- $R_7 = 25,000 \text{ ohms}$

Frequency controlling elements  $R_1$ ,  $R_6$ ,  $C_1$ , (also B+)

**Electronic integration methods** 



Average value of current or voltage, V or I, during time T or T' is equal to zero



è

#### Electronic integration methods continued



#### Methods I and II

**a.** Voltage V must be obtained from a low-impedance source.

**b.** 
$$\frac{L}{R} > > T$$
 or  $\frac{M}{R} > > T$ 

- c. The output E should not react back on the input voltage V.
- **d.** The impedance into which the integrator circuit works should be large compared with *R*. If this impedance is resistive, it should be included as part of *R* (this also applies to the input source impedance).

#### Method III

- a. Voltage V must be obtained from a low-impedance source.
- **b.** RC > > T
- c. The output E should not react back on the input voltage V.
- d. The impedance into which the integrator circuit works should be as large as possible. If this impedance is resistive r then

#### rC > > RC

The source impedance should be included in R.

#### Method IV

- a. Current I should be a replica of the input voltage wave-form V.
- b. The discharge device allows for integration between limits. If discharge device is not used, the circuit will integrate until E equals the B+ voltage.
- c. The impedance into which the integrator circuit works should be as large as possible. If this impedance is resistive r then rC > T.

# **Electronic differentiation methods**



I or V is the change of current or voltage in time T



#### Electronic differentiation methods continued

#### Methods I and II

- a. Current I should be a replica of the input voltage wave-form V.
- **b.** The voltage V must be substantially independent of the back emf developed by the inductance L.
- **c.** The output shunt impedance placed across *E* should be high compared to the network impedance.
- **d.** The resonant period associated with the inductance caused by shunting circuit capacitances should be at least one-third the build-up time *T*.

#### Method III

- a. Voltage V must be obtained from a low-impedance source.
- b. The RC product should be one-fiftieth of the build-up time T or smaller.
- c. The output voltage E should not react back on the input voltage V.
- **d.** The impedance into which the differentiator circuit works should be large compared with R. If this impedance is resistive, it should be included as part of R. (This also applies to the input source impedance.)

#### Fourier analysis of recurrent wave forms

**General formulas** 



(1)

$$F(\theta) = \frac{B_0}{2} + A_1 \sin \theta + A_2 \sin 2\theta + \ldots + A_n \sin n \theta$$

$$+ B_1 \cos \theta + B_2 \cos 2\theta + \dots B_n \cos n \theta$$

Formula (1) may be written

$$F(\theta) = \frac{B_0}{2} + C_1 \cos (\theta - \phi_1) + C_2 \cos (2\theta - \phi_2) + \dots + C_n \cos (n \theta - \phi_n)$$
(2)

where

$$C_n = \sqrt{A_n^2 + B_n^2}$$

$$\phi_n = \arctan \frac{A_n}{B_n}$$
(3)

# Fourier analysis of recurrent wave forms continued

The coefficients  $A_n$  and  $B_n$  are determined by the following formulas:

$$A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(\theta) \sin n \, \theta \, d\theta \tag{5}$$

$$B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(\theta) \cos n \, \theta \, d\theta \tag{6}$$

By a change of limits equations (5) and (6) may also be written

$$A_{n} = \frac{1}{\pi} \int_{0}^{2\pi} F(\theta) \sin n \, \theta \, d\theta \tag{7}$$
$$B_{n} = \frac{1}{\pi} \int_{0}^{2\pi} F(\theta) \cos n \, \theta \, d\theta \tag{8}$$

If the function  $F(\theta)$  is an odd function, that is

$$F(\theta) = -F(-\theta) \tag{9}$$

the coefficients of all the cosine terms  $(B_n)$  of equation (6) become equal to zero.

Similarly if the function  $F(\theta)$  is an even function, that is

$$F(\theta) = F(-\theta) \tag{10}$$

the coefficients of all the sine terms  $(A_n)$  of equation (5) become equal to zero.

If the function to be analyzed is thus a symmetrical function defined by either equation (9) or (10) the function should be disposed about the zero axis and an analysis obtained by means of equations (5) or (6) for the simplest solution.

# Fourier analysis of recurrent wave forms continued

# **Graphical** solution

If the function to be analyzed is not known analytically, a solution of the Fourier integral may be approximated by graphical means.

The period of the function is divided into a number of ordinates as indicated by the graph.



The values of these ordinates are recorded and the following computations made:

•	Y ₀		Y2 Y10		Y ₄ Y ₈	Υ ₅ Υ ₇	Y ₆	(11)
Sum Difference	So	S1 d1	S2 d2	S3 d3	S4 d4	S₅ d₅	S ₆	

The sum terms are arranged as follows:

	S0 S6	S₁ S₅	S2 S4	S₃	(12)	S ₀ S ₂	$\frac{S_1}{S_3}$	(13)
Sum Difference	$\overline{S_0}$ $\overline{D_0}$	$\overline{\frac{S_1}{D_1}}$	$\overline{S_2}$ $D_2$	S ₃		<u>S7</u>	S ₈	

#### The difference terms are as follows:

	dı	$d_2$	d3	(14)		(15)
		d4		<u></u>	$\overline{D_0}$	
Sum	$\overline{S_4}$	S ₅	S ₆	<u>S</u> 6	$\frac{1}{D_2}$	
Difference	D₃	D4		$\overline{D_5}$	D ₆	

# Fourier analysis of recurrent wave forms continued

The coefficients of the Fourier series are now obtained as follows, where  $A_0$  equals the average value, the  $B_1 \ldots n$  expressions represent the coefficients of the cosine terms, and the  $A_1 \ldots n$  expressions represent the coefficients of the sine terms:

$$B_{0} = \frac{\overline{S_{7}} + \overline{S_{8}}}{12}$$
(16)  

$$B_{1} = \frac{\overline{D_{0}} + 0.866}{6} \frac{\overline{D_{1}} + 0.5}{6} \frac{\overline{D_{2}}}{6}$$
(17)  

$$B_{2} = \frac{\overline{S_{0}} + 0.5}{6} \frac{\overline{S_{1}} - 0.5}{5} \frac{\overline{S_{2}} - \overline{S_{3}}}{6}$$
(18)  

$$B_{3} = \frac{\overline{D_{6}}}{6}$$
(19)  

$$B_{4} = \frac{\overline{S_{0}} - 0.5}{6} \frac{\overline{S_{1}} - 0.5}{5} \frac{\overline{S_{2}} + \overline{S_{3}}}{6}$$
(20)  

$$B_{5} = \frac{\overline{D_{0}} - 0.866}{6} \frac{\overline{D_{1}} + 0.5}{6} \frac{\overline{D_{2}}}{6}$$
(21)  

$$B_{6} = \frac{\overline{S_{7}} - \overline{S_{8}}}{12}$$
(22)  
also  

$$A_{1} = \frac{0.5}{6} \frac{\overline{S_{4}} + 0.866}{6} \frac{\overline{S_{5}} + \overline{S_{6}}}{6}$$
(23)  

$$A_{2} = \frac{0.866}{6} \frac{(\overline{D_{3}} + \overline{D_{4}})}{6}$$
(24)  

$$A_{3} = \frac{\overline{D_{5}}}{6}$$
(25)  

$$A_{4} = \frac{0.866}{6} \frac{(D_{3} - D_{4})}{6}$$
(26)  

$$A_{6} = \frac{0.5}{6} \frac{\overline{S_{4}} - 0.866}{6} \frac{\overline{S_{5}} + \overline{S_{6}}}{6}$$
(27)

# Analyses of commonly encountered wave forms

The following analyses include the coefficients of the Fourier series for all harmonics (nth order). By the use of the graph for the  $\left(\frac{\sin x}{x}\right)$  function, where f(x) is even, the amplitude coefficients may be evaluated in a simple manner.



The symbols used are defined as follows:

A = pulse amplitude	r = pulse decay time
T = periodicity	n = order of harmonic
d = pulse width	$C_n = amplitude of n^{th} harmonic$
f = pulse build-up time	$\theta_n =$ phase angle of $n^{th}$ harmonic
$A_{av}$ = average value of function =	$=\frac{1}{T}\int_{0}^{T}F(t) dt$
$A_{rms} = root$ -mean square value of	function = $\sqrt{\frac{1}{T}\int_{0}^{T} [F(t)]^2 dt}$

282

# 1. Rectangular wave



$$A_{rms} = A \sqrt{\frac{d}{\tau}}.$$

$$C_n = 2 A_{av} \left[ \frac{\sin \frac{n \pi d}{T}}{\frac{n \pi d}{T}} \right]$$

 $A_{av} = \frac{Ad}{T}$ 

# 2. Symmetrical trapezoid wave



NON-SINUSOIDAL AND MODULATED WAVE FORMS 203

Analyses of commonly encountered wave forms continued

# 3. Unsymmetrical trapezoid wave



#### 4. Isosceles triangle wave



# 5. Clipped sawtooth wave





If d is small



#### 6. Sawtooth wave









#### 8. Fractional sine-wave









# 11. Critically damped exponential wave



# 12. Full-wave rectified sine-wave



# Modulated wave forms

Starting from a carrier  $i = A \sin \theta$  modulated waveforms are obtained when either or both A and  $\theta$  are functions of time.

# 1. Amplitude modulation

 $\begin{aligned} \theta &= \omega t + \phi \ \omega \text{ where and } \phi \text{ are constants} \\ A &= A_0 [1 + m_a f(t)] \\ i &= A_0 [1 + m_a f(t)] \sin (\omega t + \phi) \end{aligned}$ 

where f(t) is a continuous function of time representing the signal and  $|f(t)| \leq 1$ . Then  $m_a$  is the degree of amplitude modulation;  $0 \leq m_a \leq 1$ Generally the frequency spectrum of f(t) will be limited up to a value  $\alpha$  $<< \omega$  and the total frequency spectrum will comprise:

the carrier  $\omega$ the lower side band from  $\omega$  to  $\omega - \alpha$ the upper side band from  $\omega$  to  $\omega + \alpha$ 

For correct transmission of intelligence it is sufficient to transmit one of the side bands only.

For a sinusoidal signal  $f(t) = \cos pt$  where p = angular frequency of thesignal;  $i = A_0 \left\{ \sin \omega t + \frac{m_a}{2} \left[ \sin (\omega + p)t + \sin (\omega - p)t \right] \right\}$ 

# 2. Frequency modulation

wherein A is constant

$$\omega_t = \frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega[1 + mf(t)]$$

 $\omega = 2\pi \times \text{mean carrier frequency (a constant)}, \omega_t = 2\pi \times \text{instantaneous}$ frequency, m = degree of frequency modulation,  $\Delta \omega = m\omega = 2\pi \times \text{frequency swing, f(t)}$  is the signal to be transmitted;  $|f(t)| \leq 1$ .

Even when the frequency spectrum of f(t) extends only up to  $\alpha < < \omega$  the resulting frequency spectrum of the modulated wave is complex, depending on the relative values of  $\alpha$  and m. Generally  $\Delta \omega \ge \alpha$  and the spectrum is composed of groups of upper and lower side bands even when f(t) is a sinusoidal function of time.

For a sinusoidal signal  $f(t) = \cos pt$   $\omega_t = \omega[1 + m \cos pt]$   $\theta = \omega t + \frac{\Delta \omega}{p} \sin pt$  $m_f \doteq \frac{\Delta \omega}{p} = \text{frequency modulation index (radians)}$
#### NON-SINUSOIDAL AND MODULATED WAVE FORMS

#### Modulated wave forms continued

In this case the carrier and side bands include a number of components at frequencies  $(\omega \pm np)/2\pi$  where n = 0 or a positive integer.

$$\frac{i}{A_0} = \sin (\omega t + m_f \sin pt)$$

$$= J_0(m_f) \sin \omega t$$

$$+ J_1(m_f) [\sin (\omega + p)t - \sin (\omega - p)t]$$

$$+ J_2(m_f) [\sin (\omega + 2p)t + \sin (\omega - 2p)t]$$

$$+ \dots$$

$$+ J_n(m_f) [\sin (\omega + np)t + (-1)^n \sin (\omega - np)t]$$

$$= J_0(m_f) \sin \omega t + 2J_1 (m_f) \sin pt \cos \omega t$$

$$+ 2J_2(m_f) \cos 2 pt \sin \omega t + \dots$$

$$+ (-1)^n 2J_n(m_f) \cos \left(npt + n\frac{\pi}{2}\right) \sin \left(\omega t + n\frac{\pi}{2}\right)$$

Where  $J_n$  (*m_f*) is the Bessel function of the first kind and  $n^{th}$  order. An expansion of  $J_n$  (*m_f*) in a series is given on page 299 and tables of Bessel functions on pages 319 to 322.



Amplitude of carrier and side bands for  $m_f = 10$ . The carrier amplitude is 0.246  $A_0$  and is represented by the heavy line in the center. The separation between each two adjacent components = signal frequency f.

**a.** For small values of  $m_f$  up to about 0.2

$$i = A_0 \left\{ \sin \omega t + \frac{m_f}{2} \left[ \sin(\omega + p)t - \sin(\omega - p)t \right] \right\}$$

 $= A_0 (\sin \omega t + m_f \sin \rho t \cos \omega t)$ 

Compare with amplitude modulation above.

**b.** The carrier amplitude varies with  $m_f$  as does also that of each pair of side bands.

Carrier vanishes for  $m_f = 2.40$  5.52 8.65 11.79 14.93 etc. First side band vanishes for  $m_f = 3.83$  7.02 10.17 13.32 etc.

This property of vanishing components is used frequently in the measurement of mr.

#### Modulated wave forms continued

**c.** The approximate number of important side bands and the corresponding band width necessary for transmission are as follows (where  $f = p/2\pi$  and  $\Delta F = \Delta \omega/2\pi$ ):

m <u>r</u>	5	10	20
signal frequency f	0.2∆F	0.1ΔF	0.05∆F
number of pairs of side bands	7	13	23
band width	14f 2.8∆F	26f 2.6ΔF	46f 2.3∆F

This table is based on neglecting side bands in the outer regions where all amplitudes are less than  $0.02 A_0$ . The amplitude below which the side bands are neglected, and the resultant band width, will depend on the particular application and the quality of transmission desired.

## 3. Pulse modulation

Pulse modulation is obtained when A or  $\frac{d\theta}{dt}$  are keyed periodically. Then f(t) is generally a pulsing waveform of the type previously described. See 4, page 283 (with f < < T).

In pulse modulation generally f(t) has no simple relation to the signal to be transmitted. Various forms of pulse modulation have been described:

**a.** Pulse-time modulation: The timing of the pulse *f(t)* relative to a reference pulse is varied around a fixed mean value and conforms to the amplitude of the signal to be transmitted.

**b.** Pulse-width modulation: The duration of the pulse *f(t)* is varied around a fixed mean value and conforms to the amplitude of the signal to be transmitted.

**c.** Pulse-frequency modulation: The repetition rate of the pulse f(t) is varied around a fixed mean value and conforms to the amplitude of the signal to be transmitted.

CHAPTER FIFTEEN 291

# Mathematical formulas

# **Mensuration formulas**

#### Areas of plane figures



## Mensuration formulas cont

continued

### Areas of plane figures



.

#### Mensuration formulas continued

#### Area of irregular plane surface



#### Trapezoidal rule:

Area = 
$$\Delta \left( \frac{y_1}{2} + y_2 + y_3 + \dots + y_{n-2} + y_{n-1} + \frac{y_n}{2} \right)$$

#### Simpson's rule:

n must be odd Area =  $\frac{\Delta}{3}(y_1 + 4y_2 + 2y_3 + 4y_4 + 2y_5 + \dots + 2y_{n-2} + 4y_{n-1} + y_n)$ 

 $y_{1}$ ,  $y_{2}$ ,  $y_{3}$  . . .  $y_{n}$  are measured lengths of a series of equidistant parallel chords

#### Volumes and surface areas

Sphere: Surface =  $4\pi r^2$ Volume =  $\frac{4\pi r^3}{3}$  r = radius of sphere Cylinder: Cylindrical portion of surface =  $2\pi rh$ 

> Volume =  $\pi r^2 h$ r = radius of cylinder

h = height of cylinder

**Pyramid or cone:** Volume = Area of base  $\times \frac{1}{3}$  of height

#### Formulas for complex quantities

(A + jB) (C + jD) = (AC - BD) + j (BC + AD) $\frac{A + jB}{C + jD} = \frac{AC + BD}{C^2 + D^2} + j \frac{BC - AD}{C^2 + D^2}$  $\frac{1}{A + jB} = \frac{A}{A^2 + B^2} - j \frac{B}{A^2 + B^2}$  $A + jB = \rho(\cos \theta + j \sin \theta)$  $\sqrt{A + jB} = \pm \sqrt{\rho} \left(\cos \frac{\theta}{2} + j \sin \frac{\theta}{2}\right)$ where  $\rho = \sqrt{A^2 + B^2}; \cos \theta = \frac{A}{\rho}$  $\sin \theta = \frac{B}{\rho}$  $e^{j\theta} = \cos \theta + j \sin \theta$  $e^{-j\theta} = \cos \theta - j \sin \theta$ 

#### Algebraic and trigonometric formulas

 $1 = \sin^{2} A + \cos^{2} A = \sin A \operatorname{cosec} A = \tan A \cot A = \cos A \sec A$   $\sin A = \frac{\cos A}{\cot A} = \frac{1}{\operatorname{cosec} A} = \cos A \tan A = \sqrt{1 - \cos^{2} A}$   $\cos A = \frac{\sin A}{\tan A} = \frac{1}{\sec A} = \sin A \cot A = \sqrt{1 - \sin^{2} A}$   $\tan A = \frac{\sin A}{\cos A} = \frac{1}{\cot A} = \sin A \sec A$   $\cot A = \frac{1}{\tan A} \qquad \sec A = \frac{1}{\cos A}$   $\operatorname{cosec} A = \frac{1}{\sin A}$   $\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$  $\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$ 

# Algebraic and trigonometric formulas continued $\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\cot (A \pm B) = \frac{\cot A \cot B \mp I}{\cot B \pm \cot A}$ $\sin A + \sin B = 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$ $\sin^2 A - \sin^2 B = \sin (A + B) \sin (A - B)$ $\tan A \pm \tan B = \frac{\sin (A \pm B)}{\cos A \cos B}$ $\sin A - \sin B = 2 \cos \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$ $\cos A + \cos B = 2 \cos \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$ $\cot A \pm \cot B = \frac{\sin (B \pm A)}{\sin A \sin B}$ $\cos B - \cos A = 2 \sin \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$ $\sin 2 A = 2 \sin A \cos A \qquad \cos 2A = \cos^2 A - \sin^2 A$ $\cos^2 A - \sin^2 B = \cos (A + B) \cos (A - B)$ $\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$ $\sin \frac{1}{2}A = \pm \sqrt{\frac{1 - \cos A}{2}}$ $\cos \frac{1}{2}A = \pm \sqrt{\frac{1 + \cos A}{2}}$ $\tan \frac{1}{2} A = \frac{\sin A}{1 + \cos A}$ $\sin^2 A = \frac{1 - \cos 2A}{2}$ $\cos^2 A = \frac{1 + \cos 2A}{2}$ $\tan^2 A = \frac{1 - \cos 2A}{1 + \cos 2A}$ $\frac{\sin A \pm \sin B}{\cos A + \cos B} = \tan \frac{1}{2} (A \pm B)$ $\frac{\sin A \pm \sin B}{\cos B - \cos A} = \cot \frac{1}{2} (A \mp B)$ $\sin A \cos B = \frac{1}{2} \left[ \sin (A + B) + \sin (A - B) \right]$ $\cos A \cos B = \frac{1}{2} [\cos (A + B) + \cos (A - B)]$ $\sin A \sin B = \frac{1}{2} [\cos (A - B) - \cos (A + B)]$

#### Algebraic and trigonometric formulas continued

$\sin x + \sin x$	$\sin x + \sin 2x + \sin 3x + \ldots + \sin mx = \frac{\sin \frac{1}{2} mx \sin \frac{1}{2} (m + 1) x}{\sin \frac{1}{2} x}$												
$\cos x + \cos 2x + \cos 3x + \ldots + \cos mx = \frac{\sin \frac{1}{2} mx \cos \frac{1}{2} (m + 1) x}{\sin \frac{1}{2} x}$													
$\sin x + \sin x$	3x+	sin 5x +	+	sin (2m -	- 1) x =	$\frac{\sin^2 mx}{\sin x}$							
cos x + co	$\cos x + \cos 3x + \cos 5x + \ldots + \cos (2m - 1) x = \frac{\sin 2mx}{2 \sin x}$												
$\frac{1}{2} + \cos x$	$\frac{1}{2} + \cos x + \cos 2x + \dots + \cos mx = \frac{\sin (m + \frac{1}{2}) x}{2 \sin \frac{1}{2} x}$												
angle	1 0	<b>30</b> °	45°	60°	90°	180°	270°	360°					
sin cos tan	0 1 0	$\begin{array}{c} \frac{1}{2}\\ \frac{1}{2}\sqrt{3}\\ \frac{1}{3}\sqrt{3} \end{array}$	$\frac{\frac{1}{2}\sqrt{2}}{\frac{1}{2}\sqrt{2}}$	$\begin{array}{c} \frac{1}{2}\sqrt{3}\\ \frac{1}{2}\\ \sqrt{3}\end{array}$	1 0 ±∞	0 -1 0	-1 0 ±∞	0 1 0					

versine  $\theta = 1 - \cos \theta$ sin  $14\frac{1}{2}^{\circ} = \frac{1}{4}$  approximately sin  $20^{\circ} = \frac{11}{32}$  approximately

#### **Approximations for small angles**

$\sin \theta =$	$(\theta - \theta^3/6)$	heta in radians
$\tan \theta =$	$(\theta + \theta^3/3)$	heta in radians
	$(1 - \theta^2/2)$	heta in radians

#### **Quadratic equation**

If 
$$ax^2 + bx + c = 0$$
, then  $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 

## **Arithmetical progression**

S = n (a + 1) / 2 = n [2a + (n - 1) d] / 2

where S = sum, a = first term, l = last term, n = number of terms, d = common difference = the value of any term minus the value of the preceding term.

#### Geometrical progression

$$S = \frac{a (r^{n} - 1)}{r - 1} = \frac{a (1 - r^{n})}{1 - r}$$

where S = sum, a = first term, n = number of terms, r = common ratio = the value of any term divided by the preceding term.

#### **Combinations and permutations**

The number of combinations of n things, all different, taken r at a time is

$${}_{n}C_{r} = \frac{n!}{r! (n-r)!}$$

The number of permutations of n things r at a time  $= {}_{n}P_{r}$ 

 ${}_{n}P_{r} = n (n - 1) (n - 2) \dots (n - r + 1) = \frac{n!}{(n - r)!}$  ${}_{n}P_{n} = n!$ 

#### **Binomial theorem**

 $a \pm b)^{n} = a^{n} \pm na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} \pm \frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3} + \dots$ If n is a positive integer, the series is finite and contains n + 1 terms; otherwise it is infinite, converging for  $\left|\frac{b}{a}\right| < 1$  and diverging for  $\left|\frac{b}{a}\right| > 1$ .

#### **Maclaurin's theorem**

$$f(x) = f(0) + xf'(0) + \frac{x^2}{1 \cdot 2} f''(0) + \dots + \frac{x^h}{n!} f^n(0) + \dots$$

#### Taylor's theorem

$$f(x) = f(x_0) + f'(x_0) (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots$$

 $f(x + h) = f(x) + f'(x) \cdot h + \frac{f''(x)}{2!}h^2 + \ldots + \frac{f^n(x)}{n!}h^n + \ldots$ 

# Trigonometric solution of triangles

## Right-angled triangles (right angle at C)

 $\sin A = \cos B = \frac{a}{c}$   $\tan A = \frac{a}{b}$   $B = 90^{\circ} - A$   $\operatorname{vers} A = 1 - \cos A = \frac{c - b}{c}$   $c = \sqrt{a^{2} + b^{2}}$   $b = \sqrt{c^{2} - a^{2}} = \sqrt{(c + a)(c - a)}$   $\operatorname{Area} = \frac{ab}{2} = \frac{a}{2}\sqrt{c^{2} - a^{2}} = \frac{a^{2} \cot A}{2} = \frac{b^{2} \tan A}{2} = \frac{c^{2} \sin A \cos A}{2}$ 

# **Oblique-angled triangles**

$$\sin \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{bc}}$$

$$\cos \frac{1}{2} A = \sqrt{\frac{s(s-a)}{bc}}$$

$$A + B + C = 180^{\circ}$$
where  $s = \frac{a+b+c}{2}$ 

$$\tan \frac{1}{2} A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$
, similar values for angles B and C
$$Area = \sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2} ab \sin C = \frac{a^2 \sin B \sin C}{2 \sin A}$$

$$c = \frac{a \sin C}{\sin A} = \frac{a \sin (A+B)}{\sin A} = \sqrt{a^2 + b^2 - 2 ab \cos C}$$

$$\tan A = \frac{a \sin C}{b-a \cos C}, \quad \tan \frac{1}{2} (A-B) = \frac{a-b}{a+b} \quad \cot \frac{1}{2} C$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$
, similar expressions for other sides.

# **Complex hyperbolic and other functions**

Properties of "e"  $e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots = 2.71828$   $\frac{1}{e} = 0.3679$   $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$   $\log_{10} e = 0.43429; \ \log_{e} 10 = 2.30259$   $\log_{e} N = \log_{e} 10 \times \log_{10} N; \ \log_{10} N = \log_{10} e \times \log_{e} N.$   $\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots$   $\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots$   $\sinh x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \frac{x^{7}}{7!} + \dots$   $\cosh x = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \dots$ 

For n = 0 or a positive integer, the expansion of the Bessel function of the first kind,  $n^{th}$  order, is given by the convergent series

$$J_{n}(x) = \frac{x^{n}}{2^{n}n!} \left[ 1 - \frac{x^{2}}{2(2n+2)} + \frac{x^{4}}{2 \cdot 4(2n+2)(2n+4)} - \frac{x^{6}}{2 \cdot 4 \cdot 6(2n+2)(2n+4)(2n+6)} + \dots \right]$$
  
and  $J_{-n}(x) = (-1)^{n} J_{n}(x)$  Note:  $0! = 1$   
sin  $x = \frac{e^{jx} - e^{-jx}}{2j}$   $e^{jx} = \cos x + j \sin x$   
 $\cos x = \frac{e^{jx} + e^{-jx}}{2}$   $\sin x + \frac{e^{jx} - e^{-jx}}{2}$   $\sin x + \sin x + \sin x + \sin x$   
sinh  $(-x) = -\sinh x$ ;  $\cosh (-x) = \cosh x$   
 $\sinh x = \frac{e^{x} - e^{-x}}{2}$   $\cosh 2x = \cosh x$   
 $\sinh 2x = 2 \sinh x \cosh x$   
 $\cosh x = \frac{e^{x} + e^{-x}}{2}$   $\sinh (x \pm j y) = \sinh x \cos y \pm j \cosh x \sin y$   
 $\cosh (x \pm j y) = \cosh x \cos y \pm j \sinh x \sin y$ 

# **Table of integrals**

# Indefinite integrals

In the following formulas, a, b, and m are constants. The constant of integration is not shown, but is added to each result.

$$\int dx = x$$

$$\int af(x) dx = a \int f(x) dx$$

$$\int (u + v - s) dx = \int u dx + \int v dx - \int s dx$$

$$\int x^m dx = \frac{x^{m+1}}{m+1} \qquad m \neq -1$$

$$\int \frac{dx}{x} = \log_e x$$

$$\int (ax + b)^m dx = \frac{(ax + b)^{m+1}}{a (m+1)} \qquad m \neq -1$$

$$\int \frac{dx}{ax + b} = \frac{1}{a} \log_e (ax + b)$$

$$\int \frac{x dx}{ax + b} = \frac{1}{a^2} [ax + b - b \log_e (ax + b)]$$

$$\int \frac{x dx}{ax + b} = \frac{1}{a^2} \left[ \frac{b}{ax + b} + \log_e (ax + b) \right]$$

$$\int \frac{x^2 dx}{ax + b} = \frac{1}{a^3} \left[ \frac{(ax + b)^2}{2} - 2b(ax + b) + b^2 \log_e (ax + b) \right]$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a}$$

$$\int \log_a x dx = x \log_a \frac{x}{e} \text{ where } e = 2.718$$

$$\int a^x dx = \frac{a^x}{\log_e a}$$

MATHEMATICAL FORMULAS 301

Table of integrals continued  $xe^{x} dx = e^{x} (x - 1)$  $\int x^m e^x dx = x^m e^x - m \int x^{m-1} e^x dx$  $\int \sin x \, dx = -\cos x$  $\int \sin^2 x \, dx = \frac{1}{2} \left( x - \sin x \cos x \right)$  $\cos x \, dx = \sin x$  $\int \cos^2 x \, dx = \frac{1}{2} (x + \sin x \cos x)$  $\tan x \, dx = -\log_e \cos x$  $\cot x \, dx = \log_e \sin x$  $\sec x \, dx = \log_e (\sec x + \tan x)$  $\sec^2 x \, dx = \tan x$  $\cos^2 x \, dx = -\cot x$  $cosec x dx = log_e (cosec x - cot x)$  $\int \sin^{-1} x \, dx = x \sin^{-1} x + \sqrt{1 - x^2}$  $\int \cos^{-1} x \, dx = x \cos^{-1} x - \sqrt{1 - x^2}$  $\int \tan^{-1} x \, dx = x \tan^{-1} x - \log_e \sqrt{1 + x^2}$  Table of integrals continued

**Definite integrals** 

$$\int_{0}^{\infty} x^{n-1} e^{-x} dx = \Gamma(n)^{*}$$

$$\int_{0}^{1} x^{n-1} (1-x)^{n-1} dx = \frac{\Gamma(m) \Gamma(n)^{*}}{\Gamma(m+n)}$$

$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x dx = \frac{1}{2} \sqrt{\pi} \frac{\Gamma\left(\frac{n+1}{2}\right)^{*}}{\Gamma\left(\frac{n}{2}+1\right)}, n > -1$$

$$\int_{0}^{\infty} \frac{\sin mx dx}{x} = \frac{\pi}{2} \text{ if } m > 0; 0 \text{ if } m = 0; -\frac{\pi}{2} \text{ if } m < 0$$

$$\int_{0}^{\infty} \frac{\cos mx dx}{1+x^{2}} = \frac{\pi}{2} e^{-1m!}$$

$$\int_{0}^{\infty} \frac{\cos x dx}{\sqrt{x}} = \int_{0}^{\infty} \frac{\sin x dx}{\sqrt{x}} = \sqrt{\frac{\pi}{2}}$$

$$\int_{0}^{\infty} e^{-\alpha^{2} x^{2}} dx = \frac{1}{2\alpha} \sqrt{\pi}$$

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^{2}\left(\frac{\pi}{2}\sin x\right) dx}{\cos x} = 1.22$$

* Values of  $\Gamma$  (n) are tabulated in Jahnke & Emde, Tables of Functions,

"

# CHAPTER SIXTEEN 303

# Exponentials $[e^n \text{ and } e^{-n}]$

# Mathematical tables

<u>n</u>	e ⁿ diff	n	e ⁿ diff	n	e ⁿ	[n	le ^{−n} diff	n	e-n	n	e ⁻ⁿ
0.00 .01 .02 .03 .04	1.000 1.010 1.020 1.030 1.030 11 1.041 10	<b>0.50</b> .51 .52 .53 .54	1.649 1.665 17 1.682 17 1.699 17 1.716 17	<b>1.0</b> .1 .2 .3 .4	2.718* 3.004 3.320 3.669 4.055	0.00 .01 .02 .03 .04	$\begin{array}{c} 1.000 \\ 0.990 \\ -10 \\ .980 \\ -10 \\ .970 \\ -9 \\ .961 \\ -10 \end{array}$	<b>0.50</b> .51 .52 .53 .54	.607 .600 .595 .589 .583	<b>1.0</b> .1 .1 .2 .3 .4	.368* .333 .301 .273 .247
0.05 .06 .07 .08 .09	1.051 11 1.062 11 1.073 10 1.083 11 1.094 11	0.55 .56 .57 .58 .59	1.733 18 1.751 17 1.768 18 1.786 18 1.804 18	<b>1.5</b> .6 .7 .8 .9	4.482 4.953 5.474 6.050 6.686	<b>0.05</b> .06 .07 .08 .09	.951 _ 9 .942 _ 10 .932 _ 9 .923 _ 9 .923 _ 9 .914 _ 9	<b>0.55</b> .56 .57 .58 .59	.577 .571 .566 .560 .554	<b>1.5</b> .6 .7 .8 .9	.223 .202 .183 .165 .150
<b>0.10</b> .11 .12 .13 .14	1.105 11 1.116 11 1.127 12 1.139 11 1.150 12	0.60 .61 .62 .63 .64	1.822 18 1.840 19 1.859 19 1.878 19 1.878 18 1.896 20	<b>2.0</b> .1 .2 .3 .4	7.389 8.166 9.025 9.974 11.02	0.10 .11 .12 .13 .14	.905 _ 9 .896 _ 9 .887 _ 9 .878 _ 9 .878 _ 9 .869 _ 8	0.60 .61 .62 .63 .64	.549 .543 .538 .533 .527	<b>2.0</b> .1 .2 .3 .4	.135 .122 .111 .100 .0907
0.15 .16 .17 .18 .19	1.162 12 1.174 11 1.185 12 1.197 12 1.209 12	0.65 .66 .67 .68 .69	1.916 19 1.935 19 1.954 20 1.974 20 1.994 20	<b>2.5</b> .6 .7 .8 .9	12.18 13.46 14.88 16.44 18.17	0.15 .16 .17 .18 .19	.861 9 .852 8 .844 9 .835 8 .827 8	0.65 .66 .67 .68 .69	.522 .517 .512 .507 .502	<b>2.5</b> .6 .7 .8 .9	.0821 .0743 .0672 .0608 .0550
<b>0.20</b> .21 .22 .23 .24	1.221 13 1.234 12 1.246 13 1.259 12 1.271 13	0.70 .71 .72 .73 .74	2.014 20 2.034 20 2.054 21 2.075 21 2.096 21	<b>3.0</b> .1 .2 .3 .4	20.09 22.20 24.53 27.11 29,96	0.20 .21 .22 .23 .24	.819 8 .811 8 .803 8 .795 8 .795 8 .787 8	0.70 .71 .72 .73 .74	.497 .492 .487 .482 .477	<b>3.0</b> .1 .2 .3 .4	.0498 .0450 .0408 .0369 .0334
0.25 .26 .27 .28 .29	1.284 13 1.297 13 1.310 13 1.323 13 1.336 14	0.75 .76 .77 .78 .79	2.117 21 2.138 22 2.160 21 2.181 22 2.203 23	<b>3.5</b> .6 .7 .8 .9	33.12 36.60 40.45 44.70 49.40	0.25 .26 .27 .28 .29	.779 — 8 .771 — 8 .763 — 7 .756 — 8 .748 <b>— 7</b>	0.75 .76 .77 .78 .79	.472 .468 .463 .458 .458	<b>3.5</b> .6 .7 .8 .9	.0302 .0273 .0247 .0224 .0202
<b>0.30</b> .31 .32 .33 .34	1.350 13 1.363 14 1.377 14 1.391 14 1.405 14	0.80 .81 .82 .83 .84	2.226 2.248 2.270 2.270 2.293 2.316 24	<b>4.0</b> .1 .2 .3 .4	54.60 60.34 66.69 73.70 81.45	<b>0.30</b> .31 .32 .33 .34	.741 — 8 .733 — 7 .726 — 7 .719 — 7 .712 — 7	0.80 .81 .82 .83 .84	.449 .445 .440 .436 .432	<b>4.0</b> .1 .2 .3 .4	.0183 .0166 .0150 .0136 .0123
0.35 .36 .37 .38 .39	1.419 14 1.433 15 1.448 14 1.462 15 1.477 15	0.85 .86 .87 .88 .89	2.340 2.363 23 2.387 24 2.411 24 2.435 25	4.5 5.0 6.0 7.0	90.02 148.4 403.4 1097.	0.35 .36 .37 .38 .39	.705 <b>— 7</b> .698 <b>—</b> 7 .691 <b>—</b> 7 .684 <b>—</b> 7 .677 <b>—</b> 7	0.85 .86 .87 .88 .89	.427 .423 .419 .415 .411	4.5 5.0 6.0 7.0	.0111 .00674 .00248 .000912
<b>0.40</b> .41 .42 .43 .44	1.492 15 1.507 15 1.522 15 1.537 16 1.553 15	<b>0.90</b> .91 .92 .93 .94	2.460 2.484 25 2.509 26 2.535 25 2.560 26	8.0 9.0 10.0 π/2	2981. 8103. 22026. 4.810	<b>0.40</b> .41 .42 .43 .44	.670 — 6 .664 — 7 .657 — 6 .651 — 7 .644 — 6	<b>0.90</b> .91 .92 .93 .94	.407 .403 .399 .395 .391	8.0 9.0 10.0 π/2	.000335 .000123 .000045 .208
0.45 .46 .47 .48 .49	1.568 1.584 16 1.600 16 1.616 16 1.632 17	0.95 .96 .97 .98 .99	2.586 26 2.612 26 2.638 26 2.654 27 2.691 27	$2\pi/2$ $3\pi/2$ $4\pi/2$ $5\pi/2$ $6\pi/2$ $7\pi/2$ $8\pi/2$	23.14 111.3 535.5 2576. 12392. 59610. 286751.	0.45 .46 .47 .48 .49	.638 - 7 .631 - 6 .625 - 6 .619 - 6 .613 - 6	0.95 .96 .97 .98 .99	.387 .383 .379 .375 .372	$2\pi/2$ $3\pi/2$ $4\pi/2$ $5\pi/2$ $6\pi/2$ $7\pi/2$ $8\pi/2$	.0432 .00878 .00187 .000388 .000081 .000017 .000003
	1.649 Do not inte	1.00 rpolate		nn.		0.50	0.607	1.00	.368		Į

# Common logarithms of numbers and proportional parts

	d	1	2	3	.4	5	-6	7	8	9	pro 123	portional po 4 5 6	
1.0 11 12 13 14	0000 0414 0792 1139 1461	0043 0453 0828 1173 1492	0086 0492 0864 1206 1523	0128 0531 0899 1239 1553	0170 0569 0934 1271 1584	0212 0607 0969 1303 1614	0253 0645 .1004 1335 1644	0294 0682 1038 1367 1673	0334 0719 1072 1399 1703	0374 0755 1106 1430 1732	4 8 12 4 8 11 3 7 10 3 6 10 3 6 9	17 21 25 15 19 23 14 17 21 13 16 19 12 15 18	29 33 37 26 30 34 24 28 31 23 26 29 21 24 27
15 16 17 18 19	1761 2041 2304 2553 2788	1790 2068 2330 2577 2810	1818 2095 2355 2601 2833	1847 2122 2380 2625 2856	1875 2148 2405 2648 2878	1903 2175 2430 2672 2900	1931 2201 2455 2695 2923	1959 2227 2480 2718 2945	1987 2253 2504 2742 2967	2014 2279 2529 2765 2989	368 358 257 257 247	11 14 17 11 13 16 10 12 15 9 12 14 9 11 13	20 22 25 18 21 24 17 20 22 16 19 21 16 18 20
20 21 22 23 24	3010 3222 3424 3617 3802	3032 3243 3444 3636 3820	3054 3263 3464 3655 3838	3075 3284 3483 3674 3856	3096 3304 - 3502 3692 3874	3118 3324 3522 3711 3892	3139 3345 3541 3729 3 <b>9</b> 09	3160 3365 3560 3747 3927	3181 3385 3579 3766 3945	3201 3404 3598 3784 3962	246 246 246 246 245	8 11 13 8 10 12 8 10 12 7 9 11 7 9 11	15 17 19 14 16 18 14 15 17 13 15 17 12 14 16
25 26 27 28 29	3979 4150 4314 4472 4624	3997 4166 4330 4487 4639	4014 4183 4346 4502 4654	4031 4200 4362 4518 4669	4048 4216 4378 4533 - 4683	4065 4232 4393 4548 4698	4082 4249 4409 4564 4713	4099 4265 4425 4579 4728	4116 4281 4440 4594 4742	4133 4298 4456 4609 4757	235 235 235 235 235 134	7 9 10 7 8 10 6 8 9 6 8 9 6 7 9	12 14 15 11 13 15 11 13 14 11 12 14 10 12 13
30 31 32 33 34	4771 4914 5051 5185 5315	4786 4928 5065 5198 5328	4800 4942 5079 5211 5340	4814 4955 5092 5224 5353	4829 4969 5105 5237 5366	4843 4983 5119 5250 5378	4857 4997 5132 5263 5391	4871 5011 5145 5276 5403	4886 5024 5159 5289 5416	4900 5038 5172 5302 5428	1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4	679 678 578 568 568	10 11 13 10 11 12 9 11 12 9 10 12 9 10 11
35 36 37 38 39	5441 5563 5682 5798 5911	5453 5575 5694 5809 5922	5465 5587 5705 5821 5933	5478 5599 5717 5832 5944	5490 5611 5729 5843 5955	5502 5623 5740 5855 5966	5514 5635 5752 5866 5977	5527 5647 5763 5877 5988	5539 5658 5775 5888 5999	5551 5670 5786 5899 6010	1 2 4 1 2 4 1 2 3 1 2 3 1 2 3 1 2 3	5 6 7 5 6 7 5 6 7 5 6 7 4 5 7	9 10 11 8 10 11 8 9 10 8 9 10 8 9 10 8 9 10
40 41 42 43 44	6021 6128 6232 6335 6435	6031 6138 6243 6345 6444	6042 6149 6253 6355 6454	6053 6160 6263 6365 6464	6064 6170 6274 6375 6474	6075 6180 6284 6385 6484	6085 6191 6294 6395 6493	6096 6201 6304 6405 6503	6107 6212 6314 6415 6513	6117 6222 6325 6425 6522	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 9 10 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9
45 46 47 48 49	6532 6628 6721 6812 6902	6542 6637 6730 6821 6911	6551 6646 6739 6830 6920	6561 6656 6749 6839 6928	6571 6665 6758 6848 6937	6580 6675 6767 6857 6946	6590 6684 6776 6866 6955	6599 6693 6785 6875 6964	6609 6702 6794 6884 6972	6618 6712 6803 6893 6981	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	4 5 6 4 5 6 4 5 5 4 4 5 4 4 5	789 778 678 678 678 678
50 51 52 53 54	6990 7076 7160 7243 7324	6998 7084 7168 7251 7332	7007 7093 7177 72 <i>5</i> 9 7340	7016 7101 7185 7267 7348	7024 7110 7193 7275 7356	7033 7118 7202 7284 7364	7042 7126 7210 7292 7372	7050 7135 7218 7300 7380	7059 7143 7226 7308 <b>7388</b>	7067 7152 7235 7316 7396	1 2 3 1 2 3 1 2 2 1 2 2 1 2 2 1 2 2	3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5	678 678 677 667 67 67

MATHEMATICAL TA

HEMATICAL	TA

Common	logarithms	of	numbers	and	proportional parts

7

continued

	) ) ) ) I I ] , ] , ] proportional par												
	0	-1	2	3	4	5	6	7	8	9		4 5 6	
55 56 57 58 59	7404 7482 7559 7634 7709	7412 7490 7566 7642 7716	7419 7497 7574 7649 7723	7427 7505 7582 7657 7731	7435 7513 7589 7664 7738	7443 7520 7597 7672 7745	7451 7528 7604 7679 7752	7459 7536 7612 7686 7760	7466 7543 7619 7694 7767	7474 7551 7627 7701 7774	1 2 2 1 2 2 1.2 2 1 1 2 2 1 1 2 1 1 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7
60 61 62 63 64	7782 7853 7924 7993 8062	7789 7860 7931 8000 8069	7796 7868 7938 8007 8075	7803 7875 7945 8014 8082	7810 7882 7952 8021 8089	7818 7889 7959 8028 8096	7825 7896 7966 8035 8102	7832 7903 7973 8041 8109	7839 7910 7980 8048 8116	7846 7917 7987 8055 8122	1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2	3 4 4 3 4 4 3 3 4 3 3 4 3 3 4 3 3 4	5 6 6 5 6 6 5 5 6 5 5 6 5 5 6
65 66 67 68 69	8129 8195 8261 8325 8388	8136 8202 8267 8331 8395	8142 8209 8274 8338 8401	8149 8215 8280 8344 8407	8156 8222 8287 8351 8414	8162 8228 8293 8357 8420	8169 8235 8299 8363 8426	8176 8241 8306 8370 8432	8182 8248 8312 8376 8439	8189 8254 8319 8382 8445	1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2	3 3 4 3 3 4 3 3 4 3 3 4 2 3 4	5 5 6 5 5 6 5 5 6 4 5 6 4 5 6
70 71 72 73 74	8451 8513 8573 8633 8692	8457 8519 8579 8639 8698	8463 8525 8585 8645 8704	8470 8531 8591 8651 8710	8476 8537 8597 8657 8716	8482 8543 8603 8663 8722	8488 8549 8609 8669 8727	8494 8555 8615 8675 8733	8500 8561 8621 8681 8739	8506 8567 8627 8686 8745	1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2	2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4	4 5 6 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5
75 76 77 78 79	8751 8808 8865 8921 8976	8756 8814 8871 8927 8982	8762 8820 8876 8932 8987	8768 8825 8882 8938 8993	8774 8831 8887 8943 8998	8779 8837 8893 8949 9004	8785 8842 8899 8954 9009	8791 8848 8904 8960 9015	8797 8854 8910 8965 9020	8802 8859 8915 8971 9025	1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2	2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3	4 5 5 4 5 5 4 4 5 4 4 5 4 4 5 4 4 5
80 81 82 83 84	9031 9085 9138 9191 9243	9036 9090 9143 9196 9248	9042 9096 9149 9201 9253	9047 9101 9154 9206 9258	9053 9106 9159 9212 9263	9058 9112 9165 9217 9269	9063 9117 9170 9222 9274	9069 9122 9175 9227 9279	9074 9128 9180 9232 8284	9079 9133 9186 9238 9289	1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2	2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3	4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5
85 86 87 88 89	9294 9345 9395 9445 9494	9299 9350 9400 9450 9499	9304 9355 9405 9455 9504	9309 9360 9410 9460 9509	9315 9365 9415 9465 9513	9320 9370 9420 9469 9518	9325 9375 9425 9474 9523	9330 9380 9430 9479 9528	9335 9385 9435 9484 9533	9340 9390 9440 9489 9538	1 1 2 1 1 2 0 1 1 0 1 1 0 1 1	2 3 3 2 3 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3	4 4 5 4 4 5 3 4 4 3 4 4 3 4 4
90 91 92 93 94	9542 9590 9638 9685 9731	9547 9595 9643 9689 9736	9552 9600 9647 9694 9741	9557 9605 9652 9699 9745	9562 9609 9657 9703 9750	9566 9614 9661 9708 9754	9571 9619 9666 9713 9759	9576 9624 9671 9717 9763	9581 9628 9675 9722 9768	9586 9633 9680 9727 9773	0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1	2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3	3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4
95 96 97 98 99	9777 9823 9868 9912 9956	9782 9827 9872 9917 9917 9961	9786 9832 9877 9921 9965	9791 9836 9881 9926 9969	9795 9841 9886 9930 9974	9800 9845 9890 9934 9978	9805 9850 9894 9939 9983	9809 9854 9899 9943 9987	9814 9859 9903 9948 9991	9818 9863 9908 9952 9996	0 1 1 0 1 1 0 1 1 0 1 1 0 1 1	2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3	3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 3 4

TABLES 305

# 306

# Natural trigonometric functions

# for decimal fractions of a degree

deg	sin	cos	tan_	cot	1	deg	sin	cos	<u>i</u> an	cot	1
<b>9.0</b> .1 2 3 4 5 6 7 8 9	.00000 .00175 .00349 .00524 .00698 .00873 .01047 .01222 .01326 .01326	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 .9979 .9979 .9979	.00000 .00175 .00349 .00524 .00698 .00873 .01047 .01222 .01396 .01671	00 573.0 286.5 191.0 143.24 114.59 95.49 81.85 71.62 63.66	<b>90.0</b> .9 .8 .7 .6 .5 .5 .4 .3 .2 .1	<b>6.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	.10453 .10626 .10800 .10973 .11147 .11320 .11494 .11667 .11340 .12014	0.9945 .9943 .9942 .9940 .9938 .9938 .9938 .9938 .9934 .9932 .9930 .9928	.10510 .10687 .10863 .11040 .11217 .11394 .11570 .11747 .11924 .12101	9.514 9.357 9.205 8.915 8.777 8.643 8.513 8.386 8.264	<b>84.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1
1.0 .1 .2 .3 .4 .5 .6 .7 .8 9	.01745 .01920 .02094 .02269 .02443 .02618 .02792 .02967 .03141 .03316	0.9998 .9998 .9998 .9997 .9997 .9997 .9997 .9996 .9995 .9995	.01746 .01920 .02095 .02269 .02444 .02619 .02793 .02968 .03143 .03317	57.29 52.08 47.74 44.07 40.92 38.19 35.80 33.69 31.82 30.14	<b>89.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>7.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	.12187 .12360 .12533 .12706 .12380 .13053 .13226 .10399 .13572 .13744	0.9925 .9923 .9921 .9919 .9917 .9914 .9912 .9910 .9907 .9905	.12278 .12456 .12633 .12810 .12988 .13165 .13343 .13521 .13698 .13876	8.144 8.028 7.916 7.806 7.700 7.596 7.495 7.396 7.300 7.207	<b>83.0</b> .9 .8 .7 .5 .4 .3 .2 .1
2.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.03490 .03664 .03839 .04013 .04188 .04362 .04536 .04711 .04835 .05059	0.9994 .9993 .9993 .9992 .9991 .9990 .9990 .9989 .9933 .9987	.03492 .03667 .03842 .04016 .04191 .04366 .04541 .04716 .04391 .05066	28.64 27.27 26.03 24.90 23.86 22.90 22.02 21.20 20.45 19.74	88.0 .9 .8 .7 .5 .4 .3 .2 .1	<b>8.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	.13917 .14090 .14263 .14436 .14508 .14781 .14754 .15126 .15229 .15471	0.9903 .9900 .9898 .9895 .9893 .9890 .9888 .9885 .9882 .9880	.14054 .14232 .14410 .14588 .14767 .14945 .15124 .15302 .15481 .15660	7.115 7.026 6.940 6.855 6.772 6.691 6.612 6.535 6.460 6.386	<b>82.0</b> .9 .8 .7 .5 .4 .3 .2 .1
<b>3.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	.05234 .05408 .05502 .05756 .05931 .06105 .06279 .06453 .06627 .06802	0.9986 .9935 .9984 .9983 .9982 .9981 .9980 .9979 .9978 .9977	.05241 .05416 .05591 .05766 .05941 .06116 .06291 .06467 .06642 .06642	19.081 18.454 17.806 17.343 16.832 16.350 15.895 15.464 15.056 14.669	<b>87.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>9.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	.15643 .15316 .15988 .16160 .16333 .16535 .16577 .16349 .17021 .17193	0.9877 .9874 .9871 .9869 .9866 .9863 .9860 .9857 .9854 .9851	.15838 .16017 .16196 .16376 .16555 .16734 .16914 .17093 .17273 .17453	6.314 6.243 6.174 6.107 6.041 5.976 5.912 5.850 5.789 5.730	<b>81.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1
4.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	.06976 .07150 .07324 .07498 .07672 .07846 .08020 .08194 .08368 .08542	0.9976 .9974 .9973 .9972 .9971 .9969 .9968 .9966 .9965 .9963	.06993 .07168 .07344 .07519 .07695 .07870 .08046 .08221 .08397 .08573	14.301 13.951 13.617 13.300 12.996 12.706 12.429 12.163 11.909 11.664	<b>86.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>10.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	.1736 .1754 .1771 .1788 .1305 .1822 .1340 .1857 .1874 .1891	0.9848 .9845 .9842 .9839 .9836 .9833 .9829 .9826 .9823 .9820	.1763 .1781 .1799 .1817 .1835 .1853 .1853 .1871 .1890 .1908 .1926	5.671 5.614 5.558 5.503 5.449 5.396 5.343 5.292 5.242 5.193	<b>80.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1
5.0 .1 2 3 <i>A</i> 5 6.0	.08716 08889 .09063 .09237 .09411 .09585 .09758 .09932 .10106 .10279 .10453	0.9962 .9960 .9959 .9957 .9954 .9954 .9952 .9951 .9949 .9947 0.9945	.08749 .08925 .09101 .09277 .09453 .09629 .09805 .09981 .10158 .10334	11.430 11.205 10.988 10.780 10.579 10.385 10.199 10.019 9.845 9.677 9.514	<b>85.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1 <b>84.0</b>	11.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 12.0	.1908 .1925 .1942 .1959 .1977 .1994 .2011 .2028 .2045 .2062	0.9816 .9813 .9810 .9806 .9803 .9799 .9796 .9792 .9789 .9785 0.9781	.1944 .1962 .1980 .1998 .2016 .2035 .2053 .2071 .2089 .2107 .2126	5.145 5.097 5.050 5.005 4.959 4.915 4.872 4.829 4.787 4.745 4.705	<b>79.0</b> .9 .7 .6 .5 .4 .3 .2 .1 <b>78.0</b>
	l	sin	· · ·	tan 1		1	cos	sin	cot	tan	deg

# Natural trigonometric functions

# for decimal fractions of a degree

deg	sin	cos	fan	cot	1	deg	sin	cos	tan	cot	1
<b>12.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	0.2079 .2096 .2113 .2130 .2147 .2164 .2181 .2198 .2215 .2233	0.9781 .9778 .9774 .9770 .9767 .9763 .9759 .9755 .9751 .9748	0.2126 .2144 .2162 .2180 .2199 .2217 .2235 .2254 .2272 .2290	4.705 4.665 4.625 4.586 4.548 4.511 4.474 4.437 4.402 4.366	<b>78.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>18.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	0.3090 .3107 .3123 .3140 .3156 .3173 .3190 .3206 .3223 .3239	0.9511 .9505 .9500 .9494 .9489 .9483 .9478 .9472 .9466 .9461	0.3249 .3269 .3288 .3307 .3327 .3346 .3365 .3365 .3404 .3424	3.078 3.060 3.042 3.024 3.006 2.989 2.971 2.954 2.937 2.921	<b>72.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1
<b>13.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	0.2250 .2267 .2284 .2300 .2317 .2334 .2351 .2368 .2385 .2402	0.9744 .9740 .9736 .9732 .9728 .9724 .9720 .9715 .9711 .9707	0.2309 .2327 .2345 .2364 .2382 .2401 .2419 .2438 .2456 .2475	4.331 4.297 4.264 4.230 4.198 4.165 4.134 4.102 4.071 4.041	77.0 .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>19.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	0.3256 .3272 .3239 .3305 .3322 .3338 .3355 .3371 .3387 .3404	0.9455 .9449 .9444 .9438 .9432 .9426 .9421 .9415 .9409 .9403	0.3443 .3463 .3482 .3502 .3522 .3541 .3561 .3581 .3600 .3620	2.904 2.838 2.872 2.856 2.840 2.824 2.808 2.793 2.778 2.762	71.9 .9 .8 .7 .5 .4 .3 .2 .1
<b>14.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	0.2419 .2436 .2453 .2470 .2487 .2504 .2521 .2528 .2554 .2571	0.9703 .9699 .9694 .9690 .9686 .9681 .9677 .9673 .9668 .9664	0.2493 .2512 .2530 .2549 .2568 .2586 .2605 .2623 .2642 .2661	4.011 3.981 3.952 3.895 3.895 3.867 3.839 3.812 3.785 3.758	<b>76.0</b> .9 .8 .7 .5 .4 .3 .2 .1	<b>20.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	0.3420 .3437 .3453 .3469 .3486 .3502 .3518 .3535 .3551 .3557	0.9397 .9391 .9385 .9379 .9373 .9367 .9361 .9354 .9348 .9342	0.3640 .3659 .3679 .3699 .3719 .3739 .3759 .3759 .3779 .3799 .3799 .3819	2.747 2.733 2.718 2.703 2.689 2.675 2.660 2.646 2.633 2.619	<b>70.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1
<b>15.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	0.2588 .2605 .2622 .2639 .2656 .2672 .2689 .2706 .2723 .2740	0.9659 .9655 .9650 .9646 .9644 .9636 .9632 .9627 .9622 .9617	0.2679 .2698 .2717 .2736 .2754 .2773 .2792 .2811 .2830 .2849	3.732 3.706 3.681 3.655 3.630 3.606 3.582 3.558 3.558 3.534 3.511	<b>75.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>21.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	0.3584 .3600 .3616 .3633 .3649 .3665 .3681 .3697 .3714 .3730	0.9336 .9330 .9317 .9317 .9311 .9304 .9298 .9291 .9285 .9278	0.3839 .3859 .3879 .3899 .3919 .3939 .3959 .3979 .4000 .4020	2.605 2.592 2.578 2.565 2.552 2.539 2.526 2.513 2.500 2.488	69.0 .9 .8 .7 .6 .5 .4 .3 .2 .1
<b>16.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	0.2756 .2773 .2790 .2807 .2823 .2840 .2857 .2874 .2874 .2890 .2907	0.9613 .9608 .9603 .9598 .9593 .9588 .9588 .9583 .9578 .9573 .9573	0.2867 .2886 .2905 .2924 .2943 .2962 .2981 .3000 .3019 .3038	3.487 3.465 3.442 3.420 3.398 3.376 3.354 3.333 3.312 3.291	<b>74.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>22.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	0.3746 .3762 .3778 .3795 .3811 .3827 .3843 .3859 .3875 .3891	0.9272 .9265 .9259 .9252 .9245 .9239 .9232 .9225 .9219 .9212	0.4040 .4061 .4081 .4101 .4122 .4142 .4163 .4183 .4204 .4224	2.475 2.463 2.450 2.438 2.426 2.414 2.402 2.391 2.379 2.367	68.0 .9 .8 .7 .6 .5 .4 .3 2 .1
17.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	0.2924 .2940 .2957 .2974 .2990 .3007 .3024 .3040 .3057 .3074	0.9563 .9558 .9553 .9548 .9542 .9537 .9532 .9532 .9527 .9521 .9516	0.3057 .3076 .3096 .3115 .3134 .3153 .3172 .3191 .3211 .3230	3.271 3.251 3.230 3.211 3.191 3.172 3.152 3.133 3.115 3.096	<b>73.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	23.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	0.3907 .3923 .3939 .3955 .3971 .3987 .4003 .4019 .4035 .4051	0.9205 .9198 .9191 .9184 .9178 .9171 .9164 .9157 .9150 .9143	0.4245 .4265 .4286 .4307 .4327 .4348 .4369 .4390 .4411 .4431	2.356 2.344 2.333 2.322 2.311 2.300 2.289 2.278 2.267 2.257	67.0 .9 .8 .7 .6 .5 .4 .3 .2 .1
18.0	0.3090	0.9511	0.3249	3.078	72.0	24.0	0.4067	0.9135	0.4452	2.246	66.0
	COS	sin	cot	tan	deg		cos	, sin	cot	tan	deg

# Natural trigonometric functions

# for decimal fractions of a degree

deg	sin	cos	tan	cot		deg	sin	cos	tan	cot	I
24.0	0.4067	0.9135	0.4452	2.246	66.Q	30.0	0.5000	0.8660	0.5774	1.7321	60.0
.1 .2	.4083	.9128 .9121	.4473 .4494	2.236	.9 .8	.1 .2	.5015	.8052 .8643	.5797 .5820	1.7251	.9
.3	4115	.9114	.4515	2.215	.7	.3	.5045	.8634	.5844	1.7113	.8 .7
.4 .5 .6 .7	.4131	.9107	.4536	2.204	.6	.4	.5060	.8625	.5867	1.7045	.6 .5 .4 .3 .2 .1
.5	.4147	.9100	.4557 .4578	2.194 2.184	.5 .4	.5 .6	.5075	.8616 .8607	.5890 .5914	1.6977	.5
.0	.4179	.9085	.4599	2.174	.3 .2	.0	.5105	.8599	.5938	1.6842	.3
.8	.4195	.9078	.4621	2.164	.2	.8	.5120	.8590	.5961	1.6775	.2
.9	.4210	.9070	.4642	2.154	.1	.9	.5135	.8581	.5985	1.6709	
25.0	0.4226	0.9063	0.4663	2.145	65.0	31.0	0.5150	0.8572	0.6009	1.6643	59.0
.1	.4242 .4258	.9056 .9048	.4684 .4706	2.135 2.125	.9 .8	.1 .2	.5165 .5180	.8563 .8554	.6032 .6056	1.6577 1.6512	.9
.3	.4274	.9041	.4727	2.116	.0	.3	.5195	.8545	.6080	1.6447	.8 .7 •
.2 .3 .4 .5 .6 .7	.4289	.9033	.4748	2.106	.6		.5210	.8536	.6104	1.6383	.6
.5	.4305 .4321	.9026 .9018	.4770 .4791	2.097 2.087	.5	.5	.5225	.8526	.6128	1.6319	.5 .4 .3 .2
.0 .7	.4321	.9018	.4/91	2.067	.4	.6 .7	.5240 .5255	.8517 .8508	.6152 .6176	1.6255 1.6191	.4
.8	.4352	.9003	.4834	2.069	.3 .2	.8	.5270	.8499	.6200	1.6128	.3
.9	.4368	.8996	.4856	2.059	.1	.9	.5284	.8490	.6224	1.6066	.1
<b>26.0</b> .1	0.4384	0.8988	0.4877 .4899	2.050 2.041	<b>64.0</b> .9	32.0	0.5299	0.8480	0.6249	1.6003	58.0
.1	.4415	.8973	.4077	2.041	.8	.2	.5329	.8462	.6273	1.5880	.9 .8 .7 .6 .5 .4 .3 .2
.2 .3 .4 .5 .6 .7 .8 .9	.4431	.8965	.4942	2.023	.7	.3	.5344	.8453	.6322	1.5818	.7
.4	.4446	.8957	.4964	2.014	.6	.4	.5358	.8443	.6346	1.5757	.6
.5	.4462 .4478	.8949 .8942	.4986	2.006	.5	.5 .6	.5373 .5388	.8434 .8425	.6371 .6395	1.5697 1.5637	.5
.7	.4493	.8934	.5029	1.988	.4 .3	.7	.5402	.8415	.6420	1.5577	.3
.8	.4509	.8926	.5051	1.980	.2	.8	.5417	.8406	.6445	1.5517	.2
9	.4524	.8918	.5073	1.971	.1	.9	.5432	.8396	.6469	1.5458	.1
<b>27.0</b> .1	0.4540 .4555	0.8910	0.5095	1.963 1.954	<b>63.0</b> .9	33.0 .1	0.5446	0.8387	0.6494	1.5399 1.5340	<b>57.0</b> .9
.2	.4571	.8894	.5139	1.946	.8	.2	.5476	.8368	.6544	1.5282	.8 .7
.3	.4586	.8886	.5161	1.937	.7	.3	.5490	.8358	.6569	1.5224	.7
.4 .5 .6 .7	.4602 .4617	.8878 .8870	.5184 .5206	1.929 1.921	.6 .5	.4 .5	.5505 .5519	.8348 .8339	.6594 .6619	1.5166	.6 .5
.6	.4633	.8862	.5228	1.913		.6	.5534	.8329	.6644	1.5051	.4
.7	.4648	.8854	.5250	1.905	.3 .2	.7	.5548	.8320	.6669	1.4994	.4 .3 .2
.8 .9	.4664	.8846	.5272	1.897	.2	.8	.5563	.8310	.6694	1.4938	.2
	.4679	.8838	.5295	1.889	.1	.9	.5577	.8300	.6720	1.4882	.1
28.0	0.4695	0.8829	0.5317	1.881 1.873	<b>62.0</b> .9	34.0	0.5592	0.8290	0.6745	1.4826 1.4770	<b>56.0</b> .9
.2	.4726	.8813	.5362	1.865	.8	.1	.5621	.8271	.6796	1.4715	.8
.3	.4741	.8805	.5384	1.857	.7	.3	.5635	.8261	.6822	1.4659	.8 .7
.4	.4756	.8796	.5407	1.849	.6	.4	.5650	.8251	.6847	1.4605	.6
.1 .2 .3 .4 .5 .6 .7 .8	.4772 .4787	.8788 .8780	.5430 .5452	1.842 1.834	.5	.5	.5664 .5678	.8241 .8231	.6873 .6899	1.4550	.6 .5 .4 .3 .2 .1
ž	.4802	.8771	.5475	1.827	.4 .3 .2	.6 .7	.5693	.8221	.6924	1.4442	.3
.8	.4818	.8763	.5498	1.819	.2	.8	.5707	.8211	.6950	1.4388	.2
.9	.4833	.8755	.5520	1.811	.1	9	.5721	.8202	.6976	1.4335	
29.Q	0.4848	0.8746	0.5543	1.804	61.0	35.0	0.5736	0.8192	0.7002	1.4281	55.0
	.4863	.8738 .8729	.5566	1.797 1.789	.9 .8	l .]	.5750 .5764	.8181 .8171	.7028 .7054	1.4229 1.4176	.9
.1 2 3 4 5 6 7 8 9	.4894	.8721	.5507	1.782	.0 .7	.2 .3	.5764	.8171	.7054	1.4176	.9 .8 .7
.4	.4909	.8712	.5635	1.775	.6	.4	.5793	.8151	.7107	1.4071	.6
.5	.4924	.8704	.5658	1.767	.5	.5	.5807	.8141	.7133	1.4019	.5
,0 7	.4939 .4955	.8695 .8686	.5681 .5704	1.760 1.753	.4 .3	.6 .7	.5821 .5835	.8131 .8121	.7159 .7186	1.3968 1.3916	4
.8	.4970	.8678	.5727	1.746	.2	.8	.5850	.8111	.7212	1.3865	.6 .5 .4 .3 .2
.9	.4985	.8669	.5750	1.739	.1	.9	.5864	.8100	.7239	1.3814	i.
30.0	0.5000	0.8660	0.5774	1.732	60.0	36.0	0.5878	0.8090	0.7265	1.3764	54.0
	cos	sin	cot	tan	deg	l	cos	sin	cot	tan	deg

# Natural trigonometric functions

# for decimal fractions of a degree

											1
deg	sin	cos	tan		1	deg	sin	cos	ton_	cot	
<b>36.0</b>	0.5878	0.8090	0.7265	1.3764	<b>54.0</b>	<b>40.5</b>	0.6494	0.7604	0.8541	1.1708	<b>49.5</b>
.1	.5892	.8080	.7292	1.3713	.9	.6	.6508	.7593	.8571	1.1667	.4
.2	.5906	.8070	.7319	1.3663	.8	.7	.6521	.7581	.8601	1.1626	.3
.3	.5920	.8059	.7346	1.3613	.7	.8	.6534	.7570	.8632	1.1585	.2
.4	.5934	.8049	.7373	1.3564	.6	.9	.6547	.7559	.8662	1.1544	.1
.5	.5948	.8039	.7400	1.3514	.5	<b>41.0</b>	0.6561	0.7547	0.8693	1.1504	<b>49.0</b>
.6	.5962	.8028	.7427	1.3465	.4	.1	.6574	.7536	.8724	1.1463	.9
.7	.5976	.8018	.7454	1.3416	.3	.2	.6587	.7524	.8754	1.1423	.8
.8	.5990	.8007	.7481	1.3367	.2	.3	.6600	.7513	.8785	1.1383	.7
.9	.6004	.7997	.7508	1.3319	.1	.4	.6613	.7501	.8816	1.1343	.6
<b>37.0</b>	0.6018	0.7986	0.7536	1.3270	<b>53.0</b>	.5	.6626	.7490	.8847	1.1303	.5
.1	.6032	.7976	.7563	1.3222	.9	.6	.6639	.7478	.8878	1.1263	.4
.2	.6046	.7965	.7590	1.3175	.8	.7	.6652	.7466	.8910	1.1224	.3
.3	.6060	.7955	.7618	1.3127	.7	.8	.6665	.7455	.8941	1.1184	.2
.4	.6074	.7944	.7646	1.3079	.6	.9	.6678	.7443	.8972	1.1145	.1
.5	.6088	.7934	.7673	1.3032	.5	<b>42.0</b>	0.6691	0.7431	0.9004	1.1106	<b>48.0</b>
.6	.6101	.7923	.7701	1.2985	.4	.1	.6704	.7420	.9036	1.1067	.9
.7	.6115	.7912	.7729	1.2938	.3	.2	.6717	.7408	.9067	1.1028	.8
.8	.6129	.7902	.7757	1.2892	.2	.3	.6730	.7396	.9099	1.0990	.7
.9	.6143	.7891	.7785	1.2846	.1	.4	.6743	.7385	.9131	1.0951	.6
<b>38.0</b>	0.6157	0.7880	0.7813	1.2799	<b>52.0</b>	.5	.6756	.7373	.9163	1.0913	.5
.1	.6170	.7869	.7841	1.2753	.9	.6	.6769	.7361	.9195	1.0875	.4
.2	.6184	.7859	.7869	1.2708	.8	.7	.6782	.7349	.9228	1.0837	.3
.3	.6198	.7848	.7898	1.2662	.7	.8	.6794	.7337	.9260	1.0799	.2
.4	.6211	.7837	.7926	1.2617	.6	.9	.6807	.7325	.9293	1.0761	.1
.5	.6225	.7826	.7954	1.2572	.5	<b>43.0</b>	0.6820	0.7314	0.9325	1.0724	<b>47.0</b>
.6	.6239	.7815	.7983	1.2527	.4	.1	.6833	.7302	.9358	1.0686	.9
.7	.6252	.7804	.8012	1.2482	.3	.2	.6845	.7290	.9391	1.0649	.8
.8	.6266	.7793	.8040	1.2437	.2	.3	.6858	.7278	.9424	1.0612	.7
.9	.6280	.7782	.8069	1.2393	.1	.4	.6871	.7266	.9457	1.0575	.6
<b>39.0</b>	0.6293	0.7771	0.8098	1.2349	<b>51.0</b>	.5	.6884	.7254	.9490	1.0538	.5
.1	.6307	.7760	.8127	1.2305	.9	.6	.6896	.7242	.9523	1.0501	.4
.2	.6320	.7749	.8156	1.2261	.8	.7	.6909	.7230	.9556	1.0464	.3
.3	.6334	.7738	.8185	1.2218	.7	.8	.6921	.7218	.9590	1.0428	.2
.4	.6347	.7727	.8214	1.2174	.6	.9	.6934	.7206	.9623	1.0392	.1
.5	.6361	.7716	.8243	1.2131	.5	<b>44.0</b>	0.6947	0.7193	0.9657	1.0355	<b>46.0</b>
.6	.6374	.7705	.8273	1.2088	.4	.1	.6959	.7181	.9691	1.0319	.9
.7	.6388	.7694	.8302	1.2045	.3	.2	.6972	.7169	.9725	1.0283	.8
.8	.6401	.7683	.8332	1.2002	.2	.3	.6984	.7157	.9759	1.0247	.7
.9	.6414	.7672	.8361	1.1960	.1	.4	.6997	.7145	.9793	1.0212	.6
<b>40.0</b>	0.6428	0.7660	0.8391	1.1918	<b>50.0</b>	.5	.7009	.7133	.9827	1.0176	.5
.1	.6441	.7649	.8421	1.1875	.9	.6	.7022	.7120	.9861	1.0141	.4
.2	.6455	.7638	.8451	1.1833	.8	.7	.7034	.7108	.9896	1.0105	.3
.3	.6468	.7627	.8481	1.1792	.7	.8	.7046	.7096	.9930	1.0070	.2
.4	.6481	.7615	.8511	1.1750	.6	.9	.7059	.7083	.9965	1.0035	.1
40.5	0.6494	0.7604	0.8541	1.1708	49.5	45.0	0.7071	0.7071	1.0000	1.0000	45.0
	cos	sin	cot	) tan	deg	l	cos	sin	cot	tan	deg

# Logarithms of trigonometric functions

# for decimal fractions of a degree

deg	L sin	L cos	L tan	L cot		deg_	L sin_	L cos	L tan	L cot	L
0.0 .1 .2 .3 .4 .5 .6 .7 .8 .9		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 9.9999		00 2.7581 2.4571 2.2810 2.1561 2.0591 1.9800 1.9130 1.8550 1.8038	<b>90.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>6.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	9.0192 9.0264 9.0334 9.0403 9.0472 9.0539 9.0605 9.0670 9.0734 9.0797	9.9976 9.9975 9.9975 9.9974 9.9973 9.9972 9.9971 9.9970 9.9969 9.9968	9.0216 9.0289 9.0360 9.0430 9.0499 9.0567 9.0633 9.0699 9.0764 9.0828	0.9784 0.9711 0.9640 0.9570 0.9501 0.9433 0.9367 0.9301 0.9236 0.9172	<b>84.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1
<b>1.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	8.2419 8.2832 8.3210 8.3558 8.3880 8.4179 8.4459 8.4459 8.4723 8.4971 8.5206	9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9998 9.9998 9.9998 9.9998	8.2419 8.2833 8.3211 8.3559 8.3881 8.4181 8.4461 8.4725 8.4973 8.5208	1.7581 1.7167 1.6789 1.6441 1.6119 1.5819 1.5539 1.5275 1.5027 1.4792	<b>89.0</b> .9 .7 .6 .5 .4 .3 .2 .1	<b>7.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	9.0859 9.0920 9.0981 9.1040 9.1099 9.1157 9.1214 9.1271 9.1326 9.1381	9.9968 9.9967 9.9966 9.9965 9.9964 9.9963 9.9962 9.9961 9.9960 9.9959	9.0891 9.0954 9.1015 9.1076 9.1135 9.1194 9.1252 9.1310 9.1367 9.1423	0.9109 0.9046 0.8985 0.8924 0.8865 0.8806 0.8748 0.8690 0.8633 0.8577	<b>83.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1
2.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	8.5428 8.5640 8.5342 8.6035 8.6220 8.6397 8.6567 8.6731 8.6389 8.7041	9.9997 9.9997 9.9997 9.9996 9.9996 9.9996 9.9996 9.9995 9.9995 9.9995 9.9994	8.5431 8.5643 8.5845 8.6038 8.6223 8.6401 8.6571 8.6736 8.6894 8.7046	1.4569 1.4357 1.4155 1.3962 1.3777 1.3599 1.3429 1.3264 1.3106 1.2954	88.0 .9 .8 .7 .6 .5 .4 .3 .2 .1	8.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	9.1436 9.1489 9.1542 9.1594 9.1646 9.1697 9.1747 9.1797 9.1847 9.1895	9.9958 9.9956 9.9955 9.9954 9.9953 9.9952 9.9951 9.9950 9.9949 9.9947	9.1478 9.1533 9.1587 9.1640 9.1693 9.1745 9.1797 9.1848 9.1898 9.1948	0.8522 0.8467 0.8413 0.8360 0.8307 0.8255 0.8203 0.8152 0.8102 0.8052	82.0 .9 .8 .7 .6 .5 .4 .3 .2 .1
<b>3.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	8.7188 8.7330 8.7468 8.7602 8.7731 8.7857 8.7979 8.8098 8.8213 8.8326	9.9994 9.9994 9.9993 9.9993 9.9992 9.9992 9.9991 9.9991 9.9990 9.9990	8.7194 8.7337 8.7475 8.7609 8.7739 8.7865 8.7988 8.8107 8.8223 8.8336	1.2806 1.2663 1.2525 1.2391 1.2261 1.2135 1.2012 1.1893 1.1777 1.1664	<b>87.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	9.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	9.1943 9.1991 9.2038 9.2035 9.2131 9.2176 9.2221 9.2266 9.2310 9.2353	9.9946 9.9945 9.9944 9.9943 9.9941 9.9940 9.9939 9.9937 9.9936 9.9935	9.1997 9.2046 9.2094 9.2142 9.2189 9.2236 9.2282 9.2328 9.2374 9.2419	0.8003 0.7954 0.7906 0.7858 0.7811 0.7764 0.7718 0.7672 0.7626 0.7581	<b>81.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1
<b>4.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	8.8436 8.8543 8.8647 8.8749 8.8849 8.8946 8.9042 8.9135 8.9226 8.9315	9.9989 9.9989 9.9988 9.9988 9.9987 9.9987 9.9987 9.9985 9.9985 9.9985 9.9984	8.8446 8.8554 8.8659 8.8762 8.8862 8.8960 8.9056 8.9150 8.9241 8.9331	1.1554 1.1446 1.1341 1.1238 1.1138 1.1040 1.0944 1.0850 1.0759 1.0669	<b>86.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>10.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	9.2397 9.2439 9.2432 9.2524 9.2565 9.2606 9.2647 9.2687 9.2727 9.2767	9.9934 9.9932 9.9931 9.9929 9.9928 9.9927 9.9925 9.9924 9.9922 9.9921	9.2463 9.2507 9.2551 9.2594 9.2637 9.2680 9.2722 9.2764 9.2805 9.2846	0.7537 0.7493 0.7449 0.7406 0.7363 0.7320 0.7278 0.7278 0.7236 0.7195 0.7154	<b>80.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1
<b>5.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9 <b>6.0</b>	8.9403 8.9489 8.9573 8.9655 8.9736 8.9816 8.9894 8.9970 9.0046 9.0120 9.0192	9.9983 9.9983 9.9982 9.9981 9.9981 9.9980 9.9979 9.9978 9.9978 9.9977 9.9976	8.9420 8.9506 8.9591 8.9674 8.9756 8.9836 8.9915 8.9992 9.0068 9.0143 9.0216	1.0580 1.0494 1.0409 1.0326 1.0244 1.0164 1.0085 1.0008 0.9932 0.9857 0.9784	<b>85.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1 <b>84.0</b>	11.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 12.0	9.2806 9.2845 9.2883 9.2921 9.2959 9.2997 9.3034 9.3070 9.3107 9.3143 9.3179	9.9919 9.9918 9.9916 9.9915 9.9913 9.9912 9.9910 9.9909 9.9907 9.9906 9.9904	9.2887 9.2927 9.2967 9.3006 9.3046 9.3085 9.3123 9.3162 9.3200 9.3237 9.3275	0.7113 0.7073 0.7033 0.6994 0.6954 0.6915 0.6877 0.6838 0.6800 0.6763	<b>79.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1 <b>78.0</b>
	L cos	l	t	0.9784   L tan	l	1 12.0	L cos	J L sin	L cot	U.8725	deg

# Logarithms of trigonometric functions

# for decimal fractions of a degree

_deg_	L sin	L cos	L tan	L cot		deg	Lsin	L cos	L tan	L col	I
<b>12.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	9.3179 9.3214 9.3250 9.3284 9.3319 9.3353 9.3387 9.3387 9.3421 9.3455 9.3488	9.9904 9.9902 9.9901 9.9899 9.9897 9.9896 9.9894 9.9894 9.9892 9.9891 9.9889	9.3275 9.3312 9.3349 9.3385 9.3422 9.3458 9.3493 9.3529 9.3564 9.3599	0.6725 0.6688 0.6651 0.6578 0.6578 0.6572 0.6507 0.6471 0.6436 0.6401	<b>78.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	18.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	9.4900 9.4923 9.4946 9.4969 9.5015 9.5037 9.5060 9.5082 9.5104	9.9782 9.9780 9.9777 9.9775 9.9772 9.9770 9.9767 9.9764 9.9762 9.9759	9.5118 9.5143 9.5169 9.5195 9.5220 9.5245 9.5270 9.5295 9.5320 9.5345	0.4882 0.4857 0.4805 0.4780 0.4755 0.4730 0.4705 0.4705 0.4680 0.4655	72.0 .9 .8 .7 .5 .4 .3 .2 .1
<b>13.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	9.3521 9.3554 9.3586 9.3618 9.3650 9.3682 9.3713 9.3745 9.3775 9.3806	9.9887 9.9885 9.9884 9.9882 9.9880 9.9878 9.9876 9.9875 9.9873 9.9871	9.3634 9.3668 9.3702 9.3736 9.3770 9.3804 9.3837 9.3870 9.3903 9.3903 9.3935	0.6366 0.6332 0.6298 0.6264 0.6230 0.6196 0.6163 0.6130 0.6097 0.6065	<b>77.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>19.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	9.5126 9.5148 9.5170 9.5192 9.5213 9.5235 9.5256 9.5278 9.5278 9.5299 9.5320	9.9757 9.9754 9.9751 9.9749 9.9743 9.9743 9.9741 9.9738 9.9735 9.9733	9.5370 9.5394 9.5419 9.5443 9.5467 9.5491 9.5516 9.5539 9.5563 9.5587	0.4630 0.4606 0.4581 0.4557 0.4533 0.4509 0.4484 0.4461 0.4437 0.4413	<b>71.0</b> .9 .8 .7 .6 .5 .5 .4 .3 .2 .1
14.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	9.3837 9.3867 9.3897 9.3927 9.3957 9.3986 9.4015 9.4044 9.4073 9.4102	9.9869 9.9867 9.9865 9.9863 9.9861 9.9859 9.9857 9.9855 9.9855 9.9853 9.9851	9.3968 9.4000 9.4C32 9.4064 9.4095 9.4127 9.4158 9.4189 9.4220 9.4250	0.6032 0.6000 0.5968 0.5936 0.5905 0.5873 0.5842 0.5811 0.5780 0.5750	<b>76.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>20.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	9.5341 9.5361 9.5382 9.5402 9.5423 9.5443 9.5463 9.5463 9.5484 9.5504 9.5523	9.9730 9.9727 9.9724 9.9722 9.9719 9.9716 9.9713 9.9710 9.9707 9.9704	9.5611 9.5634 9.5658 9.5661 9.5704 9.5727 9.5750 9.5773 9.5796 9.5819	0.4389 0.4366 0.4342 0.4319 0.4296 0.4273 0.4250 0.4227 0.4204 0.4181	70.0 .9 .8 .7 .5 .5 .5 .4 .3 .2 .1
15.0 .1 .2 .3 .4 .5 .6 .7 .8 .9	9.4130 9.4158 9.4186 9.4214 9.4242 9.4269 9.4296 9.4323 9.4350 9.4377	9.9849 9.9847 9.9845 9.9843 9.9841 9.9839 9.9837 9.9835 9.9833 9.9833 9.9831	9.4281 9.4311 9.4341 9.4371 9.4400 9.4430 9.4430 9.4459 9.4488 9.4517 9.4546	0.5719 0.5689 0.5659 0.5629 0.5600 0.5570 0.5541 0.5512 0.5483 0.5454	<b>75.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>21.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	9.5543 9.5563 9.5583 9.5602 9.5621 9.5641 9.5660 9.5679 9.5678 9.5678 9.5717	9.9702 9.9699 9.9696 9.9693 9.9690 9.9687 9.9684 9.9681 9.9678 9.9675	9.5842 9.5864 9.5887 9.5909 9.5932 9.5954 9.5976 9.5998 9.6020 9.6042	0.4158 0.4136 0.4113 0.4091 0.4068 0.4046 0.4024 0.4002 0.3980 0.3958	<b>69.0</b> _9 _8 .7 .5 .5 .4 .3 .2 _1
<b>16.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	9.4403 9.4430 9.4456 9.4482 9.4508 9.4533 9.4559 9.4584 9.4609 9.4634	9.9828 9.9826 9.9824 9.9822 9.9820 9.9817 9.9815 9.9813 9.9811 9.9808	9.4575 9.4603 9.4632 9.4660 9.4688 9.4716 9.4744 9.4771 9.4799 9.4826	0.5425 0.5397 0.5368 0.5340 0.5312 0.5284 0.5256 0.5229 0.5201 0.5174	<b>74.0</b> .9 .8 .7 .6 .5 .4 .3 .2 .1	<b>22.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9	9.5736 9.5754 9.5773 9.5792 9.5810 9.5828 9.5847 9.5865 9.5883 9.5901	9.9672 9.9669 9.9666 9.9662 9.9659 9.9655 9.9653 9.9653 9.9650 9.9647 9.9643	9.6064 9.6086 9.6108 9.6129 9.6151 9.6172 9.6194 9.6215 9.6236 9.6257	0.3936 0.3914 0.3892 0.3871 0.3849 0.3828 0.3826 0.3785 0.3764 0.3743	<b>68.0</b> .9 .8 .7 .6 .5 .5 .4 .3 .2 .1
17.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 18.0	9.4659 9.4684 9.4709 9.4733 9.4757 9.4757 9.4757 9.4805 9.4805 9.4829 9.4853 9.4876 9.4900	9.9806 9.9804 9.9801 9.9799 9.9797 9.9792 9.9782 9.9785 9.9785	9.4853 9.4880 9.4907 9.4934 9.4961 9.5014 9.5014 9.5040 9.5066 9.5092 9.5118	0.5147 0.5120 0.5093 0.5066 0.5039 0.5013 0.4986 0.4986 0.4986 0.4988 0.4908 0.4908	<b>73.0</b> .9 .8 .7 .5 .4 .3 .2 .1 <b>72.0</b>	<b>23.0</b> .1 .2 .3 .4 .5 .6 .7 .8 .9 <b>24.0</b>	9.5919 9.5937 9.5954 9.5972 9.5990 9.6007 9.6024 9.6042 9.6042 9.6059 9.6076	9.9640 9.9637 9.9634 9.9631 9.9627 9.9624 9.9621 9.9617 9.9614 9.9611 9.9607	9.6279 9.6300 9.6321 9.6341 9.6362 9.6383 9.6404 9.6424 9.6424 9.6445 9.6465	0.3721 0.3700 0.3679 0.3659 0.3638 0.3617 0.3576 0.3576 0.3555 0.3535 0.3514	67.0 .9 .8 .7 6 .5 .4 .3 .2 .1 66.0
	Lcos	Lsin	L cot	Ltan	deg	i	Lcos	L sin	L cot	Ltan	deg

# Logarithms of trigonometric functions

# for decimal fractions of a degree

deg	Lsin	L cos	L tan	L cot		deg	L sin	L cos	L fan	L cot	<u>I</u>
24.0	9.6093	9,9607	9.6486	0.3514	66.0	30.0	9.6990	9.9375	9.7614	0.2386	60.0
.1	9.6110	9.9604	9.6506	0.3494	.9	1.1	9.7003	9,9371	9.7632	0.2368	.9
-2 -3 -4 -5 -5 -7 -8 -9	9.6127	9.9601	9.6527	0.3473	.8	.2	9.7016	9.9367	9.7649	0.2351	.8
.3	9.6144	9.9597	9.6547	0.3453	.7	.3	9.7029	9.9362	9.7667	0.2333	.8 .7 .6 .5 .4 .3 .2
.4	9.6161 9.6177	9.9594 9.9590	9.6567	0.3433 0.3413	.6 .5	.4 .5	9.7042 9.7055	9.9358 9.9353	9.7684	0.2316	.6
.6	9.6194	9.9587	9.6607	0.3393	.5	.5	9.7055	9.9355	9.7701 9.7719	0.2299	.5
ž	9.6210	9.9583	9.6627	0.3373	.3	.6 .7	9,7080	9.9344	9.7736	0.2264	3
.8	9.6227	9.9580	9.6647	0.3353	.2	.8	9.7093	9.9340	9.7753	0.2247	.2
.9	9.6243	9.9576	9.6667	0.3333	.1	.9	9.7106	9.9335	9.7771	0.2229	.ī
25.0	9.6259	9.9573	9.6687	0.3313	65.0	31.0	9.7118	9.9331	9.7788	0.2212	59.0
.1	9.6276	9.9569	9.6706	0.3294	.9	.1	9.7131	9.9326	9.7805	0.2195	.9 .8 .7 .6 .5 .4 .3 .2 .1
.2 .3	9.6292 9.6308	9.9566 9.9562	9.6726 9.6746	0.3274	.8 .7	.2 .3	9.7144	9.9322 9.9317	9.7822	0.2178	.8
4	9.6324	9.9558	9.6765	0.3234	.6	.3	9.7156	9.9312	9.7839 9.7856	0.2161	.,
.4 .5 .6 .7 .8 .9	9.6340	9.9555	9.6785	0.3215	.5	.4 .5	9,7181	9.9308	9.7873	0.2127	.0
.6	9.6356	9.9551	9.6804	0.3196	.5	.6	9.7193	9.9303	9,7890	0.2110	Ă
.7	9.6371	9.9548	9.6824	0.3176	.3	.6 .7	9.7205	9.9298	9.7907	0.2093	.3
.8	9.6387	9.9544	9.6843	0.3157	.2	.8	9.7218	9.9294	9.7924	0.2076	.2
.9	9.6403	9.9540	9.6863	0.3137	.1	.9	9.7230	9.9289	9.7941	0.2059	.1
26.0	9.6418	9.9537	9.6882	0.3118	64.0	32.0	9.7242	9.9284	9.7958	0.2042	58.0
.1 .2	9.6434	9.9533	9.6901 9.6920	0.3099	.9		9.7254	9.9279	9.7975	0.2025	.9
.4	9.6465	9.9529 9.9525	9.6939	0.3080	.8 .7	.2 .3	9.7266 9.7278	9.9275	9.7992 9.8008	0.2008	.9 .8 .7 .5 .4 .3 .2
.3 .4 .5 .6 7 .8	9.6480	9.9522	9.6958	0.3042	.6	.4	9.7290	9.9265	9.8025	0.1975	./
.5	9.6495	9,9518	9.6977	0.3023	.5	.5	9.7302	9.9260	9.8042	0.1958	.5
.6	9.6510	9.9514	9.6996	0.3004	.4	.6	9.7314	9.9255	9.8059	0.1941	.4
J	9.6526	9.9510	9.7015	0,2985	.3	.7	9.7326	9.9251	9.8075	0.1925	.3
.8	9.6541	9.9506	9.7034	0.2966	.2	.8	9.7338	9.9246	9.8092	0.1908	.2
.9	9.6556	9.9503	9.7053	0.2947	.1	.9	9.7349	9.9241	9.8109	0.1891	.1
27.0	9.6570	9.9499	9.7072	0.2928	63.0	33.0	9.7361	9.9236	9.8125	0.1875	57.0
.1	9.6585	9.9495 9.9491	9.7090 9.7109	0.2910	.9 .8	1.	9.7373	9.9231	9.8142	0.1858	.9 .8 .7 .6 .5 .4 .3 .2 .1
.4	9.6615	9.9487	9.7128	0.2872	.0	.2 .3	9.7384 9.7396	9.9226	9.8158 9.8175	0.1842 0.1825	.8
.4	9.6629	9.9483	9.7146	0.2854	.6	.4	9.7407	9.9216	9.8191	0.1809	.,
.5	9.6644	9,9479	9.7165	0.2835	.5	.5	9.7419	9.9211	9.8208	0.1792	.5
.6	9.6659	9.9475	9.7183	0.2817	.4 .3	.6	9.7430	9.9206	9.8224	0.1776	.4
.2 .3 .4 .5 .6 .7 .8	9.6673	9.9471	9.7202	0.2798	.3	.7	9.7442	9.9201	9.8241	0.17,59	.3
.8	9.6687	9.9467	9.7220	0.2780	.2	.8	9.7453	9.9196	9.8257	0.1743	.2
.9	9.6702	9.9463	9.7238	0.2762	.1	.9	9.7464	9.9191	9.8274	0.1726	.1
28.0	9.6716	9.9459	9.7257	0.2743	62.0	34.0	9.7476	9.9186	9.8290	0.1710	56.0
	9.6730	9.9455	9.7275	0.2725	.9	1.	9.7487	9.9181	9.8306	0.1694	.9
.2	9.6744 9.6759	9.9451 9.9447	9.7293 9.7311	0.2707	.8 .7	.2 .3	9.7498 9.7509	9.9175 9.9170	9.8323 9.8339	0.1677 0.1661	.8 .7
.3	9.6773	9.9443	9.7330	0.2670	.6	.4	9.7520	9.9165	9.8355	0.1645	./
.5	9,6787	9.9439	9.7348	0.2652	.5	.5	9.7531	9.9160	9.8371	0.1629	.5
.6	9.6801	9.9435	9.7366	0.2634	.4	.6 .7	9.7542	9.9155	9.8388	0.1612	.4
.1 .2 .3 .4 .5 .6 .7 .8	9.6814	9.9431	9.7384	0.2616	.3 .2	.7	9.7553	9.9149	9.8404	0.1596	.3
.8	9.6828	9.9427	9.7402	0.2598	.2	.8	9.7564	9.9144	9.8420	0.1580	.6 .5 .4 .3 .2 .1
.9	9.6842	9.9422	9.7420	0.2580	.1	.9	9.7575	9.9139	9.8436	0.1564	.1
29.0	9.6856	9.9418	9.7438 9.7455	0.2562	61.0	35.0	9.7586	9.9134 9.9128	9.8452	0.1548	55.0
.1	9.6869	9.9414 9.9410	9.7455	0.2545 0.2527	.9	.1	9.7597 9.7607	9.9128	9.8468 9.8484	0.1532 0.1516	.9
.3	9.6896	9.9410	9.7473	0.2527	.8 .7	.3	9.7618	9.9118	9.8501	0.1318	.8 .7
.2 .3 .4 .5 .6 .7	9.6910	9.9401	9.7509	0.2491	.6	.4	9.7629	9.9112	9.8517	0.1483	.6
.5	9.6923	9.9397	9.7526	0.2474	.5	.5	9.7640	9.9107	9.8533	0.1467	.5
.6	9.6937	9.9393	9.7544	0.2456	.4	.6	9.7650	9.9'01	9.8549	0.1451	4
.7	9.6950	9.9388	9.7562	0.2438	.3	.7	9.7661	9.90%	9.8565	0.1435	.3
.8 .9	9.6963	9.9384 9.9380	9.7579 9.7597	0.2421	.2 .1	.8 .9	9.7671	9.9091 9.9085	9.8581 9.8597	0.1419 0.1403	.6 .5 .4 .3 .2 .1
30.0	9.6990	9.9375	9.7614	0.2386	60.0	36.0	9.7692	9.9080	9.8613	0.1387	54.0
	L cos	L sin	L cot	L tan	deg	1	L cos	Lsin	L cot	L tan	deg

ł

# Logarithms of trigonometric functions

# for decimal fractions of a degree continued

deg	Lsin	L cos	L fan	L cot	<u> </u>	deg	L sin	L cos	L tan	L cot	1
94.0	0.7/00	0.0000	0.0410	0 1007		40.6	0.0106	0 0010	9.9315	0.000	49.5
36.Q	9.7692	9.9080	9.8613	0.1387	54.0	40.5	9.8125	9.8810	9.9313	0.0685	
.1	9.7703	9.9074	9.8629	0.1371	.9	.6	9.8134	9.8804	9.9330	0.08/0	.4
.2	9.7713	9.9069	9.8644	0.1356	.8	.7	9.8143	9.8797		0.0654	.3
.3	9.7723	9.9063	9.8660	0.1340	.7	.8	9.8152	9.8791	9.9361	0.0639	.2
-4	9.7734	9.9057	9.8676	0.1324	.6	.9	9.8161	9.8784	9.9376	0.0624	.1
.5	9.7744	9.9052	9.8692	0.1308	.5	41.0	9.8169	9.8778	9.9392	0.0608	49.0
.6	9,7754	9.9046	9.8708	0.1292	4	.1	9.8178	9.8771	9.9407	0.0593	.9
-6 .7	9.7764	9,9041	9.8724	0.1276	.4 .3	.2	9.8187	9.8765	9.9422	0.0578	.8 .7
.8	9,7774	9,9035	9.8740	0.1260	.2	.3	9.8195	9.8758	9,9438	0.0562	7
.9	9.7785	9.9029	9.8755	0.1245	.ī	.4	9.8204	9.8751	9.9453	0.0547	.6
							0.0010	0.0745		0.0500	-
37.0	9.7795	9.9023	9.8771	0.1229	53.0	.5	9.8213	9.8745	9.9468	0.0532	.5 .4 .3 .2
.1	9.7805	9.9018	9.8787	0.1213	.9	.6	9.8221	9.8738	9.9483	0.0517	.4
.2	9.7815	9.9012	9.8803	0.1197	.8	.7	9.8230	9.8731	9.9499	0.0501	.3
.3	9.7825	9.9006	9.8818	0.1182	.7	.8	9.8238	9.8724	9.9514	0.0486	.2
.4	9.7835	9.9000	9.8834	0.1166	.6	.9	9.8247	9.8718	9.9529	0.0471	.1
.5	9,7844	9,8995	9.8850	0.1150	.5	42.0	9.8255	9.8711	9.9544	0.0456	48.0
~	9.7854	9.8989	9.8865	0.1135	Ă	.1	9.8264	9.8704	9,9560	0.0440	.9
.6 .7	9.7864	9.8983	9.8881	0.1119	3	.2	9.8272	9.8697	9.9575	0.0425	
.8	9.7874	9.8977	9.8897	0.1103	.4 .3 .2	.3	9.8280	9.8690	9,9590	0.0410	.8 .7
.9	9.7884	9.8971	9.8912	0.1088		.4	9.8289	9.8683	9.9605	0.0395	.6
38.0	9.7893	9.8965	9.8928	0.1072	52.0	.5	9.8297	9.8676	9.9621	0.0379	.5 .4 .3 .2
.1	9.7903	9.8959	9.8944	0.1056	.9	.6	9.8305	9.8669	9.9636	0.0364	.4
.2 .3	9.7913	9.8953	9.8959	0.1041	.8	.7	9.8313	9.8662	9.9651	0.0349	.3
.3	9.7922	9.8947	9.8975	0.1025	.7	.8	9.8322	9.8655	9.9666	0.0334	.2
.4	9.7932	9.8941	9.8990	0.1010	.6	.9	9.8330	9.8648	9.9681	0.0319	.1
.5	9,7941	9.8935	9.9006	0.0994	.5	43.0	9.8338	9.8641	9,9697	0.0303	47.0
.6 .7	9,7951	9.8929	9,9022	0.0978	.4	.1	9.8346	9.8634	9.9712	0.0288	.9
.7	9,7960	9.8923	9,9037	0.0963	.4 .3	.2	9.8354	9,8627	9.9727	0.0273	.8
.8	9,7970	9.8917	9,9053	0.0947	.2	.3	9.8362	9.8620	9.9742	0.0258	.7
.9	9.7979	9.8911	9.9068	0.0932		.4	9.8370	9.8613	9.9757	0.0243	.6
39.0	9,7989	9.8905	9,9084	0.0916	51.0	-	9.8378	0.0/0/	9.9772	0.0000	
	9.7998	9.8899	9.9064			.5		9.8606 9.8598		0.0228	.5 .4 .3 .2
.1 .2	9.8007	9.8893	9.9099	0.0901	.9 .8	.6 .7	9.8386		9.9788	0.0212	.4
.2		9.8887		0.0885	-9		9.8394	9.8591	9.9803	0.0197	
.3 .4	9.8017 9.8026	9.8880	9.9130	0.0870	.7 .6	.8 .9	9.8402	9.8584	9.9818	0.0182	.1
.4	9.0020	9.0000	7.7140	0.0654	•	.,,	9.8410	9.8577	9.9833	0.0167	.1
.5 .6	9.8035	9.8874	9.9161	0.0839	.5 .4	44.0	9.8418	9.8569	9.9848	0.0152	46.0
.6	9.8044	9.8868	9.9176	0.0824	.4	.1	9.8426	9.8562	9.9864	0.0136	.9
.7	9.8053	9.8862	9.9192	0.0808	.3	.2	9.8433	9.8555	9.9879	0.0121	.8
.8 .9	9.8063	9.8855	9.9207	0.0793	.2	.3	9.8441	9.8547	9.9894	0.0106	7
.9	9.8072	9.8849	9.9223	0.0777	.1	.4	9.8449	9.8540	9.9909	0.0091	6
40.0	9.8081	9.8843	9.9238	0.0762	50.0	.5	9.8457	9.8532	9.9924	0.0076	
	9.8090	9.8836	9.9254	0.0746	.9	.6	9.8464	9.8525	9.9939	0.0061	
,	9.8099	9.8830	9.9269	0.0731	.8	.0	9.8472	9.8517	9.9955	0.0045	17
.2 .3	9.8108	9.8823	9.9284	0.0716	.7	.8	9.8480	9.8510	9.9970	0.0040	
.4	9.8117	9.8817	9.9300	0.0700	.6	.9	9.8487	9.8502	9.9985	0.0015	.5 .4 .3 .2 .1
40.5	0.0105										
40.5	9.8125	9.8810	9.9315	0.0685	49.5	45.0	9.8495	9.8495	0.0000	0.0000	45.0
	L cos	Lsin	L cot	L tan	deg		Lcos	Lsin	L cot	L tan	deg
										a ratt	

# 314

# Natural logarithms

	1	1 - 1				1 _	1.	1	۱.	1 -	,		m	oan e	liff	eren	ces		
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
1.0 1.1 1.2 1.3 1.4	0.0000 0.0953 0.1823 0.2624 0.3365	0100 1044 1906 2700 3436	0198 1133 1989 2776 3507	0296 1222 2070 2852 3577	0392 1310 2151 2927 3646	0488 1398 2231 3001 3716	0583 1484 2311 3075 3784	0677 1570 2390 3148 3853	0770 1655 2469 3221 3920	0862 1740 2546 3293 3988	-10 9 8 7 7	19 17 16 15 14	26 24 22	35 32 30	44 40 37	52 48 44	52	76 70 64 59 55	72 67
<b>1.5</b> 1.6 1.7 1.8 1.9	0.4055 0.4700 0.5306 0.5378 0.6419	4121 4762 5365 5933 6471	4187 4824 5423 5988 6523	4253 4836 5481 6043 6575	4318 4947 5539 6098 6627	4383 5008 5596 6152 6678	4447 5068 5653 6206 6729	4511 5128 5710 6259 6780	4574 5188 5766 6313 6831	4637 5247 5822 6366 6881	6 6 5 5		18 17 16	24 23 22	32 30 29 27 26	36 34 32	42 40 38	52 48 46 43 41	55 51 49
<b>2.0</b> 2.1 2.2 2.3 2.4	0.6931 0.7419 0.7885 0.8329 0.8755	6981 7467 7930 8372 8796	7031 7514 7975 8416 8838	7080 7561 8020 8459 8879	7129 7608 8065 8502 8920	7178 7655 8109 8544 8961	7227 7701 8154 8537 9002	7275 7747 8198 8629 9042	7324 7793 8242 8671 9083	7372 7839 8286 8713 9123	5 5 4 4		15 14 13 13 12	19 18 17	24 23 22 21 20	28 27 26	33 31	37 36 34	
<b>2.5</b> 2.6 2.7 2.8 2.9	0.9163 0.9555 0.9933 1.0296 1.0647	9203 9594 9969 0332 0682	9243 9632 1.0006 0367 0716	9282 9670 0043 0403 0750	9322 9708 0080 0438 0784	9361 9746 0116 0473 0818	9400 9783 0152 0508 0852	9439 9821 0188 0543 0886	9478 9858 0225 0578 0919	9517 9895 0260 0613 0953	4 4 4 3		12 11 11 11 10	15 15 14	18	23 22 21	27 26 25 25 24	30 29 28	35 34 33 32 31
<b>3.0</b> 3.1 3.2 3.3 <b>3.</b> 4	1.0986 1.1314 1.1632 1.1939 1.2238	1019 1346 1663 1969 2267	1053 1378 1694 2000 2296	1086 1410 1725 2030 2326	1119 1442 1756 2060 2355	1151 1474 1787 2090 2384	1184 1506 1817 2119 2413	1217 1537 1848 2149 2442	1249 1569 1878 2179 2470	1282 1600 1909 2208 2499	3 3 3 3 3	7 6 6 6 6	10 10 9 9 9	13 12	16 16 15 15 15	20 19 18 18 18	22 22 21		30 29 28 27 26
<b>3.5</b> 3.6 3.7 3.8 3.9	1.2528 1.2809 1.3033 1.3350 1.3610	2556 2837 3110 3376 3635	2585 2865 3137 3403 3661	2613 2892 3164 3429 3686	2641 2920 3191 3455 3712	2669 2947 3218 3431 3737	2698 2975 3244 3507 3762	2726 3002 3271 3533 3788	2754 3029 3297 3558 3813	2782 3056 3324 3584 3838	3 3 3 3 3	6 5 5 5 5 5	8 8 8 8 8	11	13 13	16 16 16	19 19 18		
<b>4.0</b> 4.1 4.2 4.3 <b>4.</b> 4	1.3863 1.4110 1.4351 1.4586 1.4816	3888 4134 4375 4609 4839	3913 4159 4398 4633 4861	3938 4183 4422 4656 4884	3962 4207 4446 4679 4907	3987 4231 4469 4702 4929	4012 4255 4493 4725 4951	4036 4279 4516 4748 4974	4061 4303 4540 4770 4996	4085 4327 4563 4793 5019	222222	5 5 5 5 5	7 7 7 7 7	10 9 9	12	14 14 14	17 16 16	19	22 21 21
<b>4.5</b> 4.6 4.7 4.8 4.9	1.5041 1.5261 1.5476 1.5686 1.5892	5063 5282 5497 5707 5913	5085 5304 5518 5728 5933	5107 5326 5539 5748 5953	5129 5347 5560 5769 5974	5151 5369 5581 5790 5994	5173 5390 5602 5810 6014	5195 5412 5623 5831 6034	5217 5433 5644 5851 6054	5239 5454 5665 5872 6074	22222	4 4 4 4	7 6 6 6 6	9 8 8	11 11 11 10 10		15 15 14	18 17 17 16 16	19 19 19
<b>5.0</b> 5.1 5.2 5.3 5.4	1.6094 1.6292 1.6487 1.6677 1.6864	6114 6312 6506 6696 6882	6134 6332 6525 6715 6901	6154 6351 6544 6734 6919	6174 6371 6563 6752 6938	6194 6390 6582 6771 6956	6214 6409 6601 6790 6974	6233 6429 6620 6808 6993	6253 6448 6639 6827 7011	6273 6467 6658 6845 7029	2 2 2 2 2 2 2	4	66665	8 8 7 7	10 10 10 9 9	12 11	14 13 13	16 16 15 15 15	18 17 17

# Natural logarithms of 10⁺ⁿ

. <u>n</u>	. 1	1	2	3	4	5	6	7	8	9
loge 10 ⁿ	1	2.3026	4.6052	6.9078	9.2103	11.5129	13.8155	16.1181	18.4207	20.7233

# MATHEMATICAL TABLES 315

-	1	1			ł -	1	1		1		mean differences				es		
	0	1	2	3	4	5	6	7	8	9	·τ	2	3	4	5		7 8 9
<b>5.5</b> 5.6 5.7 5.8 5.9	1.7047 1.7228 1.7405 1.7579 1.7750	7066 7246 7422 7596 7766	7084 7263 7440 7613 7783	7102 7281 7457 7630 7800	7120 7299 7475 7647 7817	7138 7317 7492 7664 7834	7156 7334 7509 7681 7851	7174 7352 7527 7699 7867	7192 7370 7544 7716 7884	7210 7387 7561 7733 7901	22222	4 4 3 3 3	55555	7 7 7 7 7	9 1 9 1 9 1 9 1 8 1	1 0 0	13 14 16 12 14 16 12 14 16 12 14 16 12 14 15 12 13 15
<b>6.0</b> 6.1 6.2 6.3 6.4	1.7918 1.8083 1.8245 1.8405 1.8563	7934 8099 8262 8421 8579	7951 8116 8278 8437 8594	7967 8132 8294 8453 8610	7984 8148 8310 8469 8625	8001 8165 8326 8485 8641	8017 8181 8342 8500 8656	8034 8197 8358 8516 8672	8050 8213 8374 8532 8687	8066 8229 8390 8547 8703	2 2 2 2 2 2 2 2	3 3 3 3 3	5 5 5 5 5 5 5 5	7 6 6 6		o	12 13 15 11 13 15 11 13 14 11 13 14 11 13 14 11 12 14
<b>6.5</b> 6.6 6.7 6.8 6.9	1.8718 1.8871 1.9021 1.9169 1.9315	8733 8886 9036 9184 9330	8749 8901 9051 9199 9344	8764 8916 9066 9213 9359	8779 8931 9081 9228 9373	8795 8946 9095 9242 9387	8810 8961 9110 9257 9402	8825 8976 9125 9272 9416	8840 8991 9140 9286 9430	8856 9006 9155 9301 9445	2 2 1 1 1	3 3 3 3 3 3	5 5 4 4 4	6 6 6 6 6	8 7 7	9 9 9 9	11 12 14 11 12 14 10 12 13 10 12 13 10 12 13
<b>7.0</b> 7.1 7.2 7.3 7.4	1.9459 1.9601 1.9741 1.9879 2.0015	9473 9615 9755 9892 0028	9488 9629 9769 9906 0042	9502 9643 9782 9920 0055	9516 9657 9796 9933 0069	9530 9671 9810 9947 0082	9544 9685 9824 9961 0096	9559 9699 9838 9974 0109	9573 9713 9851 9988 0122	9587 9727 9865 2.0001 0136	1 1 1 1	3 3 3 3 3	4 4 4 4	6 6 6 5 5	7 7 7 7	9 8 8 8 8	10 11 13 10 11 13 10 11 12 10 11 12 9 11 12 9 11 12
<b>7.5</b> 7.6 7.7 7.8 7.9	2.0149 2.0281 2.0412 2.0541 2.0669	0162 0295 0425 0554 0681	0176 0308 0438 0567 0694	0189 0321 0451 0580 0707	0202 0334 0464 0592 0719	0215 0347 0477 0605 0732	0229 0360 0490 0618 0744	0242 0373 0503 0631 0757	0255 0386 0516 0643 0769	0268 0399 0528 0656 0782	1 1 1 1 1	3 3 3 3 3 3 3	4 4 4 4	5 5 5 5 5	7 6 6	8 8 8 8 8 8	9 11 12 9 10 12 9 10 12 9 10 12 9 10 11 9 10 11
8.0 8.1 8.2 8.3 8.4	2.0794 2.0919 2.1041 2.1163 2.1282	0807 0931 1054 1175 1294	0819 0943 1066 1187 1306	0832 0956 1078 1199 1318	0844 0968 1090 1211 1330	0857 0980 1102 1223 1342	0869 0992 1114 1235 1353	0882 1005 1126 1247 1365	0894 1017 1138 1258 1377	0906 1029 1150 1270 1389	1	3 2 2 2 2 2 2	4 4 4 4	5 5 5 5 5 5	6 6 6	777777	9 10 11 9 10 11 9 10 11 8 10 11 8 9 11
<b>8.5</b> 8.6 8.7 8.8 8.9	2.1401 2.1518 2.1633 2.1748 2.1861	1412 1529 1645 1759 1872	1424 1541 1656 1770 1883	1436 1552 1668 1782 1894	1448 1564 1679 1793 1905	1459 1576 1691 1804 1917	1471 1587 1702 1815 1928	1483 1599 1713 • 1827 1939	1494 1610 1725 1838 1950	1506 1622 1736 1849 1961	1 1 1 1	22222	4 3 3 3 3	5 5 5 4	6 6 6	7 7 7 7 7 7	8 9 11 8 9 10 8 9 10 8 9 10 8 9 10 8 9 10
<b>9.0</b> 9.1 9.2 9.3 9.4	2.1972 2.2083 2.2192 2.2300 2.2407	1983 2094 2203 2311 2418	1994 2105 2214 2322 2428	2006 2116 2225 2332 2439	2017 2127 2235 2343 2450	2028 2138 2246 2354 2460	2039 2148 2257 2364 2471	2050 2159 2268 2375 2481	2061 2170 2279 2386 2492	2072 2181 2289 2396 2502	1 1 1 1	22222	3 3 3 3 3 3	4 4 4 4	5 5 5	77666	8 9 10 8 9 10 8 9 10 7 9 10 7 8 10
9.5 9.6 9.7 9.8 9.9 10.0	2.2513 2.2618 2.2721 2.2824 2.2925 2.3026	2523 2628 2732 2834 2935	2534 2638 2742 2844 2946	2544 2649 2752 2854 2956	2555 2659 2762 2865 2966	2565 2670 2773 2875 2976	2576 2680 2783 2885 2986	2586 2690 2793 2895 2996	2597 2701 2803 2905 3006	2607 2711 2814 2915 3016	1 1 1 1	22222	33333	4 4 4 4	5 5 5	66666	7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

# Natural logarithms of $10^{-n}$

**Natural logarithms** 

n	1	2	3	4	5	6	7	8	9
log _e 10 ⁻ⁿ	3.6974	5.3948	7.0922	10.7897	12.4871	14.1845	17.8819	19.5793	21,2767

316

# Hyperbolic sines [sinh $x = \frac{1}{2}(e^x - e^{-x})$ ]

x	0	1	2	3	4	5	6	7	8	9	avg diff
<b>0.0</b>	0.0000	0.0100	0.0200	0.0300	0.0400	0.0500	0.0600	0.0701	0.0801	0.0901	100
.1	0.1002	0.1102	0.1203	0.1304	0.1405	0.1506	0.1607	0.1708	0.1810	0.1911	101
.2	0.2013	0.2115	0.2218	0.2320	0.2423	0.2526	0.2629	0.2733	0.2837	0.2941	103
.3	0.3045	0.3150	0.3255	0.3360	0.3466	0.3572	0.3678	0.3785	0.3892	0.4000	106
.4	0.4108	0.4216	0.4325	0.4434	0.4543	0.4653	0.4764	0.4875	0.4986	0.5098	110
<b>0.5</b>	0.5211	0.5324	0.5438	0.5552	0.5666	0.5782	0.5897	0.6014	0.6131	0.6248	116
.6	0.6367	0.6485	0.6605	0.6725	0.6846	0.6967	0.7090	0.7213	0.7336	0.7461	122
.7	0.7586	0.7712	0.7838	0.7966	0.8094	0.8223	0.8353	0.8484	0.8615	0.8748	130
.8	0.8881	0.9015	0.9150	0.9286	0.9423	0.9561	0.9700	0.9840	0.9981	1.012	138
.9	1.027	1.041	1.055	1.070	1.085	1.099	1.114	1.129	1.145	1.160	15
<b>1.0</b>	1.175	1.191	1.206	1.222	1.238	1.254	1.270	1.286	1.303	1.319	16
.1	1.336	1.352	1.369	1.386	1.403	1.421	1.438	1.456	1.474	1.491	17
.2	1.509	1.528	1.546	1.564	1.583	1.602	1.621	1.640	1.659	1.679	19
.3	1.698	1.718	1.738	1.758	1.779	1.799	1.820	1.841	1.862	1.883	21
.4	1.904	1.926	1.948	1.970	1.992	2.014	2.037	2.060	2.083	2.106	22
1.5	2.129	2.153	2.177	2.201	2.225	2.250	2.274	2.299	2.324	2.350	25
.6	2.376	2.401	2.428	2.454	2.481	2.507	2.535	2.562	2.590	2.617	27
.7	2.646	2.674	2.703	2.732	2.761	2.790	2.820	2.850	2.881	2.911	30
.8	2.942	2.973	3.005	3.037	3.069	3.101	3.134	3.167	3.200	3.234	33
.9	3.268	3.303	3.337	3.372	3.408	3.443	3.479	3.516	3.552	3.589	36
<b>2.0</b>	3.627	3.665	3.703	3.741	3.780	3.820	3.859	3.899	3.940	3.981	39
.1	4.022	4.064	4.106	4.148	4.191	4.234	4.278	4.322	4.367	4.412	44
.2	4.457	4.503	4.549	4.596	4.643	4.691	4.739	4.788	4.837	4.887	48
.3	4.937	4.988	5.039	5.090	5.142	5.195	5.248	5.302	5.356	5.411	53
.4	5.466	5.522	5.578	5.635	5.693	5.751	5.810	5.869	5.929	5.989	58
<b>2.5</b>	6.050	6.112	6.174	6.237	6.300	6.365	6.429	6.495	6.561	6.627	64
.6	6.695	6.763	6.831	6.901	6.971	7.042	7.113	7.185	7.258	7.332	71
.7	7.406	7.481	7.557	7.634	7.711	7.789	7.868	7.948	8.028	8.110	79
.8	8.192	8.275	8.359	8.443	8.529	8.615	8.702	8.790	8.879	8.969	87
.9	9.060	9.151	9.244	9.337	9.431	9.527	9.623	9.720	9.819	9.918	96
<b>3.0</b>	10.02	10.12	10.22	10.32	10.43	10.53	10.64	10.75	10.86	10.97	11
.1	11.08	11.19	11.30	11.42	11.53	11.65	11.76	11.88	12.00	12.12	12
.2	12.25	12.37	12.49	12.62	12.75	12.88	13.01	13.14	13.27	13.40	13
.3	13.54	13.67	13.81	13.95	14.09	14.23	14.38	14.52	14.67	14.82	14
.4	14.97	15.12	15.27	15.42	15.58	15.73	15.89	16.05	16.21	16.38	16
<b>3.5</b>	16.54	16.71	16.88	17.05	17.22	17.39	17.57	17.74	17.92	18.10	17
.6	18.29	18.47	18.66	18.84	19.03	19.22	19.42	19.61	19.81	20.01	19
.7	20.21	20.41	20.62	20.83	21.04	21.25	21.46	21.68	21.90	22.12	21
.8	22.34	22.56	22.79	23.02	23.25	23.49	23.72	23.96	24.20	24.45	24
.9	24.69	24.94	25.19	25.44	25.70	25.96	26.22	26.48	26.75	27.02	26
<b>4.0</b>	27.29	27.56	27.84	28.12	28.40	28.69	28.98	29.27	29.56	29.86	29
.1	30.16	30.47	30.77	31.08	31.39	31.71	32.03	32.35	32.68	33.00	32
.2	33.34	33.67	34.01	34.35	34.70	35.05	35.40	35.75	36.11	36.48	35
.3	36.84	37.21	37.59	37.97	38.35	38.73	39.12	39.52	39.91	40.31	39
.4	40.72	41.13	41.54	41.96	42.38	42.81	43.24	43.67	44.11	44.56	43
<b>4.5</b>	45.00	45.46	45.91	46.37	46.84	47.31	47.79	48.27	48.75	49.24	47
.6	49.74	50.24	50.74	51.25	51.77	52.29	52.81	53.34	53.88	54.42	52
.7	54.97	55.52	56.08	56.64	57.21	57.79	58.37	58.96	59.55	60.15	58
.8	60.75	61.36	61.98	62.60	63.23	63.87	64.51	65.16	65.81	66.47	64
.9	67.14	67.82	68.50	69.19	69.88	70.58	71.29	72.01	72.73	73.46	71
5.0	74.20	l			l		[	l	l	l	

If x > 5, sinh  $x = \frac{1}{2}$  (e²) and  $\log_{10} \sinh x = (0.4343)x + 0.6990 - 1$ , correct to four significant figures.

MATHEMATICAL TABLES 317

# Hyperbolic cosines [cosh $x = \frac{1}{2}(e^x + e^{-x})$ ]

x	0	1_1_	2	3	4	5	6	7	8	9	avg diff
0.0	1.000	1.000	1.000	1.000	1.001	1.001	1.002	1.002	1.003	1.004	1
.1	1.005	1.006	1.007	1.008	1.010	1.011	1.013	1.014	1.016	1.018	2
.2	1.020	1.022	1.024	1.027	1.029	1.031	1.034	1.037	1.039	1.042	3
.3	1.045	1.048	1.052	1.055	1.058	1.062	1.066	1.069	1.073	1.077	4
.4	1.081	1.085	1.090	1.094	1.098	1.103	1.108	1.112	1.117	1.122	5
<b>0.5</b>	1.128	1.133	1.138	1.144	1.149	1.155	1.161	1.167	1.173	1.179	6
.6	1.185	1.192	1.198	1.205	1.212	1.219	1.226	1.233	1.240	1.248	7
.7	1.255	1.263	1.271	1.278	1.287	1.295	1.303	1.311	1.320	1.329	8
.8	1.337	1.346	1.355	1.365	1.374	1.384	1.393	1.403	1.413	1.423	10
.9	1.433	1.443	1.454	1.465	1.475	1.486	1.497	1.509	1.520	1.531	11
1.0	1.543	1.555	1.567	1.579	1.591	1.604	1.616	1.629	1.642	1.655	13
.1	1.669	1.682	1.696	1.709	1.723	1.737	1.752	1.766	1.781	1.796	14
.2	1.811	1.826	1.841	1.857	1.872	1.888	1.905	1.921	1.937	1.954	16
.3	1.971	1.988	2.005	2.023	2.040	2.058	2.076	2.095	2.113	2.132	18
.4	2.151	2.170	2.189	2.209	2.229	2.249	2.269	2.290	2.310	2.331	20
1.5	2.352	2.374	2.395	2.417	2.439	2.462	2.484	2.507	2.530	2.554	23
.6	2.577	2.601	2.625	2.650	2.675	2.700	2.725	2.750	2.776	2.802	25
.7	2.828	2.855	2.882	2.909	2.936	2.964	2.992	3.021	3.049	3.078	28
.8	3.107	3.137	3.167	3.197	3.228	3.259	3.290	3.321	3.353	3.385	31
.9	3.418	3.451	3.484	3.517	3.551	3.585	3.620	3.655	3.690	3.726	34
<b>2.0</b>	3.762	3.799	3.835	3.873	3.910	3.948	3.987	4.026	4.065	4.104	38
.1	4.144	4.185	4.226	4.267	4.309	4.351	4.393	4.436	4.480	4.524	42
.2	4.568	4.613	4.658	4.704	4.750	4.797	4.844	4.891	4.939	4.988	47
.3	5.037	5.087	5.137	5.188	5.239	5.290	5.343	5.395	5.449	5.503	52
.4	5.557	5.612	5.667	5.723	5.780	5.837	5.895	5.954	6.013	6.072	58
<b>2.5</b>	6.132	6.193	6.255	6.317	6.379	6.443	6.507	6.571	6.636	6.702	64
.6	6.769	6.836	6.904	6.973	7.042	7.112	7.183	7.255	7.327	7.400	70
.7	7.473	7.548	7.623	7.699	7.776	7.853	7.932	8.011	8.091	8.171	78
.8	8.253	8.335	8.418	8.502	8.587	8.673	8.759	8.847	8.935	9.024	86
.9	9.115	9.206	9.298	9.391	9.484	9.579	9.675	9.772	9.869	9.968	95
<b>3.0</b>	10.07	10.17	10.27	10.37	10.48	10.58	10.69	10.79	10.90	11.01	11
.1	11.12	11.23	11.35	11.46	11.57	11.69	11.81	11.92	12.04	12.16	12
.2	12.29	12.41	12.53	12.66	12.79	12.91	13.04	13.17	13.31	13.44	13
.3	13.57	13.71	13.85	13.99	14.13	14.27	14.41	14.56	14.70	14.85	14
.4	15.00	15.15	15.30	15.45	15.61	15.77	15.92	16.08	16.25	16.41	16
<b>3.5</b>	16.57	16.74	16.91	17.08	17.25	17.42	17.60	17.77	17.95	18.13	17
.6	18.31	18.50	18.68	18.87	19.06	19.25	19.44	19.64	19.84	20.03	19
.7	20.24	20.44	20.64	20.85	21.06	21.27	21.49	21.70	21.92	22.14	21
.8	22.36	22.59	22.81	23.04	23.27	23.51	23.74	23.98	24.22	24.47	23
.9	24.71	24.96	25.21	25.46	25.72	25.98	26.24	26.50	26.77	27.04	26
<b>4.0</b>	27.31	27.58	27.86	28.14	28.42	28.71	29.00	29.29	29.58	29.88	29
.1	30.18	30.48	30.79	31.10	31.41	31.72	32.04	32.37	32.69	33.02	32
.2	33.35	33.69	34.02	34.37	34.71	35.06	35.41	35.77	36.13	36.49	35
.3	36.86	37.23	37.60	37.98	38.36	38.75	39.13	39.53	39.93	40.33	39
.4	40.73	41.14	41.55	41.97	42.39	42.82	43.25	43.68	44.12	44.57	43
<b>4.5</b>	45.01	45.47	45.92	46.38	46.85	47.32	47.80	48.28	48.76	49.25	47
.6	49.75	50.25	50.75	51.26	51.78	52.30	52.82	53.35	53.89	54.43	52
.7	54.98	55.53	56.09	56.65	57.22	57.80	58.38	58.96	59.56	60.15	58
.8	60.76	61.37	61.99	62.61	63.24	63.87	64.52	65.16	65.82	66.48	64
.9	67.15	67.82	68.50	69.19	69.89	70.59	- 71.30	72.02	72.74	73.47	71
5.0	74.21		ļ	ļ		ļ	ļ	ļ			ļ

If x > 5,  $\cosh x = \frac{1}{2} (e^x)$ , and  $\log_{10} \cosh x = (0.4343)x + 0.6990 - 1$ , correct to four significant figures.

318

x	0	1	2	3	4	5	6	7	8	9	avg diff
<b>0.0</b>	.0000	.0100	.0200	.0300	.0400	.0500	.0599	.0699	.0798	.0898	100
.1	.0997	.1096	.1194	.1293	.1391	.1489	.1587	.1684	.1781	.1878	98
.2	.1974	.2070	.2165	.2260	.2355	.2449	.2543	.2636	.2729	.2821	94
.3	.2913	.3004	.3095	.3185	.3275	.3364	.3452	.3540	.3627	.3714	89
.4	.3800	.3885	.3969	.4053	.4136	.4219	.4301	.4382	.4462	.4542	82
0.5	.4621	.4700	.4777	.4854	.4930	.5005	.5080	.5154	.5227	.5299	75
.6	.5370	.5441	.5511	.5581	.5649	.5717	.5784	.5850	.5915	.5980	67
.7	.6044	.6107	.6169	.6231	.6291	.6352	.6411	.6469	.6527	.6584	60
.8	.6640	.6696	.6751	.6805	.6858	.6911	.6963	.7014	.7064	.7114	52
.9	.7163	.7211	.7259	.7306	.7352	.7398	.7443	.7487	.7531	.7574	45
1.0	.7616	.7658	.7699	.7739	.7779	.7818	.7857	.7895	.7932	.7969	39
.1	.8005	.8041	.8076	.8110	.8144	.8178	.8210	.8243	.8275	.8306	33
.2	.8337	.8367	.8397	.8426	.8455	.8483	.8511	.8538	.8565	.8591	28
.3	.8617	.8643	.8668	.8693	.8717	.8741	.8764	.8787	.8810	.48832	24
.4	.8854	.8875	.8896	.8917	.8937	.8957	.8977	.8996	.9015	.9033	20
<b>1.5</b>	.9052	.9069	.9087	.9104	.9121	.9138	.9154	.9170	.9186	.9202	17
.6	.9217	.9232	.9246	.9261	.9275	.9289	.9302	.9316	.9329	.9342	14
.7	.9354	.9367	.9379	.9391	.9402	.9414	.9425	.9436	.9447	.9458	11
.8	.9468	.9478	.9488	.9498	.9508	.9518	.9527	.9536	.9545	.9554	9
.9	.9562	.9571	.9579	.9587	.9595	.9603	.9611	.9619	.9626	.9633	8
<b>2.0</b>	.9640	.9647	.9654	.9661	.9668	.9674	.9680	.9687	.9693	.9699	6
.1	.9705	.9710	.9716	.9722	.9727	.9732	.9738	.9743	.9748	.9753	5
.2	.9757	.9762	.9767	.9771	.9776	.9780	.9785	.9789	.9793	.9797	4
.3	.9801	.9805	.9809	.9812	.9816	.9820	.9823	.9827	.9830	.9834	4
.4	.9837	.9840	.9843	.9846	.9849	.9852	.9855	.9858	.9861	.9863	3
<b>2.5</b>	.9866	.9869	.9871	.9874	.9876	.9879	.9881	.9884	.9886	.9888	2
.6	.9890	.9892	.9895	.9897	.9899	.9901	.9903	.9905	.9906	.9908	2
.7	.9910	.9912	.9914	.9915	.9917	.9919	.9920	.9922	.9923	.9925	2
.8	.9926	.9928	.9929	.9931	.9932	.9933	.9935	.9936	.9937	.9938	1
.9	.9940	.9941	.9942	.9943	.9944	.9945	.9946	.9947	.9949	.9950	1
3.0 4.0 5.0	.9951 .9993 .9999	.9959 .9995	.9967 .9996	.9973 .9996	.9978 .9997	.9982 .9998	.9985 .9998	.9988 .9998	.9990 .9999	.9992 .9999	4

# Hyperbolic tangents [tanh $x = (e^{x} - e^{-x})/(e^{x} + e^{-x}) = \sinh x/\cosh x$ ]

If x > 5, tanh x = 1.0000 to four decimal places.

# Multiples of 0.4343 $[0.43429448 = \log_{10} e]$

X	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0.0434	0.0869	0.1303	0.1737	0.2171	0.2606	0.3040	0.3474	0.3909
1.0	0.4343	0.4777	0.5212	0.5646	0.6080	0.6514	0.6949	0.7383	0.7817	0.8252
2.0	0.8686	0.9120	0.9554	0.9989	1.0423	1.0857	1.1292	1.1726	1.2160	1.2595
3.0	1.3029	1.3463	1.3897	1.4332	1.4766	1.5200	1.5635	1.6069	1.6503	1.6937
4.0	1.7372	1.7806	1.8240	1.8675	1.9109	1.9543	1.9978	2.0412	2.0846	2.1280
5.0	2.1715	2.2149	2.2583	2.3018	2.3452	2.3886	2.4320	2.4755	2.5189	2.5623
6.0	2.6058	2.6492	2.6926	2.7361	2.7795	2.8229	2.8663	2.9098	2.9532	2.9966
7.0	3.0401	3.0835	3.1269	3.1703	3.2138	3.2572	3.3006	3.3441	3.3875	3.4309
8.0	3.4744	3.5178	3.5612	3.6046	3.6481	3.6915	3.7349	3.7784	3.8218	3.8652
9.0	3.9087	3.9521	3.9955	4.0389	4.0824	4.1258	4.1692	4.2127	4.2561	4.2995

# Multiples of 2.3026 [2.3025851 = $1/0.4343 = \log_e 10$ ]

_ x	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0.2303	0.4605	0.6908	0.9210	1.1513	1.3816	1.6118	1.8421	2.0723
1.0 2.0	2.3026 4.6052	2.5328 4.8354	2.7631 5.0657	2.9934 5.2959	3.2236 5.5262	3.4539 5.7565	3.6841 5.9867	3.9144 6.2170	4.1447 6.4472	4.3749
3.0 4.0	6.9078 9.2103	7.1380 9.4406	7.3683 9.6709	7.5985 9.9011	7.8288 10.131	8.0590 10.362	8.2893 10.592	8.5196 10.822	8.7498 11.052	8.9801 11.283
5.0 6.0	11.513 13.816	11.743	11.973 14.276	12.204	12.434	12.664 14.967	12.894	13.125 15.427	13.355 15.658	13.585 15.888
7.0 8.0	16.118	16.348	16.579	16.809	17.039	17.269	17.500	17.730	17.960	18.190
9.0	20.723	20.954	21.184	21.414	21.644	21.875	22.105	22.335	22.565	22.796

Table I—J₀(z)

**Bessel functions** 

z	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	1.0000	0.9975	0.9900	0.9776	0.9604	0.9385	0.9120	0.8812	0.8463	0.8075
0										
1	0.7652	0.7196	0.6711	0.6201	0.5669	0.5118	0.4554	0.3980	0.3400	0.2818
2	0.2239	0.1666	0.1104	0.0555	0.0025	-0.0484	-0.0968	-0.1424	-0.1850	-0.2243
3	-0.2601	-0.2921	-0.3202	-0.3443	0.3643	-0.3801	-0.3918	0.3992	-0.4026	-0.4018
4		0.3887	-0.3766	-0.3610	-0.3423	-0.3205	-0.2961	0.2693	-0.2404	-0.2097
5	0.1776	-0.1443	-0.1103	0.0758	0.0412	-0.0068	+0.0270	0.0599	0.0917	0.1220
6	0.1506	0.1773	0.2017	0.2238	0.2433	0.2601	0.2740	0.2851	0.2931	0.2981
7	0.3001	0.2991	0.2951	0.2882	0.2786	0.2663	0.2516	0.2346	0.2154	0.1944
8	0.1717	0.1475	0.1222	0.0960	0.0692	0.0419	0.0146	-0.0125	0.0392	-0.0653
9	-0.0903	-0.1142	-0.1367	0.1577	0.1768	0.1939	-0.2090	-0.2218	-0.2323	0.2403
10	-0.2459	-0.2490	0.2496	-0.2477	0.2434	0.2366	-0.2276	-0.2164	0.2032	-0.1881
11	-0.1712	-0.1528	-0.1330	-0.1121	0.0902	-0.0677	-0.0446	-0.0213	+0.0020	0.0250
12	0.0477	0.0697	0.0908	0.1108	0.1296	0.1469	0.1626	0.1766	0.1887	0.1988
13	0.2069	0.2129	0.2167	0.2183	0.2177	0.2150	0.2101	0.2032	0.1943	0.1836
14	0.1711	0.1570	0.1414	0.1245	0.1065	0.0875	0.0679	0.0476	0.0271	0.0064
15	-0.0142	-0.0346	l — 0.0544	0.0736	-0.0919	0.1092	-0.1253	-0.1401	-0.1533	-0.1650

Table II—J₁(z)

0.1 z 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.0000 0.0499 0.0995 0.1483 0.1960 0.2423 0.2867 0.3290 0.3688 0.4059 0.4401 0.4709 0.4983 0.5220 0,5419 0.5579 1 0.5699 0.5778 0.5815 0.5812 2 0.5767 0.5683 0.5560 0.5399 0.5202 0.4971 0.4708 0.4416 0.4097 0.3754 3 0.3391 0.3009 0.2613 0.2207 0.1792 0.1374 0.0955 0.0538 0.0128 -0.0272-0.1033 4 -0.0660 ---0.1386 -0.1719 -0.2028-0.2311 -0.2566 -0.2791 -0.2985 -0.3147 -0.3276-0.3371 -0.3432 -0.3460 -0.3453 -0.3414 5 -0.3343 -0.3241 -0.3110 -0.2951-0.2559 -0.2329 6 -0.2767 -0.2081---0.1816 -0.1\$38 -0.1250 -0.0953 -0.0652-0.0349 7 +0.0252-0.0047 0.0543 0.0826 0.1096 0.1352 0.1592 0.1813 0.2014 0.2192 8 0.2346 0.2476 0.2580 0.2657 0.2708 0.2731 0.2728 0.2697 0.2641 0.2559 9 0.2453 0.2324 0.2174 0.2004 0.1816 0.1613 0.1395 0.1166 0.0928 0.0684 10 0.0435 0.0184 -0.0066 --0.0313 -0.0555-0.0789 -0.1012-0.1224 -0.1603 -0.1422-0.1768 -0.1913 -0.2039 -0.2143 11 -0.2225-0.2284 -0.2320 -0.2333-0.2323-0.2290 12 -0.2234-0.2157 -0.2060 -0.1943 -0.1807 -0.1655 -0.1487 -0.1307 -0.1114-0.0912 13 -0.0703 -0.0489 -0.0271 -0.0052 +0.0166 0.0380 0.0590 0.0791 0.0984 0.1165 14 0.1334 0.1488 0.1626 0.1747 0.1850 0.1934 0.1999 0.2043 0.2066 0.2069 15 0.2051 0.2013 0.1955 0.1879 0.1784 0.1672 0.1544 0.1402 0.1247 0.1080

continued Bessel functions

-

Table III— $J_2(z)$ 

0.1 0.5 0.7 z 0 0.2 0.3 0.4 0.6 0.8 0.9 0 0.0946 0.0000 0.0012 0.0050 0.0112 0.0197 0.0306 0.0437 0.0588 0.0758 0.1149 0.1366 0.1830 0.2074 0.2321 0.2570 0.2817 0.3061 0.3299 0.1593 1 0.4310 _ 2 0.3528 0.3746 0.3951 0.4139 0.4461 0.4590 0.4696 0.4777 0.4832 0.4862 0.4697 0.4586 3 0.4861 0.4835 0.4780 0.4448 0.4283 0.4093 0.3879 0.3641 0.3383 0.3105 0.2811 0.2501 0.2178 0.1846 0.1506 0.1161 0.0813 4

Table IV----J₃(z)

z	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0000	0.0002	0.0006	0.0013	0.0026	0.0044	0.0069	0.0102	0.0144
1	0.0196	0.0257	0.0329	0.0411	0.0505	0.0610	0.0725	0.0851	0.0988	0.1134
2	0.1289	0.1453	0.1623	0.1800	0.1981	0.2166	0.2353	0.2540	0.2727	0.2911
3	0.3091	0.3264	0.3431	0.3588	0.3734	0.3868	0.3988	0.4092	0.4180	0.4250
4	0.4302	0.4333	0.4344	0.4333	0.4301	0.4247	0.4171	0.4072	0.3952	0.3811

# Table V----J4(z)

z	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0003	0.0006	0.0010	0.0016
1	0.0025	0.0036	0.0050	0.0068	0.0091	0.0118	0.0150	0.0188	0.0232	0.0283
2	0.0340	0.0405	0.0476	0.0556	0.0643	0.0738	0.0840	0.0950	0.1067	0.1190
3	0.1320	0.1456	0.1597	0.1743	0.1891	0.2044	0.2198	0.2353	0.2507	0.2661
4	0.2811	0.2958	0.3100	0.3236	0.3365	0.3484	0.3594	0.3693	0.3780	0.3853

MATHEMATICAL TABLES

**Bessel functions** 

continued

<u>83</u>

continued Bessel functions

Table VI

*

	Jp(1)	Jp(2)	Jp(3)	Jp(4)	J _P (5)	Jp(6)	Jp(7)	Jp(8)	Jp(9)	Jp(10)	Jp(11)	Jp(12)	J _P (13)	Jp(14)
0	+.7652	+.2239	2601	3971	1776	+.1506	+.3001	+.1717	09033	2459	1712	+.04769	+.2069	+.1711
0.5	+.6714	+.5130	+.06501	3019	3422	09102	+.1981	+.2791	+.1096	1373	2406	1236	+.09298	+.2112
1.0	+.4401	+.5767	+.3391	06604	3276	2767	—.0º4683	+.2346	+.2453	+.04347	1768	2234	07032	+.1334
1.5	+.2403	+.4913	+.4777	+.1853	1697	3279	—.1991	+.07593	+.2545	+.1980	02293	2047	1937	01407
2.0	+.1149	+.3528	+.4861	+.3641	+.04657	2429	3014	1130	+.1448	+.2546	+.1390	08493	2177	
2.5	+.04950	+.2239	+.4127	+.4409	+.2404	07295	2834	2506	02477	+.1967	+.2343	+.07242	1377	
3.0	+.01956	+.1289	+.3091	+.4302	+.3648	+.1148	1676	2911	- 1809	+.05838	+.2273	+.1951	+.0 <b>2</b> 3320	1768
3.5	+.027186	+.06852	+.2101	+.3658	+.4100 •	+.2671	023403	2326	2683	09965	+.1294	+.2348	+.1407	06245
4.0	$+.0^{2}2477$	+.03400	+.1320	+.2811	+.3912	+.3576	+.1578	1054	2655	2196	01504	+.1825	+.2193	+ 07624
4.5	$+.0^{3}807$	+.01589	+.07760	+.1993	+.3337	+.3846	+.2800	+.04712	1839	2664	1519	+.06457	+.2134	+ 1830
5.0	+.0³2498	+.0²7040	+.04303	+.1321	+.2611	+.3621	+.3479	+.1858	05504	2341	2383	07347	+.1316	+.2204
5.5	+.0474	+.0²2973	+.02266	+.08261	+.1906	+.3098	+.3634	+.2856	+.08439	1401	2538	1864	+.0 ² 7055	+.1801
6.0	+.042094	+.0²1202	+.01139	+.04909	+.1310	+.2458	+.3392	+.3376	+.2043	01446	2016	2437		+.08117
6.5	+.056	+.0³467	+.0²5493	+.02787	+.08558	+.1833	+.2911	+.3456	+.2870	+.1123	1018	2354		04151
7.0 7.5	•+.0 ⁵ 1502	+.0 ³ 1749	+.0²2547 _	+.01518	+.05338	+.1296 +.08741	+.2336 +.1772	+.3206 +.2759	+.3275 +.3302	+.2167 +.2861	+.01838 +.1334	1703 06865	2406 2145	1508 2187
8.0 8.5	+.079422	+.042218	+.0³4934 —	+.0²4029	+.01841	+.05653 +.03520	+.1280 +.08854	+.2235 +.1718	+.3051 +.2633	+.3179 +.3169	+.2250 +.2838	+.04510 +.1496	1410 04006	2320 1928
9.0	+.085249	+.052492	+.0 ⁴ 8440	+.039386	+.0 ^{\$} 5520	+.02117	+.05892	+.1263	+.2149	+.2919	+.3089	+.2304	+.06698	1143
9.5		—	—	—	—	+.01232	+.03785	+.08921	+.1672	+.2526	+.3051	+.2806	+.1621	01541
10:0	+.092631	+.062515	+.041293	+.031950	+.021468	+.0²6964	+.02354	+.06077	+.1247	+.2075	+.2804	+.3005	+.2338	+.08501

Note: .027186 = .007186 .03807 =

 $.0^{3}807 = .000807$ 

322

Index

### A

Absorption units169Accelerating electrode, cathode ray137Acoustics165–178absorption coefficients170absorption units169amplifier power capacity172, 173attenuation constant169coefficients170equal-loudness contours178music levels174music, requirements172noise170etauloution constant169
Acoustics165–178absorption coefficients170absorption units169amplifier power capacity172, 173attenuation constant169coefficients170equal-loudness contours178music levels174music, requirements172noise177
absorption coefficients170absorption units169amplifier power capacity172, 173attenuation constant169coefficients170equal-loudness contours178music levels174music, ranges174music, requirements172noise177
absorption units169amplifier power capacity172, 173attenuation constant169coefficients170equal-loudness contours178music levels174music ranges174music, requirements172noise177
amplifier power capacity172, 173attenuation constant169coefficients170equal-loudness contours178music levels174music ranges174music, requirements172noise177
attenuation constant169coefficients170equal-loudness contours178music levels174music ranges174music, requirements172noise177
attenuation constant169coefficients170equal-loudness contours178music levels174music ranges174music, requirements172noise177
equal-loudness contours 178 music levels 174 music ranges 174 music, requirements 172 noise 177
music levels 174 music ranges 174 music, requirements 172 noise 177
music ranges 174 music, requirements 172 noise 177
music, requirements 172 noise 177
noise 177
noise reduction coefficients 170
noise reduction coencients 170
open-window units 169
optimum reverberation 166-169
pressure 176
public-address requirements 171-173
reverberation 165
computation 169-171
room sizes 165, 166
sound level 176
sound pressure 176
speech frequency 175
speech intensity 175
speech requirements 172, 173
standing waves 165
Admittance 64-70
Admittance equations 86
Advance wire 44
Aerialsee Antenna
Air cooling, tube 131
Air-cored coils 58, 59
Algebraic formulas 294–296
Alloys
melting point 44
physical constants 44
resistance 44
specific gravity 44
temperature coefficient 44

Alternating current			
average			99
effective			99
supplies			25
Altitude, atmospheric pressure			22
American			
noise units		190,	191
war standards, capacitors			55
war standards, resistors			52
wire gauge		35	, 36
Ampere turns, cathode-ray focu	using		138
Amplification, Amplifiers			
audio			143
beam power tube	161,	162,	163
cathode follower	156,	157,	
circuits			155
class A	143,	153,	154
class AB		153,	
class B	143,	154,	
class B r-f		152,	
class C			143
classes		156,	
constant-current characteristi	CS		145
design			143.
class A and AB		,	153
class AB and B			154
class B			152
class C			147
distortion			164
efficiency			143
factor		127,	
feedback			159
general design		143-	
graphical design		146-	
grid current			143
grounded cathode			156
grounded grid			156
grounded plate			156
harmonic distortion		153,	
negative feedback		159,	
operating data			143

#### Amplification, Amplifiers—Cable, radio frequency

Amplification, Amplifiers continued		
plate modulation		149
push-pull		143
radio-frequency		143
resistance coupled	158,	159
sizes, public address		171
transfer characteristics		148
tube	143-	-164
Amplitude modulation 86, 87	, 88,	288
Angles, approximations for		296
Angle of radiation		261
Anode current—see Current, plate		
Antennas—see also Radiators	250-	-271
angle, field intensity		255
array, radiation		265
arrays	263-	-271
binomial array		267
broadside directivity		265
	259,	265
field intensity 250-253,		
radiated power	258,	
electric, magnetic components	,	250
end-fed conductor radiation		260
field near dipole		251
height		201
field intensity		256
impedance		257
reacfance		257
resistance		257
horn		217
L and T		224
loop	265,	
vertically stacked, gain	200,	270
maximum radiation		261
minimum radiation		261
	246,	
parallel to screen, radiation	,	269
radiation		
angle		261
dipole		264
horizontal		269
loop		264
pattern	263,	
turnstile	,	264
two wires		269
resistance, reactance components		257
rhombic	261-	-263
single-lobe directivity		266
tangental magnetic field	250,	
top-loaded		224
	254-	
field strength	255-	
polarized	253,	
Areas of plane figures	291-	-293
Arithmetical progression		296
Army-Navy, preferred tubes		142
Army-Navy radio-frequency cables	201-	
Arrays, antenna	263-	
Atmospheric noise	244,	
pressure		22
Atomic number		19

Atomic weights Attenuation, Attenuator balanced O balanced H	19 100-114 106 106
bridged H	106, 110
bridged T	108, 110
circular wave guides	213-217
H	114
ladder	101, 102
load impedance	107, 102
minimum loss	106, 112
mismatch	198
open-wire pairs	181
symmetrical H	106, 108
symmetrical O	110
symmetrical $\pi$	110
symmetrical T	106, 108
T	114
telephone cable	183, 184
telephone lines	180, 181, 182, 186
u-h-f lines	206
unbalanced $\pi$	106
unbalanced T	106
wave guide	216, 217
Audible spectrum	175, 176
Audio reactors	122
Audio transformer	122
Auto transformer	122

# В

Balanced	
H attenuator	106
line, impedance	196
shielded, impedance	196
O attenuator	106
Band-elimination filters	116
Band-pass filters	116
Bandwidth	32
noise	247
Barometer, atmospheric pressure	22
Bauds	192
Beaded line, impedance	196
Bell System carrier frequencies	185
Bessel functions	318-321
Binomial array	267
theorem	297
Birmingham wire gauge	36
Blocking oscillator	272
Bridged	
H attenuator	106, 110
Tattenuator 100,	106, 110
Brightness, cathode ray	139
British wire gauge	36
Broadside directivity	265
B & S wire gauge	35, 36

# Ç

Cable, radio frequency	201
attenuation	204

# Calculus, integrals—Cut-off voltage, cathode ray

Calculus, integrals	300-302	Condenser-see Capacitor	
Capacitance, Capacitor	52, 55-57	Conductance, Conductor	68
ceramic	57	ground	224
charge	92	mutual	129
color code	52	solid, skin effect	73
discharge	92		82, 183
frequency	61, 62, 63	tubular, skin effect	73
mica	55, 56	Cone-sphere resonator	222 292
parallel plate	75 61, 75	Cone, volume Constantan, thermocuples	46, 47
reactance	80, 182, 183	Continuous waves	40, 47
telephone line 179, 1 transmission line	194	Control	55
Capacity—see Capacitance	174	characteristic, cathode ray	138
Carbon, thermocouples	46, 47	electrode, cathode ray	136
Carrier systems	185-187	grid	128
telegraph, frequency	187	Conversion factors	11
telephone, frequency	186	Cooling water	131
Cathode—see also Filament		temperature rise	131
	56, 157, 158	Copper	
Cathode-ray tubes—see Tubes, ca	athode	resistance	45
ray		stranded, AWG	. 38
Cavities, resonant	219, 220	stranded conductors	38
CCIF noise units	191	stranded, resistance	38
Ceramic beads	196	stranded, weight	38
capacitors	57	thermocouples	46, 47
Characteristic impedance—see I	mped-		60, 126
ance	10		36, 123
Chemical symbols	19	attenuation per mile	37 36
Chokes, iron cored, design of	122-126	Birmingham gauge (BWG)	-
Chromel, thermocouples Circle, area	46, 47 292	British standard Brown and Sharpe	36 36, 123
Circuits	272	characteristic impedance	30, 123
coupled tuned, phase shift	84	current capacity	126
overcoupled	84, 85	enameled	126
selective	80-86	English-metric units	36
single tuned, phase shift	81	Imperial standard (SWG)	36
uhf	134	resistance 35, 36,	37, 126
Circular wave guides	213-217	size AWG	· 37
Clearance hole, screws	39	strength	37
Climate	23	tables 35, 36, 38,	60, 126
Clipped sawtooth wave	284	weight 35,	, 36, 37
Coating, tropical, marine protect	tion 50	Core, reactor	123
Coaxial line		Core, transformer	123
cable	188	Cosh, table of	317
characteristic impedance	196		244-246
copper	206	Cosmic rays	28
resonator	222 195	Coupled section, impedance matching	200
surge impedance	52	Coupling	79
Code, color	193	coefficient optimum	79
Code, telegraph Coefficient of coupling	· 79	phase shift	84
Coil—see Inductance, Inductor	,,	two circuits	79
Color code	52	Crystal detectors	142
capacitor	52	Current	
Color temperature, metals	43	average	99
Combinations, permutations	297	characteristic	129
Common logarithms	304, 305	effective	. 99
Communication spectrum	28	ratio, decibels	34
Complex hyperbolic functions	299	two-mesh network	78
Complex quantities, formulas	294		83, 184
Composition resistors, color code		Cut-off voltage, cathode ray	138

Culledon area	000		
Cylinder, area volume	293 293	Electromagnetic units	16, 17, 251
Cylindrical wave guides	293 213-217	Electromotive force, psophom	
Cymharical wave goldes	215-217	Electromotive force, series of Electron, Electronics—see als	
D		differentiation	276, 277
-	00.007	inertia	135
Damped waves Decibels	33, 287 34	integration	274, 275
nepers	34	velocity, cathode ray	140
Decimals, inch	14	Elementary dipole	250
Deflection, cathode-ray	••	Elements	
electrode	137, 139	atomic number	19
factor	138	atomic weight	19
sensitivity	139, 140	emf series	18 19
Delta-wye transformation	86	symbols Ellipse, area	292
Deviation, frequency	30	Emission	33
Diamond antennas	261-263	frequency bands	32
Dielectric constant	40	tube	128, 133
ground Diala stais stass ath	224	EMU units	16, 17
Dielectric strength Diffraction	40 238	End-fed conductor radiation	260
Dimensions, conversion	230	Equations, admittance	86
Diode		Equations, impedance	86
lines	129	Equivalents	11
perveance	129	ESU units	16, 17
plate current	129	European noise units	190
power supply	118, 119	Ewaves	207
Dipole		Exponentials Exponential wave	317
electric	250	Exponential wave	287
field intensity	250-252		
half wave, field intensity	258	F	
magnetic	250	Factors, conversion	11
radiation pattern	264	Feedback	159, 164
Direct-current supplies Directive antenna arrays	25 263	Feedback, relaxation oscillato	
Dissipation, tube	203 129	Feeder-see Transmission line	
Distance	127	Feeling, acoustic threshold	178
ranges	240	Field Intensity—see also Radio	
uhf	238	antenna angle	255
reflected signal	244	antenna height	255
Distortion factor	164	dipole end-fed conductor	250
Distributed constants, telephone cabl		meter	260 245
	182, 184	surface-wave	224, 225
D layer	226, 227	vertical antenna	253
Driver transformer	122	Field strength—see Field	intensity,
Dry-butb thermometer Dynamic resistance, parallel tuned c	20 ircuit 76	Radiation	
Dynamic resistance, paraller lunea c	IFCUIT /O	Filaments	
E		oxide coated	132
-		reactivation	134
Ear sensitivity	178	thoriated tungsten	132
Earth—see also Ground * distances	240	transformer	122
magnetic field	240 141	tungsten Filters	132
Echo, radio, time	244	band elimination	116
EEI-NEMA-RMA noise meter	245	band pass	116
Elover	227	constant K	116, 117
sporadic	227	high pass	88-91, 117
Electric circuit formulas	74-100	low pass	88-91, 117
Electric dipole	250	networks	115, 116, 117
Electrode characteristic	129	power supply	88, 118-121
Electromagnetic frequency spectrum	28	RC, RL, LC	8891

Filters continued 123 reactors 120 rectifier series M 117 shunt M 117 116 3-element series 116 3-element shunt 50 Finishes, tropical, marine 49 Flow of water Eccusing, cathode ray 138 ampere turns 138 current 137, 139 electrode 138 voltage 131 Forced-air cooling, tube 231-236 Forecasts, propagation 24 Foreign countries, power supplies 58, 59 Form factor Formulas 74-100 electric circuit 64-70 impedance 291-302 mathematical 291, 292 mensuration 277-287 Fourier analysis 279, 280 graphical solution 285 Fractional sine wave 14 Fractions, inch-metric equivalents Frequency abbreviations 28 allocation 187 carrier telegraph 186 carrier telephone 185 J carrier 185 K carrier 188 L type program 187 telephony, high frequency 187 30, 32 bands 61, 62, 63 capacitance, inductance 28 classifications, radio 183, 184 cut-off, telephone cable 28 designations 288 modulation 25 power supplies 192 printer telegraph 174 range, music 174 range, speech 61 reactance 28 spectrum, electromagnetic 30 tolerances 29 wavelength 189 Frying noise 227 F₁ layer 227, 228 F₂ layer

#### G

Galvanic series, metals18Gamma rays28Gaps, protective123Gas tube oscillator272Gaussian unit16

Geometrical progression	297
Giorgi unit	16
Great-circle calculations	240-243
Greek alphabet	15
Grid voltage, critical	129
Ground	
conductivity	<b>2</b> 24
dielectric constant	<b>2</b> 24
reflection	240
types	<b>2</b> 24
wave	<b>2</b> 24
field intensity, frequency	239
Guides, wave	207

#### Н

Harmonics—see also Distortion	
intensity	32
Hearing, equal loudness	178
High frequency-see also Radio frequenc	y
maximum usable	229
propagation	226
resistance	71
High-pass filters	117
Horns, wave guide	217
Horsepower vs torque	51
H pad	114
Humidity	
effect on reactor	123
effect on transformer	123
relative	20
temperature	20
H waves	207
Hyperbolic	
cosines	317
functions	299
sines	316
tangents	318
<b>31</b>	

# 1

mpedance	
antenna height	257
balanced line	196
beaded line	196
coaxial line	196
formula	64-70, 86
matching, coupled section	200
matching, shorted, open stub	199
open 2-wire line	196
parallel	76
wires	197
power transfer	78
shielded balanced line	196
telephone cable	183, 184
telephone line	180, 182
transmission line	194
wire and ground	197
wire and shield	197
2-mesh network	76, 77
2 paralled wire and ground	197
2 wires and ground	197
4-wire line	197
4-1110 1010	•••

#### Imperial wire gauge—Metal

Imperial wire gauge Inductance, Inductor	36
charge	95-98
discharge	75 75 95
formulas	58, 74
frequency	61, 62, 63
	61, 75
reactance	74
ring	58, 59
single-layer solenoids	
	179, 180, 182, 183 194
transmission line	135
Inertia, electron	
Input transformer	122
Insulation, Insulating material	
air	48
dielectric constant	40
dielectric strength	40
electrical properties	40
physical properties	40
plastics, trade nam <b>es</b>	41
power factor	40
resistivity	40
softening point	40
thermal expansion	40
Integrals	300-302
Integration, electronic	274
Intensifier electrode, cathod	e ray 137
Interference—see Noise	
International regulations	30
Interstage transformer	122
Inverse-distance fields	224
Inverse feedback	159, 164
lon, emf series	18
Ionization, Ionosphere—see	
gation	
density	228, 229
D layer	226
E layer	227
sporadic	227
F ₁ layer	227
F ₂ layer	228
Iron, thermocouples	46, 47
Isolation transformer	122
	283
Isosceles-triangle wave	
I.T. & T. System carrier freq	
Iterative impedance—see Tr	ansmission+
line impedance	
J.	
J type carrier systems	185
К	
Kelvin, operating temperatur	e 132

Kennely-Heaviside Layer-se	e lonosphere
Klystrons	135, 142
K type carrier systems	185
L	
Ladder attenuator	101-104

L antennas

Latitude, distances	240
L carrier system	188
LC filters	88-91
Lead, solder melting point	47
Leakance, telephone line	179, 180
Letter symbols, elements	19
Letter symbols, Greek	15
Life, tube	133
Light spectrum	28
Light, velocity	28
Line-of-sight distance	237-240
Lines, transmission—see Transmiss	ion
lines	
Loading, telephone cable	182, 184
Loading constants, telephone cable	182
Logarithms, common	304–305
Logarithms, natural	314, 315
Longitude and time	27
Longitude, distances	240
Long waves, propagation	224-226
Loop antennas, stacked	270
Loop mile constants	184
Loop, radiation pattern	264
Loudness contours	178
Loudspeaker impedance	171
Loudspeaker, wire sizes	171
Low frequencies, propagation	224-226
Low-pass filters	117
L type, carrier modulation	188

#### Μ

224

38
39
38
38
38
297
pper
60
250
141
139
134, 142
25
244-246
50
9, 291–302
304-322
229, 230
224
224-226
43, 44, 47
291-293
271-273
22
43
43
43, 44, 47
44
18

39 161

Metal continued	
resistance	44
specific gravity	44
temperature	43
temperature coefficient	44
Metric equivalents	14
Mica capacitors, identification	55
Minimum-loss pads	106, 112, 113
Mismatch, attenuation	198
MKS system	16
Modulation, Modulator	
amplitude	86, 87, 88, 288
characteristic, cathode ray	138
classes	32
frequency	288
L type carrier	188
percentage	87
pulse	290
transform <b>er</b>	122
waveforms	283
Moisture, humidity	20
Multi-element array	263-271
Multiple-hop transmission	228-230
Multiples of 2.3026	318
Multiples of 0.4343	318
Multivibrator	273
Music, frequency ranges	174
Music, intensity levels	174
Mutual conductance-see Tub	25

# Ν

Navy-Army preferred tubes	142
Navy-Army radio-frequency cat	· · -
Negative feedback	159-164
Nepers-decibels	34
Networks	100-114
filter	115
theorems	74
	74
2-mesh, current	
2-mesh, impedance	76, 77
New York, magnetic field at	141
Noise 	
acoustic	177
atmospheric	244, 245
cosmic	244-246
frying	189
levels	177, 190
line	189
man-made	244-246
measurement	189–191, 249
meter	245
psophometric .	189
radio	244-249
receiver, antenna	244, 246, 248
reduction coefficients	170
room	189
thermal agitation	244, 246, 248
to-signal ratio	248, 249
units	190
Nonsinusoidal waves	272-287
TOUSINGSOLGGE WOYES	2/2-20/

Nuts, sc	rews	
Nyquist	diagram	

# 0

Oblique-angled triangle, solution	298
Open stub, impedance matching	199
Open-window units	169
Open-wire pairs	<b>179–1</b> 81
Optical horizon	238
Optical line-of-sight distance	238
Optimum coupling	79
Oscillation, Oscillator	147
blocking	272
feedback, relaxation	272
gas tube	272
multivibrator	273
relaxation	272, 273
squegging	273
van der Pol	273
Oscillogram, modulation percentage	87
Output transformer	122
Overcoupled circuits	84
Oxide-coated cathode	132

#### P

Pads, minimum loss	112, 113
Pads, T and H	114
Paint, tropical, marine	50
Parabola, area	292
Parallel circuit, impedance	68, 69, 70
Parallel impedance	76
Parallelogram, area	291
Parallel wires, impedance	195, 197
Penetration of current	71
Percentage modulation	87
Permutations, combinations	297
Perveance, diode, triode	129
Phase angle Phase shift, coupled tuned circuits	6470 84
Phase shift, single-tuned circuits	81
Phase shift, telephone lines	182
Phototubes	142
Pi section attenuators	142
Pi-tee transformation	86
Plane figures, areas	291-293
Plastics, composition	41
Plastics, trade names	41
Plate current, diode, triode	129
Plate resistance	128
Plate transformer	122
protective gaps	123
Platinum, thermocouples	46, 47
Polygon, area	291
Positive-grid tubes	135
Post-accelerating electrode, cath	-
ray	137
Potential, element series	18
Power	
dipole radiation	258
factor	40

#### Power-Reactance, Reactor

Power continued		
ratio to decibels		34
supplies		
foreign countries		25
	118-	
transformer		122
design		124
transfer between impedances		78
transfer between two meshes	70	
		, 79 137
Preaccelerating electrode, cathode	ray	
Precipitation extremes		23
Precipitation, world		24
Pressure		
acoustic		176
atmospheric •		22
reactor		123
transfo <b>rmer</b>		123
wind		42
Primary constants		180
Primary emission		128
Principle of superposition		74
Printer telegraph frequency		192
Printer telegraph, speed		192
Prism resonator		222
Program carrier, frequency		187
Progression, arithmetical		296
Progression, geometrical		297
Propagation—see also Attenuation		
antenna height		238
constant		180
toll cable		182
diffraction		238
distances	238,	
calculation		240
echo		244
D layer		226
echo time		244
		227
E layer		227
sporadic		
forecasts	231-	
frequency vs ground wave		239
F ₁ layer		227
F2 layer		228
good earth		225
height of antenna		238
high frequencies		226
line of sight		238
long waves		224
low frequencies		224
maximum usable frequencies		229
medium frequencies		224
medium waves	224-	
optical horizon		238
over ground		225
poor earth		225
radio	224	249
radio horizon		238
radiotelephone fields required		235
range		238
sea water		226
short waves	226-	230
signal strength required		235

Propagation continued	
sky wave	227
sporadic E	227
surface waves	225
telephone cable	182, 184
telephone lines	180
waves in gui <b>des</b>	207
Protective gaps	123
reactors	123
transformers	123
Psophometric electromotive force	189-191
Public-address requirements	171
Pulse-frequency modulation	290
Pulse modulation	290
Pulse modulators	142
Pyramide, volume	293

# Q

Q, resonators	222
Quadratic equation	296

# R

Radiation, Radiator—see also A	ntenna
angle	261
array antenna	265
binomial array	267
cooling, tube	131
dipole	264
end-fed conductor	260
horizontal wire	269
loop	264
pattern	263-264
power, dipole	258
spectrum	28
turnstile antenna	264
vertical	224, 254
wire parallel to screen	269
2 wires	269
Radio frequency	
cable	201
attenuation	204
classifications	28
resistance	71
Radio horizon	238
Radio noise	<b>244</b> 249
Radio path horizon	237
Radio path length	238
Radiotelephone, fields required	235
Rainfall	23, 24
RC filters	88-91
Reactance, Reactor	
antenna height	257
audio	122
capacitor	75
charts	61, 62, 63
cores	123
filter	123
frequency	61, 62, 63
humidity	123
inductor	75

# Reactance, Reactor-Spacing, telephone lines

Reactance, Reactor continued	
iron-core	122-126
major types	122, 123
pressure	123
protective gaps	123
saturable	123
temperature	123
wave-filter	123
Receiver noise 244	, 246, 248
Reciprocity theorem	74
Rectangular wave	282
Rectangular wave guides	208
Rectification, Rectifier	
circuits	118, 119
fult-wave	118, 119
half-wave	118, 119
power supply	118-121
wave analysis	287
Recurrent wave forms, Fourier analys	is
· · ·	277-280
Reflected signal, time interval	244
Reflection coefficient	240
Reflector, antenna	269
Refractive index	240
Relative humidity	20
Relaxation oscillators	272, 273
Resistance, Resistor	52
antenna height	257
copper wire	35, 36
coupled amplifier	158
high frequency	71
insulating materials	40
parallel circuit	76
radio frequency	71
skin effect	71
standard color code	53
telephone line 179, 180	
Resonance, Resonator	,,
cavities	219
circular	222
coaxial	222
cylinder	222
frequency, filters	89
frequency, filters frequency, series circuit	
frequency, series circuit	75
frequency, series circuit prism	75 222
frequency, series circuit prism rectangular	75
frequency, series circuit prism rectangular selectivity	75 222 221, 222 80
frequency, series circuit prism rectangular selectivity sphere-cone	75 222 221, 222 80 222
frequency, series circuit prism rectangular selectivity sphere-cone sphericat	75 222 221, 222 80
frequency, series circuit prism rectangular selectivity sphere-cone spherical square prism	75 222 221, 222 80 222 221, 222
frequency, series circuit prism rectangular selectivity sphere-cone spherical square prism waves in	75 222 221, 222 80 222 221, 222 221, 222 222
frequency, series circuit prism rectangular selectivity sphere-cone spherical square prism waves in Reverberation time	75 222 221, 222 80 222 221, 222 222 207 165
frequency, series circuit prism rectangular selectivity sphere-cone sphericat square prism waves in Reverberation time R-F cables, Army-Navy	75 222 221, 222 80 222 221, 222 221, 222 222 207
frequency, series circuit prism rectangular selectivity sphere-cone spherical square prism waves in Reverberation time R-F cables, Army-Navy attenuation	75 222 221, 222 80 222 221, 222 222 207 165 201–203
frequency, series circuit prism rectangular selectivity sphere-cone spherical square prism waves in Reverberation time R-F cables, Army-Navy attenuation R-F transmission lines—see also	75 222 221, 222 80 222 221, 222 207 165 201–203 204
frequency, series circuit prism rectangular selectivity sphere-cone spherical square prism waves in Reverberation time R-F cables, Army-Navy attenuation R-F transmission lines—see also Transmission lines	75 222 221, 222 80 222 221, 222 207 165 201–203 204 194–206
frequency, series circuit prism rectangular selectivity sphere-cone spherical square prism waves in Reverberation time R-F cables, Army-Navy attenuation R-F transmission lines—see also Transmission lines RG-/U cable	75 222 221, 222 221, 222 222 207 165 201–203 204 194–206 201–204
frequency, series circuit prism rectangular selectivity sphere-cone spherical square prism waves in Reverberation time R-F cables, Army-Navy attenuation R-F transmission lines—see also Transmission lines RG-/U cable Rhodium, thermocouples	75 222 80 222 221, 222 222 207 165 201–203 204 194–206 201–204 46, 47
frequency, series circuit prism rectangular selectivity sphere-cone spherical square prism waves in Reverberation time R-F cables, Army-Navy attenuation R-F transmission lines RG-/U cable Rhodium, thermocouples Rhombic antennas	75 222 221, 222 221, 222 222, 222 207 165 201–203 204 194–206 201–204 46, 47 261–263
frequency, series circuit prism rectangular selectivity sphere-cone spherical square prism waves in Reverberation time R-F cables, Army-Navy attenuation R-F transmission lines RG-/U cable Rhodium, thermocouples Rhombic antennas Right-angle triangle, solution	75 222 221, 222 221, 222 222 222 207 165 201–203 204 194–206 201–204 46, 47 261–263 298
frequency, series circuit prism rectangular selectivity sphere-cone spherical square prism waves in Reverberation time R-F cables, Army-Navy attenuation R-F transmission lines RG-/U cable Rhodium, thermocouples Rhombic antennas	75 222 221, 222 221, 222 222, 222 207 165 201–203 204 194–206 201–204 46, 47 261–263

RL filters	8891
RMA standards, capacitors	55
RMA standards, resistors	52
Room acoustics	165-178
Room noise	189

2	
Saturable reacto <b>rs</b>	123
Saturation, percent	20
Sawtooth wave	284, 285
Scott transformer	122
Screen grid	128
cathode ray	137
Screws, machine	
head styles	38
hole sizes	39
length	38
special	38
standard	38
Sea water, propagation	226
Secondary emission	128
Sector circle area	292
Segment circle area	292
Selective circuits	80-86
Self inductance—see Inductance	
Series circuit	
charge	95
discharge	95
impedance formulas	68, 69, 70
sinusoidal voltage	98
Series M filter	117
Series 3-element filter	116
Shielded balanced line impedance	196
Shorted stub, impedance matching	199
Short waves, maximum usable	fre-
	229
quencies	226
Short waves, propagation Shunt M filter	117
Shunt 3-element filter	116
Signal strength—see Attenuation,	
intensity, Propagation	Teiu
Signal-to-noise ratio	248, 249
Silicon carbide, thermocouples	46, 47
Simpson's rule	293
	316
Sines, hyperbolic	235
Sine wave, fractional	233
Sine wave, full	286
Sine wave, half	228, 229
Single-hop transmission	: 316
Sinh, table of Sinusoidal voltage	. 518
Skin effect	71, 72, 73
	228, 229
Sky reflection	
Sky-wave—see Attenuation, Field	- m-
tensity, Propagation	47
Solder, melting point	47
Solenoids, inductance	58, 59
Sound level, acoustic	176
Sound, noise levels	177
Space-charge grid	128
Spacina, telephone lines	180

# Spark-gap breakdown voltages-Torque vs horsepower

Spark-gap breakdown voltages	48	Telepi
Speech, frequency ranges	175	imp
Speech, intensity levels	175	loa
Speed, printer telegraph	192	c
	192	nois
Speed, telegraph	293	pro
Sphere, area		
cone resonator	222	velo
volume	293	way
Spherical trigonometry	240	Telep
Spiral-4 cable	183	Telep
Sporadic E layer	227	li
Square-prism resonator	222	atte
Squegging oscillator	273	cap
Stacked loops	270	con
Standard noise meter	245	imp
Standard time	27	indu
Standing waves, acoustic	165	leal
Static—see Atmospheric noise		nois
Stub, open, shorted, impedance ma	itch-	, pha
ing	199	, pro
Studio acoustics	165	resi
Sunspot cycle	229, 230	spa
Superposition, principle	74	velo
Suppressor grid	128	way
Surface waves—see Attenuation, I		Telepi
		Telep
intensity, Propagation Surge impedance—see Transmission	line	Tempe
	*IIIIG	ext
impedance	68	high
Susceptance	00	
Symbols	10	hum
chemical	19	low
elements	19	mec
Greek	15	met
tubes	127	rea
Symmetrical		rise
attenuator	106	trar
H attenuator	108	wo
O attenuator	106, 110	TEM v
Pi attenuator	106, 110	Termin
T attenuator	108	Termin
trapezoid wave	282	TE wa
		Theor
-	1	Ma
т		net
Tables, mathematical	304-323	reć
Tangents, hyperbolic	318	sup
T antennas	224	Tay
Tapping hole, screws	39	The
Taylor's theorem	297	Therm
Telegraph		Therm
carrier systems	187	Therm
codes, comparison	193	Theve
facilities	192	Thoria
printer	192	Time b
frequency	192	Time o
· . ·	192	filte
speed	192	Time,
systems	192	Time,
speeds Talanhaan anhla	172	
Telephone cable	102 104	Tin, sc
attenuation	183, 184	TM we
cut-off frequency	183, 184	Toll co
distributed constants	182, 184	Torqu

	Telephone cable continued	
175	impedance 183,	184
175	loading 182,	184
192	constants	182
192	noise	190
293	propagation 182,	184
222	velocity 183,	184
293	wavelength 183,	184
240	Telephone carrier systems 185-	187
183	Telephone line—see also Transmission	
227	line	
222	attenuation 180, 181, 182,	186
273	capacitance 179, 182,	183
270	conductance 182,	183
245	impedance 180,	182
27		183
165	leakance 179,	180
	noise	190
tch-	phase shift	182
199	propagation	180
165	resistance 179, 180, 182,	
229, 230	spacing	180
74	velocity	180
128	wavelength	180
ield	Telephone toll cable 182-	184
	Telephone transmission-line data 179-	184
-line	Temperature	
	extremes	23
68	highest	23
	humidity	20
19	lowest	23
19	measurement, thermocouple 46	, 47
15	metals	43
127	reactor	123
	rise, tube	131
106	transformer	123
108	world	23
106, 110	world TEM waves	23 207
106, 110 106, 110	world TEM waves Terminals, winding	23 207 123
106, 110 106, 110 108	world TEM waves Terminals, winding Terminology, tube 128,	23 207 123 129
106, 110 106, 110	world TEM waves Terminals, winding Terminology, tube 128, TE waves	23 207 123
106, 110 106, 110 108	world TEM waves Terminals, winding Terminology, tube 128, TE waves Theorems	23 207 123 129 207
106, 110 106, 110 108	world TEM waves Terminals, winding Terminology, tube 128, TE waves Theorems Maclaurin's	23 207 123 129 207 297
106, 110 106, 110 108 282	world TEM waves Terminals, winding Terminology, tube 128, TE waves Theorems Maclaurin's network	23 207 123 129 207 297 74
106, 110 106, 110 108 282 304-323	world TEM waves Terminals, winding Terminology, tube Te waves Theorems Maclaurin's network reciprocity	23 207 123 129 207 297 74 74
106, 110 106, 110 108 282 304-323 318	world TEM waves Terminals, winding Terminology, tube 128, TE waves Theorems Maclaurin's network reciprocity superposition	23 207 123 129 207 297 74 74 74
106, 110 106, 110 108 282 304-323 318 224	world TEM waves Terminals, winding Terminology, tube 128, TE waves Theorems Maclaurin's network reciprocity superposition Taylor's	23 207 123 129 207 297 74 74 74 74 297
106, 110 106, 110 108 282 304-323 318 224 39	world TEM waves Terminals, winding Terminology, tube 128, TE waves Theorems Maclaurin's network reciprocity superposition Taylor's Thevenin's	23 207 123 129 207 297 74 74 74 297 74
106, 110 106, 110 108 282 304-323 318 224	world TEM waves Terminals, winding Terminology, tube 128, TE waves Theorems Maclaurin's network reciprocity superposition Taylor's Thevenin's Thermal agitation 244, 246,	23 207 123 129 207 297 74 74 74 297 74 297 74 248
106, 110 106, 110 108 282 304-323 318 224 39 297	world TEM waves Terminals, winding Terminalogy, tube 128, TE waves Theorems Maclaurin's network reciprocity superposition Taylor's Thevenin's Thermal agitation 244, 246, Thermal properties, insulating materials	23 207 123 129 207 297 74 74 74 297 74 297 74 248 40
106, 110 106, 110 108 282 304–323 318 224 39 297 187	world TEM waves Terminals, winding Terminalogy, tube 128, TE waves Theorems Maclaurin's network reciprocity superposition Taylor's Thervenin's Thermal agitation 244, 246, Thermal properties, insulating materials Thermocouples 46	23 207 123 129 207 74 74 74 74 74 297 74 248 40 , 47
106, 110 106, 110 108 282 304-323 318 224 39 297 187 193	world TEM waves Terminals, winding Terminology, tube 128, TE waves Theorems Maclaurin's network reciprocity superposition Taylor's Thevenin's Thermal agitation 244, 246, Thermal properties, insulating materials Thermocouples 46, Thevenin's theorem	23 207 123 129 207 74 74 74 74 297 74 248 40 , 47 74
106, 110 106, 110 108 282 304-323 318 224 39 297 187 193 192	worldTEM wavesTerminals, windingTerminology, tube128,TE wavesTheoremsMaclaurin'snetworkreciprocitysuperpositionTaylor'sThermal agitation244, 246,Thermal agitation244, 246,Thermal properties, insulating materialsThermocouples46,Thermocouples46,Therwonin's theorem132,	23 207 123 129 207 74 74 74 297 74 248 40 , 47 74 134
106, 110 106, 110 108 282 304-323 318 224 39 297 187 193 192 192	world TEM waves Terminals, winding Terminalogy, tube 128, TE waves Theorems Maclaurin's network reciprocity superposition Taylor's Thermal agitation 244, 246, Thermal properties, insulating materials Thermal properties, insulating materials Thermacouples 46 Thervenin's theorem Thoriated-tungsten filament 132, Time belts, worldwide	23 207 123 129 207 74 74 74 297 74 248 40 , 47 74 134 27
106, 110 106, 110 108 282 304-323 318 224 39 297 187 193 192 192 192	world TEM waves Terminals, winding Terminals, winding Terminals, winding Terminals, tube TE waves Theorems Maclaurin's network reciprocity superposition Taylor's Thervenin's Thervenin's Therwal agitation Thervenin's Thermal properties, insulating materials Thermal properties, insulating materials Thermacouples Therein's theorem Thoriated-trungsten filament Thoriated-trungsten filament Time constant Time constant Terminal States Thermal Page Time constant Taylor's Therein's Theorem Thoriated theorem Thoriated theorem Thoriated theorem Time constant Taylor's Time constant Taylor's Theorem Thoriated theorem Thoriated th	23 207 123 129 207 74 74 74 297 74 248 40 , 47 74 134 27 -98
106, 110 106, 110 108 282 304-323 318 224 39 297 187 193 192 192 192	world TEM waves Terminals, winding Terminology, tube 128, TE waves Theorems Maclaurin's network reciprocity superposition Taylor's Thermal agitation 244, 246, Thermal agitation 132, Thermal agitation 132, Time belts, worldwide Time constant 92 filters	23 207 123 129 207 74 74 297 74 297 74 297 74 248 40 , 47 74 134 27 -98 89
106, 110 106, 110 108 282 304-323 318 224 39 297 187 193 192 192 192 192 192	world TEM waves Terminals, winding Terminology, tube 128, TE waves Theorems Maclaurin's network reciprocity superposition Taylor's Thevenin's Thermal agitation 244, 246, Thermal agitation 244, 246, Thermal agitation 244, 246, Thermal agitation 244, 246, Thermocouples 46 Thevenin's theorem Thoriated-tungsten filament 132, Time belts, worldwide Time constant 92 filters Time, Greenwich central	23 207 123 129 207 74 74 74 297 74 297 74 248 40 , 47 74 134 27 -98 89 27
106, 110 106, 110 108 282 304-323 318 224 39 297 187 193 192 192 192	world TEM waves Terminals, winding Terminals, winding Terminals, winding Terminals, winding Tewaves Theorems Maclaurin's network reciprocity superposition Taylor's Thermal agitation 244, 246, Thermal properties, insulating materials Thermal properties, insulating materials Thereating theorem Thoriated-tungsten filament 132, Time belts, worldwide Time constant 92 filters Time, Greenwich central Time interval, reflected signal	23 207 123 129 207 74 74 297 74 248 40 , 47 74 134 27 -98 89 27 244
106, 110 106, 110 108 282 304-323 318 224 39 297 187 193 192 192 192 192 192 192	world TEM waves Terminals, winding Terminals, winding Terminals, winding Terminals, winding Tewaves Theorems Maclaurin's network reciprocity superposition Taylor's Thermal agitation 244, 246, Thermal properties, insulating materials Thermal agitation 244, 246, Thermal agitation 244, 246, Thermal agitation 244, 246, Thermal properties, insulating materials Thermal properties, insulating materials Time, Greenwich central Time, Greenwich central Time, offee and thermal properties Thermal properties insulating materials Thermal properties insulating materials Ther	23 207 1123 129 207 74 74 297 74 248 40 , 47 74 134 27 -98 89 27 244 47
106, 110 106, 110 108 282 304–323 318 224 39 297 187 193 192 192 192 192 192 192 192 192	world TEM waves Terminals, winding Terminals, winding Terminology, tube 128, TE waves Theorems Maclaurin's network reciprocity superposition Taylor's Thermal agitation 244, 246, Thermal properties, insulating materials Thermal properties, insulating materials Time, Greenwich central Time interval, reflected signal Tin, solder melting point TM waves	23 207 123 129 207 74 74 297 74 248 40 74 248 40 74 134 27 -98 89 27 244 47 207
106, 110 106, 110 108 282 304-323 318 224 39 297 187 193 192 192 192 192 192 192	world TEM waves Terminals, winding Terminals, winding Terminology, tube 128, TE waves Theorems Maclaurin's network reciprocity superposition Taylor's Therenal agitation 244, 246, Thermal agitation 244, 246, Thermocouples 46 Therenin's theorem Thoriated-tungsten filament 132, Time belts, worldwide Time constant 92 filters Time, Greenwich central Time interval, reflected signal Tin, solder melting point TM waves	23 207 1123 129 207 74 74 297 74 248 40 , 47 74 134 27 -98 89 27 244 47

T pad Transconductance Transfer characteristic Transformation, conversion factors tee-pi wye-delta Transformers		114 128 129 11 86 86
audio auto cores design driver filament humidity input interstage iron-core major types modulation output plate power supply pressure protective gaps Scott temperature Transmission, Transmitters—see also tenuation, Field intensity, Prop	122- 92 5 At-	122 122 123 124 122 122 122 122 122 122 122 122 122
tion codes	ugu-	193
frequency bands		32
frequency, printer		192
frequency tolerances line—see also Telephone line		30
line—see also Telephone line		
Army-Navy standard		201
attenuation		204
attenuation, mismatch		198
balanced, impedance		196
beaded, impedance		196
coaxial, impedance		196
constants	99,	179
open-wire pairs		179
toll cable		182
toli entrance cable		182
coupled sections		200 194
formulas		194
ground, impedan <b>ce</b> impedance	180,	194
balanced line	100,	196
beaded line		196
coaxial		196
matching stub		199
open stub		199
open 2-wire		196
parallel wires		197
shorted stub		199
telephone cable	183,	184
telephone line	180,	182
wire to ground		197
wire to shield		197
2 wires to ground		197

Transmission continued			
4-wire line			197*
length			205
miscellaneous			197
mismatch			198
noise			189
parallel, impedance			197
resistance			206
shielded balanced, impedan	ce		196
shielded, impedance			197
stub			199 195
surge impedance u-h-f attenuation			204
2 open wire, impedance			196
modulation types			32
speed, telegraph			192
tolerances, frequency			30
wave guides			207
Transverse electromagnetic way	es		207
Trapezoidal rule			293
Trapezoid, area			291
Trapezoid wave		282,	283
Triangle, area			291
Triangles, trigonometric solution			298
Trigonometry			_
formulas		294-	
	206,	310-	-313
functions, natural		306-	
solution, triangles			298
spherical			240
Triode perveance			129 129
Triode plate current			50
Tropical, finishes and materials T-section attenuators			100
Tubes, gaseous and vacuum		127-	
amplification factor		127,	
amplifiers		143-	-164
cathode ray		136-	-141
accelerating electrode			137
anode			137
application			139
brightness			139
characteristics (		138,	139
control			138
electrode			136
cut-off voltage			138
deflection factor			138
deflection plates			137
deflection potential			139
deflection sensitivity		107	139
electrodes		136,	137
arrangement		140,	137 141
electron velocity	138,	139,	140
electrostatic deflection focusing	100,	137,	139
electrode		100,	137
formulas	139	140,	141
grid voltage	,	,	139
intensifier electrode			137
magnetic deflection	138	140,	141
modulating electrode	,	,	136
modulation			138

Тι	bes continued		
	post-accelerating electrode		137
	preaccelerating electrode		137
	screen grid		137
	shielding		139
	spot size	-	139
	types		142
	clipper		142
	coefficients	127,	128
	composite diode lines		129
	constant current characteristics		129
	control grid		128
	converters		142
	cooling		131
	critical grid voltage		129
	diodes		142
	plate current		129
	electron inertia		135
	electrode characteristic		129
	electrode dissipation		131
	emission	128,	133
	filament		
	characteristics .	132-	-134
	life		1 <b>3</b> 3
	reactivation		134
	voltage	133,	142
	forced-air cooling		131
	formulas		129
	gas		142
	switching		142
	grid control		142
	indicators		142
	Klystrons		135
		135,	136
	mutual conductance		129
	negative-grid	134,	135
	nomenclature		127
	oxide-coated cathode		132
	pentodes		142
	performance limitations		130
	perveance		129
	phototubes		142 128
	plate resistance	134,	135
	positive-grid	134,	142
	power		142
	preferred list		128
	primary emission pulse modulators		142
	•		131
	radiation cooling receiving		142
	rectifiers		142
	screen grid		128
			128
	secondary emission space-charge grid		128
	suppressor grid		128
	terminology		128
	tetrodes		142
	thoriated tungsten filament	132,	134
	total emission	,	128
	transconductance		128
	transfer characteristic		129
	transmitting		142
	<u> </u>		

Tubes continued	
triodes	142
plate current	129
tungsten filament	132
twin tetrodes	142
twin triodes	142
uhf	134
variational plate resistance	128
velocity-modulated	<b>134</b> , 135
voltage regulators	142
water cooling	131
Tuned circuits	
optimum coupling	79
parallel, dynamic resistance	76
selectivity	80
series, resonant frequency	75
Tungsten filament	132
Turnstile antenna, radiation pattern	264
Two-hop transmission	228, 229
Two-wire, open, copper line	206
impedance	196

# U

Ultra high frequency					
electron inertia	135				
lines, attenuation	204				
transmission lines—see	Transmission				
lines					
tubes	134–135				
Unbalanced Pi attenuator	106				
Unbalanced T attenuator	106				
Units, conversion	11, 16, 17				
Unsymmetrical trapezoid	283				

Vacuum tubes—see Tubes	
van der Pol oscillator	273
Variational plate resistance	128
Velocity	
light	28
modulated tubes	135
telephone cable	183, 184
telephone lines	180
transmission line	194
variation-see Velocity modulation	on
wind	42
Vertically polarized waves	240
Vertical radiators	254-258
Very-short-waves, propagation	231–234
V-H-F propagation	231–234
path length	232
Voice-frequency carrier	187
Voltage, gap breakdown	48
Voltage, ratio to decibels	34
Voltage regulators	142
Volume	
cone	293
cylinder	293
music	174
pyramid	293
-	

#### Volume—Y-delta transformation

Volume continued		Wave, integrated	274
speech	174	Wavelength-frequency	
sphe <b>re</b>	293	chart	29
		classification <b>s</b>	28
w		conversion	29
vv		formulas	29
Washers, screws	39	spectrum	28
Water		telephone cable	183, 184
cooling, tube	131	telephone lines	180
discharge rate	49	transmission line	194
head in feet	49	Wave propagation—see Propagation	
resistance through pipes	49	Wave shaping	274
Wave analysis	281	Weather data	23, 42
clipped sawtooth	284	Weights, atomic	. 19
critically damped exponential	287	Wet-bulb thermometer	20
Fourier	277	Winding terminals	123
full-wave rectified	287	Wind velocities and pressures	42
isosceles triangle	283	Wire	
rectangular	282	American gauge	35
sawtooth	284, 285	copper 35,	36, 37, 38, 60
sine	285, 286	sizes, loudspeaker	171
symmetrical trapezoid	282	spacing, telephone lines	180
unsymmetrical trapezoid	283	transmission	179-193
Wave-filter reactors	123	World, distances	240
Wave forms		World time chart	27
analysis	281	Wye-delta transformation	86
Fourier analysis	277-287		
nonsinusoidal	272-287		
shaping	274	X	
Wave guides and resonators	207-223	X-rays	28
attenuation	216	x-rays	20
circular	213-217		
cut-off wavelength	216	Y	
horns	217	T	
rectangular	208	Y-delta transformation	86